AZOR

Browse PDR's full list of drug information

AZOR

Classes

Angiotensin-II Receptor Blocker/ARBs and Calcium Channel Blocker Combinations

Administration
Oral Administration

May be administered without regard to meals.

Adverse Reactions
Severe

angioedema / Rapid / Incidence not known
anaphylactoid reactions / Rapid / Incidence not known
oliguria / Early / Incidence not known
renal failure (unspecified) / Delayed / Incidence not known
hyperkalemia / Delayed / Incidence not known
rhabdomyolysis / Delayed / Incidence not known
azotemia / Delayed / Incidence not known
teratogenesis / Delayed / Incidence not known

Moderate

edema / Delayed / 11.2-13.3
palpitations / Early / 4.5-4.5
peripheral vasodilation / Rapid / Incidence not known
orthostatic hypotension / Delayed / Incidence not known
hypotension / Rapid / Incidence not known
jaundice / Delayed / Incidence not known
hepatitis / Delayed / Incidence not known
elevated hepatic enzymes / Delayed / Incidence not known
cholestasis / Delayed / Incidence not known

Mild

dizziness / Early / 3.4-3.4
flushing / Rapid / 2.6-2.6
drowsiness / Early / 1.3-1.6
headache / Early / Incidence not known
syncope / Early / Incidence not known
gynecomastia / Delayed / Incidence not known
rash / Early / Incidence not known
pruritus / Rapid / Incidence not known
urticaria / Rapid / Incidence not known
nocturia / Early / Incidence not known
increased urinary frequency / Early / Incidence not known
cough / Delayed / Incidence not known
diarrhea / Early / Incidence not known
asthenia / Delayed / Incidence not known
vomiting / Early / Incidence not known
nausea / Early / Incidence not known
alopecia / Delayed / Incidence not known
weight loss / Delayed / Incidence not known

Boxed Warning
Pregnancy

When pregnancy is detected, every effort should be made to discontinue amlodipine; olmesartan therapy. Women of child-bearing age should be made aware of the potential risk, and olmesartan should only be given after careful counseling and consideration of individual risks and benefits. When used during the second and third trimesters, medications that affect the renin-angiotensin system (e.g., ACE inhibitors, angiotensin II receptor antagonists) have been associated with reduced fetal renal function and increased fetal and neonatal morbidity and death. Use of drugs that affect the renin-angiotensin system during pregnancy can cause fetal death or injury such as hypotension, neonatal skull hypoplasia, reversible or irreversible renal failure and death. Anhydramnios and oligohydramnios have also been reported. Development of oligohydramnios may be associated with decreased fetal renal function leading to anuria and renal failure and results in fetal limb contractures, craniofacial deformation, hypotension, hypoplastic lung development, and death. Retrospective data indicate that first trimester use of ACE inhibitors has been associated with a potential risk of birth defects. However, a much larger observational study (n = 465,754) found that the risk of birth defects was similar in infants exposed to ACE inhibitors during the first trimester, in infants exposed to other antihypertensives during the first trimester, and in those whose mothers were hypertensive but were not treated. Infants born to mothers with hypertension, either treated or untreated, had a higher risk of birth defects than those born to mothers without hypertension. The authors concluded that the presence of hypertension likely contributed to the development of birth defects rather than the use of medications. An observational cohort study evaluating the outcomes of angiotensin receptor blockers (ARBs) use during the first trimester of pregnancy found an increased rate of major birth defects compared to non-hypertensive pregnancies, 5.4% and 3%, respectively; the difference did not reach statistical significance. The authors noted that there was a higher risk of major birth defects with ARB therapy beyond 6 weeks of gestation compared to discontinuation of ARBs before week 6, 7.3% and 2.8%, respectively. The rates of prematurity and reduced birth weight were also increased in the ARB group. There were no statistically significant differences in the rates of major birth defects, spontaneous abortions, or preterm births between women with chronic hypertension treated with an ARB versus methyldopa. Data with amlodipine use in pregnancy are insufficient to inform a drug-associated risk for major birth defects and miscarriage. Data from animal reproductive studies indicate no evidence of adverse developmental effects when pregnant rats and rabbits received oral amlodipine during organogenesis at doses approximately 10- and 20-times the maximum recommended human dose, respectively. Litter size for rats was decreased by about 50%, and the number of intrauterine deaths was increased by approximately 5-fold. Amlodipine has been shown to prolong the gestation period and duration of labor in rats at this dose.[29090] In rare cases when another antihypertensive agent cannot be used to treat a pregnant patient, serial ultrasound examinations should be performed to assess the intraamniotic environment. If oligohydramnios is observed, discontinue amlodipine; olmesartan unless it is considered life-saving for the mother. It should be noted that oligohydramnios may not appear until after the fetus has sustained irreversible injury. Closely observe newborns with histories of in utero exposure to amlodipine; olmesartan for hypotension, oliguria, and hyperkalemia. If oliguria or hypotension occurs, blood pressure and renal perfusion support may be required, as well as exchange transfusion or dialysis to reverse hypotension and/or support decreased renal function.

Common Brand Names

AZOR

Dea Class

Rx

Description

Amlodipine, a calcium channel blocker, and olmesartan, an angiotensin II receptor antagonist, are combined in 1 tablet to treat hypertension.

Dosage And Indications
For the treatment of hypertension, either alone or in combination with other antihypertensive agents. For initial therapy in patients likely to need multiple antihypertensive agents to achieve their blood pressure goals. Oral dosage Adults

Initiate with amlodipine; olmesartan 5/20 mg once daily for 1—2 weeks and titrate as needed up to a maximum of 10/40 mg once daily.

Geriatric < 75 years

See adult dosage. Lower doses may be needed due to decreased hepatic, renal, or cardiac function and concomitant disease or drug therapy.

For patients already receiving amlodipine and olmesartan who desire to switch to the combination tablet or patients not adequately controlled on amlodipine or olmesartan alone. Oral dosage Adults

The dosing range of amlodipine is 5—10 mg/day PO and olmesartan is 20—40 mg/day PO. Amlodipine; olmesartan is available in 4 strength combinations (amlodipine 5 mg/olmesartan 20 mg, amlodipine 5 mg/olmesartan 40 mg, amlodipine 10 mg/olmesartan 20 mg, and amlodipine 10 mg/olmesartan 40 mg). Assure that volume and/or sodium depletion is corrected prior to administration. Dosage should be initiated based on current blood pressure control. The combination product may be substituted for the individually titrated components on a mg for mg basis, or, if blood pressure control is not satisfactory, the dose of one or both agents may be increased when the combination tablet is initiated. The combination product may also be used as add-on therapy in patients not achieving optimal blood pressure control on amlodipine or olmesartan monotherapy. After initiation of amlodipine; olmesartan, the dosage may be increased after 2 weeks, usually by increasing one component at a time, but both components can be increased to achieve more rapid blood pressure control. Maximum antihypertensive effects are seen within 2 weeks after a change in dose. In an 8-week, double-blind, placebo-controlled registration trial, patients were randomized to placebo, monotherapy with amlodipine or olmesartan, or various strengths of the combination product. Patients receiving amlodipine; olmesartan had significantly greater reductions in diastolic and systolic blood pressure than patients in the respective monotherapy groups. After completing the 8-week trial, patients whose blood pressure was not controlled on amlodipine 5 mg; olmesartan 40 were titrated to amlodipine 10 mg; olmesartan 40 mg. In patients whose blood pressure still was not adequately controlled, hydrochlorothiazide 12.5 mg, titrated to 25 mg as needed, was added to achieve adequate blood pressure control.

Geriatric

See adult dosage. Lower doses may be needed due to decreased hepatic, renal, or cardiac function and concomitant disease or drug therapy.

Dosing Considerations
Hepatic Impairment

Amlodipine; olmesartan should be used with caution in patients with hepatic disease. The elimination half-life of amlodipine is significantly prolonged in patients with hepatic disease, and an initial dose of 2.5 mg PO once daily with subsequent titration to response is recommended. Amlodipine; olmesartan is not recommended as initial therapy for the treatment of hypertension in patients with hepatic impairment. Because the lowest available dose of amlodipine in Azor is 5 mg, the combination should not be initiated until the patient tolerates 5 mg/day PO of amlodipine. In patients with moderate hepatic impairment, olmesartan AUC is increased by 60%; however, no dosage adjustments for olmesartan have been recommended. Patients should be titrated with the individual components before receiving the combination product. An increase in dosage of either component should be done with caution. Use of the combination product in patients with severe hepatic impairment has not been studied.

Renal Impairment

No adjustment in initial dose is recommended by the manufacturer. Of note, the AUC of olmesartan is tripled in patients with severe renal impairment (CrCl < 20 mL/min).

Drug Interactions

Acarbose: (Moderate) Angiotensin II receptor antagonists (ARBs) may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving an ARB in combination with antidiabetic agents should be monitored for changes in glycemic control.
Acebutolol: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
Acetaminophen; Caffeine; Dihydrocodeine: (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Acetaminophen; Chlorpheniramine; Phenylephrine : (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Acetaminophen; Codeine: (Moderate) Monitor for an increase in codeine-related adverse reactions including sedation and respiratory depression if coadministration with amlodipine is necessary; adjust the dose of codeine if necessary. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Amlodipine is a weak CYP3A4 inhibitor. Concomitant use may result in an increase in codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and increased morphine concentrations.
Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Acetaminophen; Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Acetaminophen; Dextromethorphan; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Acetaminophen; Dextromethorphan; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Acetaminophen; Dichloralphenazone; Isometheptene: (Major) Isometheptene has sympathomimetic properties. Patients taking antihypertensive agents may need to have their therapy modified. Careful blood pressure monitoring is recommended. (Moderate) Isometheptene has sympathomimetic properties. Patients taking antihypertensive agents may need to have their therapy modified. Careful blood pressure monitoring is recommended.
Acetaminophen; Guaifenesin; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Acetaminophen; Hydrocodone: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like amlodipine can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If amlodipine is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
Acetaminophen; Ibuprofen: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Acetaminophen; Oxycodone: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like amlodipine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If amlodipine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Acetaminophen; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Acetaminophen; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Acrivastine; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Adagrasib: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with adagrasib is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate; adagrasib is a strong CYP3A inhibitor. Coadministration with a moderate CYP3A inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. Strong CYP3A inhibitors may increase the plasma concentrations of amlodipine to a greater extent.
Adenosine: (Moderate) Use adenosine with caution in the presence of calcium-channel blockers due to the potential for additive or synergistic depressant effects on the sinoatrial and atrioventricular nodes.
Aldesleukin, IL-2: (Moderate) Angiotensin II receptor antagonists may potentiate the hypotension seen with aldesleukin, IL 2. (Moderate) Calcium channel blockers may potentiate the hypotension seen with aldesleukin, IL 2.
Alemtuzumab: (Moderate) Alemtuzumab may cause hypotension. Careful monitoring of blood pressure and hypotensive symptoms is recommended especially in patients with ischemic heart disease and in patients on antihypertensive agents. (Moderate) Alemtuzumab may cause hypotension. Careful monitoring of blood pressure and hypotensive symptoms is recommended especially in patients with ischemic heart disease and in patients on antihypertensive agents.
Alfentanil: (Moderate) Consider a reduced dose of alfentanil with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the alfentanil dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Alfentanil is a sensitive CYP3A4 substrate, and coadministration with weak CYP3A4 inhibitors like amlodipine can increase alfentanil exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of alfentanil. If amlodipine is discontinued, alfentanil plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to alfentanil.
Aliskiren: (Major) Aliskiren-containing products are contraindicated in combination with angiotensin II receptor antagonists (ARBs) in patients with diabetes mellitus. In general, avoid combined use of two renin-angiotensin-aldosterone system (RAAS) inhibitors, particularly in patients with CrCl less than 60 mL/minute. Combination therapy increases the risk for hyperkalemia, renal impairment, hypotension, and other side effects. Most patients receiving a comination of two RAAS inhibitors, such as ARBs and aliskiren, do not obtain any additional benefit compared to monotherapy. Closely monitor blood pressure, renal function, and electrolytes if aliskiren must be combined with another RAAS inhibitor. In the ALTITUDE trial, patients with type 2 diabetes and renal impairment, a population at high risk for cardiovascular and renal events, were given aliskiren in addition to ACE inhibitors or ARBs. The trial was stopped early because aliskiren was associated with an increased risk of non-fatal stroke, renal complications, hyperkalemia, and hypotension. In the Veterans Affairs Nephropathy in Diabetes (VA NEPHRON-D) trial, no additional benefit over monotherapy was seen in patients receiving the combination of losartan and lisinopril compared to monotherapy; however, there was an increased incidence of hyperkalemia and acute renal injury.
Aliskiren; Hydrochlorothiazide, HCTZ: (Major) Aliskiren-containing products are contraindicated in combination with angiotensin II receptor antagonists (ARBs) in patients with diabetes mellitus. In general, avoid combined use of two renin-angiotensin-aldosterone system (RAAS) inhibitors, particularly in patients with CrCl less than 60 mL/minute. Combination therapy increases the risk for hyperkalemia, renal impairment, hypotension, and other side effects. Most patients receiving a comination of two RAAS inhibitors, such as ARBs and aliskiren, do not obtain any additional benefit compared to monotherapy. Closely monitor blood pressure, renal function, and electrolytes if aliskiren must be combined with another RAAS inhibitor. In the ALTITUDE trial, patients with type 2 diabetes and renal impairment, a population at high risk for cardiovascular and renal events, were given aliskiren in addition to ACE inhibitors or ARBs. The trial was stopped early because aliskiren was associated with an increased risk of non-fatal stroke, renal complications, hyperkalemia, and hypotension. In the Veterans Affairs Nephropathy in Diabetes (VA NEPHRON-D) trial, no additional benefit over monotherapy was seen in patients receiving the combination of losartan and lisinopril compared to monotherapy; however, there was an increased incidence of hyperkalemia and acute renal injury.
Alogliptin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Alpha-glucosidase Inhibitors: (Moderate) Angiotensin II receptor antagonists (ARBs) may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving an ARB in combination with antidiabetic agents should be monitored for changes in glycemic control.
Alprazolam: (Major) Avoid coadministration of alprazolam and amlodipine due to the potential for elevated alprazolam concentrations, which may cause prolonged sedation and respiratory depression. If coadministration is necessary, consider reducing the dose of alprazolam as clinically appropriate and monitor for an increase in alprazolam-related adverse reactions. Lorazepam, oxazepam, or temazepam may be safer alternatives if a benzodiazepine must be administered in combination with amlodipine, as these benzodiazepines are not oxidatively metabolized. Alprazolam is a CYP3A4 substrate and amlodipine is a weak CYP3A4 inhibitor. Coadministration with another weak CYP3A4 inhibitor increased alprazolam maximum concentration by 82%, decreased clearance by 42%, and increased half-life by 16%.
Alprostadil: (Minor) The concomitant use of systemic alprostadil injection and antihypertensive agents, like calcium channel blockers, may cause additive hypotension. Caution is advised with this combination. Systemic drug interactions with the urethral suppository (MUSE) or alprostadil intracavernous injection are unlikely in most patients because low or undetectable amounts of the drug are found in the peripheral venous circulation following administration. In those men with significant corpora cavernosa venous leakage, hypotension might be more likely. Use caution with in-clinic dosing for erectile dysfunction (ED) and monitor for the effects on blood pressure. In addition, the presence of medications in the circulation that attenuate erectile function may influence the response to alprostadil. However, in clinical trials with alprostadil intracavernous injection, anti-hypertensive agents had no apparent effect on the safety and efficacy of alprostadil. (Minor) The concomitant use of systemic alprostadil injection and antihypertensive agents, such as angiotensin II receptor antagonists (angiotensin receptor blockers, or ARBs), may cause additive hypotension. Caution is advised with this combination. Systemic drug interactions with the urethral suppository (MUSE) or alprostadil intracavernous injection are unlikely in most patients because low or undetectable amounts of the drug are found in the peripheral venous circulation following administration. In those men with significant corpora cavernosa venous leakage, hypotension might be more likely. Use caution with in-clinic dosing for erectile dysfunction (ED) and monitor for the effects on blood pressure. However, in clinical trials with alprostadil intracavernous injection, anti-hypertensive agents had no apparent effect on the safety and efficacy of alprostadil.
Amifostine: (Major) Patients receiving angiotensin II receptor antagonists should be closely monitored during amifostine infusions due to additive effects. Patients receiving amifostine at doses recommended for chemotherapy should have antihypertensive therapy interrupted 24 hours preceding administration of amifostine. If the antihypertensive cannot be stopped, patients should not receive amifostine. (Major) Patients receiving calcium-channel blockers should be closely monitored during amifostine infusions due to additive effects. Patients receiving amifostine at doses recommended for chemotherapy should have antihypertensive therapy interrupted 24 hours preceding administration of amifostine. If the antihypertensive cannot be stopped for 24 hours before chemotherapy doses of amifostine, patients should not receive amifostine.
Amiloride: (Major) Potassium-sparing diuretics, such as amiloride, should be used with caution in patients taking drugs that may increase serum potassium levels such as angiotensin II receptor antagonists. Concurrent use can cause hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Amiloride; Hydrochlorothiazide, HCTZ: (Major) Potassium-sparing diuretics, such as amiloride, should be used with caution in patients taking drugs that may increase serum potassium levels such as angiotensin II receptor antagonists. Concurrent use can cause hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Aminolevulinic Acid: (Minor) Preclinical data suggest that calcium-channel blockers could decrease the efficacy of photosensitizing agents used in photodynamic therapy.
Amiodarone: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with amiodarone is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate and amiodarone is a moderate CYP3A inhibitor. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A4 inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Amlodipine; Celecoxib: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Amobarbital: (Moderate) Concurrent use of amobarbital with antihypertensive agents may lead to hypotension. Monitor for decreases in blood pressure during times of coadministration.
Amoxicillin; Clarithromycin; Omeprazole: (Major) Avoid coadministration of clarithromycin and amlodipine, particularly in geriatric patients, due to an increased risk of hypotension and acute kidney injury. If the use of a macrolide antibiotic is necessary in a patient receiving amlodipine therapy, azithromycin is the preferred agent. If coadministration is unavoidable, monitor for symptoms of hypotension and edema; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A4 substrate and clarithromycin is a strong CYP3A4 inhibitor. A retrospective, case crossover study, found the risk of hospitalization due to hypotension or shock to be significantly increased in geriatric patients exposed to clarithromycin during concurrent calcium-channel blocker therapy (OR 3.7, 95% CI 2.3-6.1). Concurrent use of azithromycin was not associated with an increased risk of hypotension (OR 1.5, 95% CI 0.8-2.8).
Amphetamine; Dextroamphetamine Salts: (Minor) Amphetamines increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, like calcium-channel blockers. Close monitoring of blood pressure is advised. (Minor) Amphetamines increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, such as angiotensin II receptor antagonists. Close monitoring of blood pressure is advised.
Angiotensin II: (Moderate) Angiotensin II receptor antagonists (angiotensin receptor blockers, or ARBs) may decrease the response to angiotensin II. Angiotensin II is a naturally occurring peptide hormone of the renin-angiotensin-aldosterone system (RAAS) that causes vasoconstriction and an increase in blood pressure. ARBs block the vasoconstrictor and aldosterone-secreting effects of angiotensin II by selectively blocking the binding of angiotensin II to the angiotensin receptor in many tissues.
Angiotensin-converting enzyme inhibitors: (Major) In general, avoid combined use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) due to lack of benefit with concomitant use in most patients. Closely monitor blood pressure, renal function, and electrolytes in patients on ACE inhibitors and ARBs. Dual blockade of the renin-angiotensin system with ACE inhibitors and ARBs is associated with increased risks of hypotension, syncope, hyperkalemia, and changes in renal function, including acute renal failure, compared to monotherapy.
Apalutamide: (Moderate) Closely monitor blood pressure if coadministration of amlodipine with apalutamide is necessary. Amlodipine is a CYP3A4 substrate and apalutamide is a strong CYP3A4 inducer. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
Apomorphine: (Moderate) Use of angiotensin II receptor antagonists and apomorphine together can increase the hypotensive effects of apomorphine. Monitor blood pressure regularly during use of this combination. (Moderate) Use of calcium-channel blockers and apomorphine together can increase the hypotensive effects of apomorphine. Monitor blood pressure regularly during use of this combination.
Apraclonidine: (Minor) Alpha blockers as a class may reduce heart rate and blood pressure. While no specific drug interactions have been identified with systemic agents and apraclonidine during clinical trials, it is theoretically possible that additive blood pressure reductions could occur when apraclonidine is combined with the use of antihypertensive agents. Patients using cardiovascular drugs concomitantly with apraclonidine should have their pulse and blood pressure monitored periodically. (Minor) Apraclonidine had minimal effects on heart rate and blood pressure during clinical studies in patients with glaucoma. However, it is theoretically possible that additive blood pressure reductions could occur when apraclonidine is combined with the use of antihypertensive agents. Use caution during concurrent use, especially in patients with severe, uncontrolled cardiovascular disease, including hypertension.
Aprepitant, Fosaprepitant: (Moderate) Use caution if amlodipine and a multi-day regimen of oral aprepitant are used concurrently; monitor for an increase in amlodipine-related adverse effects for several days after administration. Amlodipine is a CYP3A4 substrate. Aprepitant, when administered as a 3-day oral regimen (125 mg/80 mg/80 mg), is a moderate CYP3A4 inhibitor and inducer and may increase plasma concentrations of amlodipine. For example, a 5-day oral aprepitant regimen increased the AUC of another CYP3A4 substrate, midazolam (single dose), by 2.3-fold on day 1 and by 3.3-fold on day 5. After a 3-day oral aprepitant regimen, the AUC of midazolam (given on days 1, 4, 8, and 15) increased by 25% on day 4, and then decreased by 19% and 4% on days 8 and 15, respectively. As a single 125 mg or 40 mg oral dose, the inhibitory effect of aprepitant on CYP3A4 is weak, with the AUC of midazolam increased by 1.5-fold and 1.2-fold, respectively. After administration, fosaprepitant is rapidly converted to aprepitant and shares many of the same drug interactions. However, as a single 150 mg intravenous dose, fosaprepitant only weakly inhibits CYP3A4 for a duration of 2 days; there is no evidence of CYP3A4 induction. Fosaprepitant 150 mg IV as a single dose increased the AUC of midazolam (given on days 1 and 4) by approximately 1.8-fold on day 1; there was no effect on day 4. Less than a 2-fold increase in the midazolam AUC is not considered clinically important.
Aripiprazole: (Moderate) Monitor for aripiprazole-related adverse reactions and hypotension during concomitant use of amlodipine. Patients receiving both a CYP2D6 inhibitor plus amlodipine may require an aripiprazole dosage adjustment. Dosing recommendations vary based on aripiprazole dosage form, CYP2D6 inhibitor strength, and CYP2D6 metabolizer status. See prescribing information for details. Concomitant use may increase aripiprazole exposure and risk for side effects. Additionally, aripiprazole may enhance the hypotensive effects of antihypertensive agents such as amlodipine. Aripiprazole is a CYP3A and CYP2D6 substrate; amlodipine is a weak CYP3A inhibitor. (Minor) Aripiprazole may enhance the hypotensive effects of antihypertensive agents.
Armodafinil: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as armodafinil are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Articaine; Epinephrine: (Moderate) Antihypertensives, including angiotensin II receptor antagonists, antagonize the vasopressor effects of parenteral epinephrine. (Moderate) Antihypertensives, including calcium-channel blockers, antagonize the vasopressor effects of parenteral epinephrine.
Asenapine: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Aspirin, ASA; Carisoprodol; Codeine: (Moderate) Monitor for an increase in codeine-related adverse reactions including sedation and respiratory depression if coadministration with amlodipine is necessary; adjust the dose of codeine if necessary. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Amlodipine is a weak CYP3A4 inhibitor. Concomitant use may result in an increase in codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and increased morphine concentrations.
Aspirin, ASA; Oxycodone: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like amlodipine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If amlodipine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Atazanavir: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with protease inhibitors is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate and protease inhibitors are moderate to strong CYP3A inhibitors. Coadministration with a moderate CYP3A inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Atazanavir; Cobicistat: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with cobicistat is necessary; adjust the dose of amlodipine as clinically appropriate. Cobicistat is a strong CYP3A inhibitor and amlodipine is a CYP3A substrate. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. Strong CYP3A4 inhibitors may increase the plasma concentrations of amlodipine to a greater extent. (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with protease inhibitors is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate and protease inhibitors are moderate to strong CYP3A inhibitors. Coadministration with a moderate CYP3A inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Atenolol: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
Atenolol; Chlorthalidone: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
Avanafil: (Moderate) Monitor blood pressure closely during concomitant use of avanafil and amlodipine as coadministration may increase the risk of additive hypotension. Avanafil is a substrate of CYP3A and amlodipine is a CYP3A inhibitor. Coadministration with amlodipine increased the AUC of avanafil by approximately 70% and the half-life was prolonged to approximately 10 hours. A mean maximum decrease in supine systolic blood pressure of 1.2 mmHg (compared to placebo), accompanied by a mean maximum increase in pulse rate of 1 beat per minute was observed.
Baclofen: (Moderate) Baclofen has been associated with hypotension. Concurrent use with baclofen and antihypertensive agents may result in additive hypotension. Dosage adjustments of the antihypertensive medication may be required.
Barbiturates: (Major) Barbiturates may induce the CYP3A4 metabolism of calcium-channel blockers such as amlodipine, and thereby reduce their oral bioavailability. The dosage requirements of amlodipine may be increased in patients receiving concurrent enzyme inducers; monitor blood pressure closely.
Benzhydrocodone; Acetaminophen: (Moderate) Concurrent use of benzhydrocodone with amlodipine may increase the risk of increased opioid-related adverse reactions, such as fatal respiratory depression. Consider a dose reduction of benzhydrocodone until stable drug effects are achieved. Monitor patients for respiratory depression and sedation at frequent intervals. Discontinuation of amlodipine in a patient taking benzhydrocodone may decrease hydrocodone plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to opioid agonists. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Benzhydrocodone is a prodrug for hydrocodone. Hydrocodone is a substrate for CYP3A4. Amlodipine is a weak inhibitor of CYP3A4.
Benzphetamine: (Minor) Benzphetamine may increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, such as angiotensin II receptor antagonists. Close monitoring of blood pressure is advised. (Minor) Benzphetamine might increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, like calcium-channel blockers. Close monitoring of blood pressure is advised.
Berotralstat: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with berotralstat is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate and berotralstat is a moderate CYP3A inhibitor. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A4 inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Beta-blockers: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
Betaxolol: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
Bexarotene: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as bexarotene, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Bisoprolol: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
Bortezomib: (Moderate) Patients on antihypertensive agents receiving bortezomib treatment may require close monitoring of their blood pressure and dosage adjustment of their medication. During clinical trials of bortezomib, hypotension was reported in roughly 12 percent of patients.
Bosentan: (Moderate) Closely monitor blood pressure if coadministration of amlodipine with bosentan is necessary. Amlodipine is a CYP3A4 substrate and bosentan is a moderate CYP3A4 inducer. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
Brexpiprazole: (Moderate) Due to brexpiprazole's antagonism at alpha 1-adrenergic receptors, the drug may enhance the hypotensive effects of alpha-blockers and other antihypertensive agents.
Brimonidine; Timolol: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
Brompheniramine; Dextromethorphan; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Brompheniramine; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Brompheniramine; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Brompheniramine; Pseudoephedrine; Dextromethorphan: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Bupivacaine; Epinephrine: (Moderate) Antihypertensives, including angiotensin II receptor antagonists, antagonize the vasopressor effects of parenteral epinephrine. (Moderate) Antihypertensives, including calcium-channel blockers, antagonize the vasopressor effects of parenteral epinephrine.
Bupivacaine; Lidocaine: (Moderate) Concomitant use of systemic lidocaine and amlodipine may increase lidocaine plasma concentrations by decreasing lidocaine clearance and therefore prolonging the elimination half-life. Monitor for lidocaine toxicity if used together. Lidocaine is a CYP3A4 and CYP1A2 substrate; amlodipine inhibits CYP3A4.
Bupivacaine; Meloxicam: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Butalbital; Acetaminophen; Caffeine; Codeine: (Moderate) Monitor for an increase in codeine-related adverse reactions including sedation and respiratory depression if coadministration with amlodipine is necessary; adjust the dose of codeine if necessary. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Amlodipine is a weak CYP3A4 inhibitor. Concomitant use may result in an increase in codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and increased morphine concentrations.
Butalbital; Aspirin; Caffeine; Codeine: (Moderate) Monitor for an increase in codeine-related adverse reactions including sedation and respiratory depression if coadministration with amlodipine is necessary; adjust the dose of codeine if necessary. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Amlodipine is a weak CYP3A4 inhibitor. Concomitant use may result in an increase in codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and increased morphine concentrations.
Cabergoline: (Moderate) Cabergoline should be used cautiously with antihypertensive agents, including amlodipine. Cabergoline has been associated with hypotension. Initial doses higher than 1 mg may produce orthostatic hypotension. It may be advisable to monitor blood pressure. (Moderate) Cabergoline should be used cautiously with antihypertensive agents, including angiotensin II receptor antagonists. Cabergoline has been associated with hypotension. Initial doses of cabergoline higher than 1 mg may produce orthostatic hypotension. It may be advisable to monitor blood pressure.
Calcium Phosphate, Supersaturated: (Moderate) Concomitant use of medicines with potential to alter renal perfusion or function such as angiotensin II receptor antagonists, may increase the risk of acute phosphate nephropathy in patients taking sodium phosphate monobasic monohydrate; sodium phosphate dibasic anhydrous.
Calcium: (Minor) Monitor blood pressure during concurrent use of calcium and calcium-channel blockers. Concomitant use may reduce the response to calcium-channel blockers.
Canagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Carbamazepine: (Moderate) Monitor carbamazepine concentrations and blood pressure closely during coadministration of amlodipine; carbamazepine dose adjustments may be needed. Concomitant use may increase carbamazepine concentrations. Carbamazepine is a CYP3A substrate and strong inducer and amlodipine is CYP3A substrate and inhibitor. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
Carbidopa; Levodopa: (Moderate) Concomitant use of antihypertensive agents with levodopa can result in additive hypotensive effects. (Moderate) Concomitant use of antihypertensive agents with levodopa can result in additive hypotensive effects.
Carbidopa; Levodopa; Entacapone: (Moderate) Concomitant use of antihypertensive agents with levodopa can result in additive hypotensive effects. (Moderate) Concomitant use of antihypertensive agents with levodopa can result in additive hypotensive effects.
Cariprazine: (Moderate) Orthostatic vital signs should be monitored in patients who are at risk for hypotension, such as those receiving cariprazine in combination with antihypertensive agents. Atypical antipsychotics may cause orthostatic hypotension and syncope, most commonly during treatment initiation and dosage increases. Patients should be informed about measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning, or rising slowly from a seated position. Consider a cariprazine dose reduction if hypotension occurs.
Carteolol: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
Carvedilol: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
Celecoxib: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Celecoxib; Tramadol: (Moderate) Consider a tramadol dosage reduction until stable drug effects are achieved if coadministration with amlodipine is necessary. Closely monitor for seizures, serotonin syndrome, and signs of sedation and respiratory depression. Respiratory depression from increased tramadol exposure may be fatal. Concurrent use of amlodipine, a weak CYP3A4 inhibitor, may increase tramadol exposure and result in greater CYP2D6 metabolism thereby increasing exposure to the active metabolite M1, which is a more potent mu-opioid agonist. (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Cenobamate: (Moderate) Closely monitor blood pressure if coadministration of amlodipine with cenobamate is necessary. Amlodipine is a CYP3A4 substrate and cenobamate is a moderate CYP3A4 inducer. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
Ceritinib: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with ceritinib is necessary; adjust the dose of amlodipine as clinically appropriate. Ceritinib is a strong CYP3A inhibitor and amlodipine is a CYP3A substrate. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. Strong CYP3A4 inhibitors may increase the plasma concentrations of amlodipine to a greater extent.
Cetirizine; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Chloramphenicol: (Moderate) Amlodipine is a CYP3A4 substrate. Theoretically, CYP3A4 inhibitors, such as chloramphenicol, may increase the plasma concentration of amlodipine via CYP3A4 inhibition; this effect might lead to hypotension in some individuals. Caution should be used when chloramphenicol is coadministered with amlodipine; therapeutic response should be monitored.
Chloroprocaine: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents.
Chlorpheniramine; Codeine: (Moderate) Monitor for an increase in codeine-related adverse reactions including sedation and respiratory depression if coadministration with amlodipine is necessary; adjust the dose of codeine if necessary. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Amlodipine is a weak CYP3A4 inhibitor. Concomitant use may result in an increase in codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and increased morphine concentrations.
Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Chlorpheniramine; Hydrocodone: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like amlodipine can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If amlodipine is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-chann

el blockers. Monitor blood pressure and heart rate.
Chlorpheniramine; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Chlorpheniramine; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Ciprofloxacin: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with ciprofloxacin is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate and ciprofloxacin is a moderate CYP3A inhibitor. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A4 inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Cisapride: (Moderate) Use caution when administering amlodipine with cisapride. Taking these drugs together may increase cisapride plasma concentrations, potentially resulting in adverse events. Amlodipine is a weak CYP3A4 inhibitor; cisapride is a substrate of CYP3A4 with a narrow therapeutic index.
Clarithromycin: (Major) Avoid coadministration of clarithromycin and amlodipine, particularly in geriatric patients, due to an increased risk of hypotension and acute kidney injury. If the use of a macrolide antibiotic is necessary in a patient receiving amlodipine therapy, azithromycin is the preferred agent. If coadministration is unavoidable, monitor for symptoms of hypotension and edema; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A4 substrate and clarithromycin is a strong CYP3A4 inhibitor. A retrospective, case crossover study, found the risk of hospitalization due to hypotension or shock to be significantly increased in geriatric patients exposed to clarithromycin during concurrent calcium-channel blocker therapy (OR 3.7, 95% CI 2.3-6.1). Concurrent use of azithromycin was not associated with an increased risk of hypotension (OR 1.5, 95% CI 0.8-2.8).
Clobazam: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as clobazam, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Clopidogrel: (Moderate) Monitor for reduced therapeutic response to clopidogrel when it is coadministered with amlodipine. Although clopidogrel is primarily converted to its active metabolite via CYP2C19, it has been suggested that calcium channel blocker (CCB)-induced inhibition of CYP3A4 reduces its conversion to the active metabolite, thereby reducing its antiplatelet effect. Because amlodipine has represented the largest subgroup of CCB studied, it is unknown whether this is a class effect. It has been theorized that CCBs that inhibit P-glycoprotein (P-gp) decrease the intestinal efflux of clopidogrel, thereby increasing its plasma concentrations and counteracting the effect of CCB-induced CYP3A4 inhibition. Amlodipine is not a P-gp inhibitor.
Clozapine: (Moderate) Clozapine used concomitantly with the antihypertensive agents can increase the risk and severity of hypotension by potentiating the effect of the antihypertensive drug. (Moderate) Clozapine used concomitantly with the antihypertensive agents can increase the risk and severity of hypotension by potentiating the effect of the antihypertensive drug.
Cobicistat: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with cobicistat is necessary; adjust the dose of amlodipine as clinically appropriate. Cobicistat is a strong CYP3A inhibitor and amlodipine is a CYP3A substrate. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. Strong CYP3A4 inhibitors may increase the plasma concentrations of amlodipine to a greater extent.
Cocaine: (Major) Use of cocaine with antihypertensive agents may increase the antihypertensive effects of the antihypertensive medications or may potentiate cocaine-induced sympathetic stimulation. (Major) Use of cocaine with antihypertensive agents may increase the antihypertensive effects of the antihypertensive medications or may potentiate cocaine-induced sympathetic stimulation.
Codeine: (Moderate) Monitor for an increase in codeine-related adverse reactions including sedation and respiratory depression if coadministration with amlodipine is necessary; adjust the dose of codeine if necessary. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Amlodipine is a weak CYP3A4 inhibitor. Concomitant use may result in an increase in codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and increased morphine concentrations.
Codeine; Guaifenesin: (Moderate) Monitor for an increase in codeine-related adverse reactions including sedation and respiratory depression if coadministration with amlodipine is necessary; adjust the dose of codeine if necessary. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Amlodipine is a weak CYP3A4 inhibitor. Concomitant use may result in an increase in codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and increased morphine concentrations.
Codeine; Guaifenesin; Pseudoephedrine: (Moderate) Monitor for an increase in codeine-related adverse reactions including sedation and respiratory depression if coadministration with amlodipine is necessary; adjust the dose of codeine if necessary. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Amlodipine is a weak CYP3A4 inhibitor. Concomitant use may result in an increase in codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and increased morphine concentrations. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Codeine; Phenylephrine; Promethazine: (Moderate) Monitor for an increase in codeine-related adverse reactions including sedation and respiratory depression if coadministration with amlodipine is necessary; adjust the dose of codeine if necessary. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Amlodipine is a weak CYP3A4 inhibitor. Concomitant use may result in an increase in codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and increased morphine concentrations. (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Codeine; Promethazine: (Moderate) Monitor for an increase in codeine-related adverse reactions including sedation and respiratory depression if coadministration with amlodipine is necessary; adjust the dose of codeine if necessary. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Amlodipine is a weak CYP3A4 inhibitor. Concomitant use may result in an increase in codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and increased morphine concentrations.
Co-Enzyme Q10, Ubiquinone: (Moderate) Co-enzyme Q10, ubiquinone (CoQ10) may lower blood pressure. CoQ10 use in combination with antihypertensive agents may lead to additional reductions in blood pressure in some individuals. Patients who choose to take CoQ10 concurrently with antihypertensive medications should receive periodic blood pressure monitoring. Patients should be advised to inform their prescriber of their use of CoQ10.
Colesevelam: (Moderate) Colesevelam decreases the Cmax and AUC of olmesartan by approximately 28% and 39%, respectively. Administer olmesartan at least 4 hours before colesevelam.
Conivaptan: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with conivaptan is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate; conivaptan is a moderate CYP3A inhibitor. Concomitant use of amlodipine and oral conivaptan doubled amlodipine's overall exposure in a drug interaction study.
Crizotinib: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with crizotinib is necessary; adjust the dose of amlodipine as clinically appropriate. Crizotinib is a moderate CYP3A inhibitor and amlodipine is a CYP3A substrate. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A4 inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Cyclosporine: (Moderate) Caution should be used when cyclosporine is coadministered with amlodipine; therapeutic response should be monitored, including cyclosporine levels as necessary. Amlodipine may increase cyclosporine concentrations. In one study, whole blood cyclosporine trough concentrations increased from 140.2 +/- 18.2 to 200 +/- 21.9 mcg/L after amlodipine addition. In another study, the systemic exposure (AUC) of cyclosporine increased following the addition of amlodipine, and was decreased in the absence of the drug. The postulated mechanism is the inhibitory effect of amlodipine on the P-glycoprotein-mediated efflux of cyclosporine from intestinal epithelial cells. In addition, amlodipine is a weak inhibitor of CYP3A4; cyclosporine is a substrate with a narrow therapeutic index. Also, amlodipine is a CYP3A4 substrate and theoretically, cyclosporine, may increase the plasma concentration of amlodipine via CYP3A4 inhibition; this effect might lead to hypotension in some individuals. (Moderate) Coadministration of cyclosporine and an angiotensin II receptor antagonist, like olmesartan, may increase the risk of hyperkalemia and reduced renal function. In response to cyclosporine-induced renal afferent vasoconstriction and glomerular hypoperfusion, angiotensin II is required to maintain an adequate glomerular filtration rate. Inhibition of angiotensin-converting enzyme (ACE) could reduce renal function acutely. Several cases of acute renal failure have been associated with the addition of enalapril to cyclosporine therapy in renal transplant patients. Also, cyclosporine can cause hyperkalemia, and inhibition of angiotensin II leads to reduced aldosterone concentrations, which can increase the serum potassium concentration. Closely monitor renal function and serum potassium concentrations in patients receiving cyclosporine concurrently with olmesartan.
Dabrafenib: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as dabrafenib, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Danazol: (Moderate) Coadministration of CYP3A4 inhibitors with amlodipine can theoretically decrease the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inhibitors, such as danazol , are coadministered with calcium-channel blockers. Monitor therapeutic response; a dose reduction of amlodipine may be required.
Dantrolene: (Moderate) Concurrent use with skeletal muscle relaxants and antihypertensive agents may result in additive hypotension. Dosage adjustments of the antihypertensive medication may be required.
Dapagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Darunavir: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with protease inhibitors is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate and protease inhibitors are moderate to strong CYP3A inhibitors. Coadministration with a moderate CYP3A inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Darunavir; Cobicistat: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with cobicistat is necessary; adjust the dose of amlodipine as clinically appropriate. Cobicistat is a strong CYP3A inhibitor and amlodipine is a CYP3A substrate. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. Strong CYP3A4 inhibitors may increase the plasma concentrations of amlodipine to a greater extent. (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with protease inhibitors is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate and protease inhibitors are moderate to strong CYP3A inhibitors. Coadministration with a moderate CYP3A inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with cobicistat is necessary; adjust the dose of amlodipine as clinically appropriate. Cobicistat is a strong CYP3A inhibitor and amlodipine is a CYP3A substrate. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. Strong CYP3A4 inhibitors may increase the plasma concentrations of amlodipine to a greater extent. (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with protease inhibitors is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate and protease inhibitors are moderate to strong CYP3A inhibitors. Coadministration with a moderate CYP3A inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Deferasirox: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as deferasirox, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Delavirdine: (Moderate) Administering amlodipine with CYP3A4 inhibitors, such as delavirdine, may increase the plasma concentration of amlodipine; this effect might lead to hypotension in some individuals. Caution should be used when delavirdine is coadministered with amlodipine; therapeutic response should be monitored.
Desloratadine; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Desogestrel; Ethinyl Estradiol: (Minor) Estrogen containing oral contraceptives can induce fluid retention and may increase blood pressure in some patients.
Dexbrompheniramine; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Dexmedetomidine: (Moderate) Concomitant administration of dexmedetomidine and calcium-channel blockers could lead to additive hypotension and bradycardia; use together with caution. Dexmedetomidine can produce bradycardia or AV block and should be used cautiously in patients who are receiving antihypertensive drugs that may lower the heart rate such as calcium-channel blockers.
Dextromethorphan; Diphenhydramine; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Dextromethorphan; Quinidine: (Moderate) Monitor for increased quinidine adverse reactions if coadministered with amlodipine. Taking these drugs together may increase quinidine plasma concentrations, potentially resulting in adverse events. Amlodipine is a weak CYP3A4 inhibitor; quinidine is a substrate of CYP3A4 with a narrow therapeutic index. In addition, quinidine can decrease blood pressure and should be used cautiously in patients receiving antihypertensive agents due to the potential for additive hypotension. (Moderate) Quinidine can decrease blood pressure and should be used cautiously in patients receiving antihypertensive agents due to the potential for additive hypotension.
Diazoxide: (Moderate) Additive hypotensive effects can occur with the concomitant administration of diazoxide with other antihypertensive agents. This interaction can be therapeutically advantageous, but dosages must be adjusted accordingly. The manufacturer advises that IV diazoxide should not be administered to patients within 6 hours of receiving beta-blockers, hydralazine, methyldopa, minoxidil, nitrites, prazosin, reserpine, or other antihypertensive agents. (Moderate) Additive hypotensive effects can occur with the concomitant administration of diazoxide with other antihypertensive agents. This interaction can be therapeutically advantageous, but dosages must be adjusted accordingly. The manufacturer advises that IV diazoxide should not be administered to patients within 6 hours of receiving other antihypertensive agents.
Diclofenac: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Diclofenac; Misoprostol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Diethylpropion: (Major) Diethylpropion has vasopressor effects and may limit the benefit of calcium-channel blockers. Although leading drug interaction texts differ in the potential for an interaction between diethylpropion and this group of antihypertensive agents, these effects are likely to be clinically significant and have been described in hypertensive patients on these medications. (Moderate) Diethylpropion has vasopressor effects and may limit the benefit of angiotensin II receptor antagonists. Although leading drug interaction texts differ in the potential for an interaction between diethylpropion and this group of antihypertensive agents, these effects are likely to be clinically significant and have been described in hypertensive patients on these medications.
Diflunisal: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Digoxin: (Moderate) Caution should be exercised when administering digoxin with drugs that may cause a significant deterioration in renal function including angiotensin II receptor antagonists. A decline in glomerular filtration or tubular secretion may impair the excretion of digoxin. Close monitoring of serum digoxin concentrations is essential to avoid enhanced toxicity.
Diltiazem: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with diltiazem is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate and diltiazem is a moderate CYP3A inhibitor. Coadministration with diltiazem in elderly hypertensive patients increased systemic exposure to amlodipine by 60%.
Diphenhydramine; Ibuprofen: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Diphenhydramine; Naproxen: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Diphenhydramine; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Dofetilide: (Moderate) Monitor for an increase in dofetilide-related adverse reactions, including QT prolongation, if coadministration with amlodipine is necessary. Amlodipine is a weak CYP3A4 inhibitor. Dofetilide is a minor CYP3A4 substrate; however, because there is a linear relationship between dofetilide plasma concentration and QTc, concomitant administration of CYP3A4 inhibitors may increase the risk of arrhythmia (torsade de pointes).
Dorzolamide; Timolol: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
Dronabinol: (Moderate) Use caution if coadministration of dronabinol with amlodipine is necessary, and monitor for an increase in dronabinol-related adverse reactions (e.g., feeling high, dizziness, confusion, somnolence). Dronabinol is a CYP2C9 and 3A4 substrate; amlodipine is a weak inhibitor of CYP3A4. Concomitant use may result in elevated plasma concentrations of dronabinol.
Dronedarone: (Moderate) Monitor for evidence of hypotension and edema if amlodipine is coadministered with dronedarone; an amlodipine dose adjustment may be necessary due to increased amlodipine exposure. Dronedarone is a moderate CYP3A4 inhibitor; amlodipine is a CYP3A4 substrate.
Drospirenone: (Moderate) Drospirenone has antimineralocorticoid effects and may increase serum potassium. The concurrent use of angiotensin II receptor antagonists (ARBs) may increase the risk of hyperkalemia, especially in the presence of renal impairment. Monitor serum potassium during the 1st month of drospirenone treatment if ARBs are used concurrently and thereafter as clinically indicated. Also monitor for any changes in blood pressure, fluid retention, or renal function.
Drospirenone; Estetrol: (Moderate) Drospirenone has antimineralocorticoid effects and may increase serum potassium. The concurrent use of angiotensin II receptor antagonists (ARBs) may increase the risk of hyperkalemia, especially in the presence of renal impairment. Monitor serum potassium during the 1st month of drospirenone treatment if ARBs are used concurrently and thereafter as clinically indicated. Also monitor for any changes in blood pressure, fluid retention, or renal function.
Drospirenone; Estradiol: (Moderate) Drospirenone has antimineralocorticoid effects and may increase serum potassium. The concurrent use of angiotensin II receptor antagonists (ARBs) may increase the risk of hyperkalemia, especially in the presence of renal impairment. Monitor serum potassium during the 1st month of drospirenone treatment if ARBs are used concurrently and thereafter as clinically indicated. Also monitor for any changes in blood pressure, fluid retention, or renal function.
Drospirenone; Ethinyl Estradiol: (Moderate) Drospirenone has antimineralocorticoid effects and may increase serum potassium. The concurrent use of angiotensin II receptor antagonists (ARBs) may increase the risk of hyperkalemia, especially in the presence of renal impairment. Monitor serum potassium during the 1st month of drospirenone treatment if ARBs are used concurrently and thereafter as clinically indicated. Also monitor for any changes in blood pressure, fluid retention, or renal function. (Minor) Estrogen containing oral contraceptives can induce fluid retention and may increase blood pressure in some patients.
Drospirenone; Ethinyl Estradiol; Levomefolate: (Moderate) Drospirenone has antimineralocorticoid effects and may increase serum potassium. The concurrent use of angiotensin II receptor antagonists (ARBs) may increase the risk of hyperkalemia, especially in the presence of renal impairment. Monitor serum potassium during the 1st month of drospirenone treatment if ARBs are used concurrently and thereafter as clinically indicated. Also monitor for any changes in blood pressure, fluid retention, or renal function. (Minor) Estrogen containing oral contraceptives can induce fluid retention and may increase blood pressure in some patients.
Duloxetine: (Moderate) Orthostatic hypotension and syncope have been reported during duloxetine administration. The concurrent administration of antihypertensive agents and duloxetine may increase the risk of hypotension. Monitor blood pressure if the combination is necessary.
Dutasteride; Tamsulosin: (Moderate) The concomitant administration of tamsulosin with other antihypertensive agents can cause additive hypotensive effects. In addition, diltiazem, nicardipine, and verapamil may increase tamsulosin plasma concentrations via CYP3A4 inhibition. This interaction can be therapeutically advantageous, but dosages must be adjusted accordingly.
Duvelisib: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with duvelisib is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate and duvelisib is a moderate CYP3A inhibitor. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A4 inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Efavirenz: (Moderate) Monitor blood pressure if amlodipine and efavirenz are used concomitantly. Amlodipine is a CYP3A4 substrate; efavirenz induces CYP3A4. In addition, monitor for an increase in efavirenz-related adverse reactions if coadministration with amlodipine is necessary. Efavirenz is a CYP3A4 substrate and amlodipine is a weak CYP3A4 inhibitor; concomitant use may increase plasma concentrations of efavirenz.
Efavirenz; Emtricitabine; Tenofovir Disoproxil Fumarate: (Moderate) Monitor blood pressure if amlodipine and efavirenz are used concomitantly. Amlodipine is a CYP3A4 substrate; efavirenz induces CYP3A4. In addition, monitor for an increase in efavirenz-related adverse reactions if coadministration with amlodipine is necessary. Efavirenz is a CYP3A4 substrate and amlodipine is a weak CYP3A4 inhibitor; concomitant use may increase plasma concentrations of efavirenz.
Efavirenz; Lamivudine; Tenofovir Disoproxil Fumarate: (Moderate) Monitor blood pressure if amlodipine and efavirenz are used concomitantly. Amlodipine is a CYP3A4 substrate; efavirenz induces CYP3A4. In addition, monitor for an increase in efavirenz-related adverse reactions if coadministration with amlodipine is necessary. Efavirenz is a CYP3A4 substrate and amlodipine is a weak CYP3A4 inhibitor; concomitant use may increase plasma concentrations of efavirenz.
Elagolix: (Moderate) Closely monitor blood pressure if coadministration of amlodipine with elagolix is necessary. Amlodipine is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
Elagolix; Estradiol; Norethindrone acetate: (Moderate) Closely monitor blood pressure if coadministration of amlodipine with elagolix is necessary. Amlodipine is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
Elbasvir; Grazoprevir: (Moderate) Administering elbasvir; grazoprevir with amlodipine may cause the plasma concentrations of all three drugs to increase; thereby increasing the potential for adverse effects (i.e., elevated ALT concentrations and hepatotoxicity). Amlodipine is a substrate and weak inhibitor of CYP3A. Both elbasvir and grazoprevir are metabolized by CYP3A, and grazoprevir is also a weak CYP3A inhibitor. If these drugs are used together, closely monitor for signs of hepatotoxicity.
Eliglustat: (Major) In poor CYP2D6 metabolizers (PMs), coadministration of amlodipine and eliglustat is not recommended. In extensive CYP2D6 metabolizers (EM) with mild hepatic impairment, coadministration of these agents requires dosage reduction of eliglustat to 84 mg PO once daily. Amlodipine is a weak CYP3A inhibitor; eliglustat is a CYP3A and CYP2D6 substrate. Because CYP3A plays a significant role in the metabolism of eliglustat in CYP2D6 PMs, coadministration with CYP3A inhibitors may increase eliglustat exposure and the risk of serious adverse events (e.g., QT prolongation and cardiac arrhythmias) in these patients.
Eltrombopag: (Moderate) Use caution and monitor blood pressure closely if eltrombopag and olmesartan are coadministered. Eltrombopag is an inhibitor of the transporter OATP1B1. Drugs that are substrates for this transporter, such as olmesartan, may exhibit an increase in systemic exposure if coadministered with eltrombopag.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Alafenamide: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with cobicistat is necessary; adjust the dose of amlodipine as clinically appropriate. Cobicistat is a strong CYP3A inhibitor and amlodipine is a CYP3A substrate. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. Strong CYP3A4 inhibitors may increase the plasma concentrations of amlodipine to a greater extent.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with cobicistat is necessary; adjust the dose of amlodipine as clinically appropriate. Cobicistat is a strong CYP3A inhibitor and amlodipine is a CYP3A substrate. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. Strong CYP3A4 inhibitors may increase the plasma concentrations of amlodipine to a greater extent.
Empagliflozin: (Moderate) Administer antidiabetic agents with caution in patients receiving calcium-channel blockers. These drugs may cause hyperglycemia leading to a temporary loss of glycemic control in patients receiving antidiabetic agents. Close observation and monitoring of blood glucose is necessary to maintain adequate glycemic control.
Empagliflozin; Linagliptin: (Moderate) Administer antidiabetic agents with caution in patients receiving calcium-channel blockers. These drugs may cause hyperglycemia leading to a temporary loss of glycemic control in patients receiving antidiabetic agents. Close observation and monitoring of blood glucose is necessary to maintain adequate glycemic control.
Empagliflozin; Linagliptin; Metformin: (Moderate) Administer antidiabetic agents with caution in patients receiving calcium-channel blockers. These drugs may cause hyperglycemia leading to a temporary loss of glycemic control in patients receiving antidiabetic agents. Close observation and monitoring of blood glucose is necessary to maintain adequate glycemic control. (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Empagliflozin; Metformin: (Moderate) Administer antidiabetic agents with caution in patients receiving calcium-channel blockers. These drugs may cause hyperglycemia leading to a temporary loss of glycemic control in patients receiving antidiabetic agents. Close observation and monitoring of blood glucose is necessary to maintain adequate glycemic control. (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Enzalutamide: (Moderate) Closely monitor blood pressure if coadministration of amlodipine with enzalutamide is necessary. Amlodipine is a CYP3A4 substrate and enzalutamide is a strong CYP3A4 inducer. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
Ephedrine: (Major) The cardiovascular effects of sympathomimetics, such as ephedrine, may reduce the antihypertensive effects produced by calcium-channel blockers. Blood pressure and heart rates should be monitored closely to confirm that the desired antihypertensive effect is achieved. (Moderate) The cardiovascular effects of sympathomimetics, such as ephedrine, may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Blood pressure and heart rates should be monitored closely to confirm that the desired antihypertensive effect is achieved.
Ephedrine; Guaifenesin: (Major) The cardiovascular effects of sympathomimetics, such as ephedrine, may reduce the antihypertensive effects produced by calcium-channel blockers. Blood pressure and heart rates should be monitored closely to confirm that the desired antihypertensive effect is achieved. (Moderate) The cardiovascular effects of sympathomimetics, such as ephedrine, may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Blood pressure and heart rates should be monitored closely to confirm that the desired antihypertensive effect is achieved.
Epinephrine: (Moderate) Antihypertensives, including angiotensin II receptor antagonists, antagonize the vasopressor effects of parenteral epinephrine. (Moderate) Antihypertensives, including calcium-channel blockers, antagonize the vasopressor effects of parenteral epinephrine.
Epirubicin: (Moderate) Close cardiac monitoring is recommended throughout therapy in patients receiving concomitant therapy with epirubicin and calcium-channel blockers. Individuals receiving these medications together are at increased risk of developing heart failure.
Eplerenone: (Major) Monitor serum potassium and serum creatinine concentrations within 3 to 7 days of initiating coadministration of eplerenone and angiotensin II receptor antagonists (ARBs). Hyperkalemia risk is increased when eplerenone is used with ARBs. Patients who develop hyperkalemia may continue eplerenone with proper dose adjustment; eplerenone dose reduction decreases potassium concentrations. (Moderate) Amlodipine can have additive hypotensive effects with other antihypertensive agents. This additive effect can be desirable, but the patient should be monitored carefully and the dosage should be adjusted based on clinical response.
Epoprostenol: (Moderate) Angiotensin II receptor antagonists can enhance the hypotensive effects of antihypertensive agents if given concomitantly. This additive effect may be desirable, but dosages must be adjusted accordingly. (Moderate) Calcium-channel blockers can have additive hypotensive effects with other antihypertensive agents. This additive effect can be desirable, but the patient should be monitored carefully and the dosage should be adjusted based on clinical response.
Ertugliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Erythromycin: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with erythromycin is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate and erythromycin is a moderate CYP3A inhibitor. Coadministration with a moderate CYP3A inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Eslicarbazepine: (Minor) In vivo studies suggest eslicarbazepine is an inducer of CYP3A4. Coadministration of CYP3A4 substrates, such as amlodipine, may result in decreased serum concentrations of the substrates. Monitor for potential reduced cholesterol-lowering and hypotensive efficacy when these drugs are coadministered with eslicarbazepine. Appropriate dose adjustments may be necessary.
Esmolol: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
Estradiol: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Ethinyl Estradiol; Norelgestromin: (Minor) Estrogen containing oral contraceptives can induce fluid retention and may increase blood pressure in some patients.
Ethinyl Estradiol; Norethindrone Acetate: (Minor) Estrogen containing oral contraceptives can induce fluid retention and may increase blood pressure in some patients.
Ethinyl Estradiol; Norgestrel: (Minor) Estrogen containing oral contraceptives can induce fluid retention and may increase blood pressure in some patients.
Ethosuximide: (Moderate) Monitor for increased ethosuximide adverse reactions if coadministered with amlodipine. Taking these drugs together may increase ethosuximide plasma concentrations, potentially resulting in adverse events. Amlodipine is a weak CYP3A4 inhibitor; ethosuximide is a substrate of CYP3A4 with a narrow therapeutic index.
Ethotoin: (Moderate) Closely monitor blood pressure if coadministration of amlodipine with hydantoins is necessary. Amlodipine is a CYP3A4 substrate and hydantoins are strong CYP3A4 inducers. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
Ethynodiol Diacetate; Ethinyl Estradiol: (Minor) Estrogen containing oral contraceptives can induce fluid retention and may increase blood pressure in some patients.
Etodolac: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Etomidate: (Major) The depression of cardiac contractility, conductivity, and automaticity as well as the vascular dilation associated with general anesthetics may be potentiated by calcium-channel blockers. Alternatively, general anesthetics can potentiate the hypotensive effects of calcium-channel blockers. When used concomitantly, anesthetics and calcium-channel blockers should be titrated carefully to avoid excessive cardiovascular depression. (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Etonogestrel; Ethinyl Estradiol: (Minor) Estrogen containing oral contraceptives can induce fluid retention and may increase blood pressure in some patients.
Etravirine: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as etravirine, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Ezetimibe; Simvastatin: (Major) Do not exceed a simvastatin dose of 20 mg/day in patients taking amlodipine due to increased risk of myopathy, including rhabdomyolysis. For patients chronically receiving simvastatin 80 mg/day who need to be started on amlodipine, consider switching to an alternative statin with less potential for interaction. Carefully weigh the benefits of combined use of amlodipine and simvastatin against the potential risks. Amlodipine increases the simvastatin exposure by approximately 1.5-fold.
Fedratinib: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with fedratinib is necessary; adjust the dose of amlodipine as clinically appropriate. Fedratinib is a moderate CYP3A inhibitor and amlodipine is a CYP3A substrate. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A4 inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Fenoprofen: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Fentanyl: (Moderate) Consider a reduced dose of fentanyl with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the fentanyl dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Fentanyl is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like amlodipine can increase fentanyl exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of fentanyl. If amlodipine is discontinued, fentanyl plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to fentanyl.
Fexofenadine; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Finerenone: (Moderate) Monitor serum potassium concentrations closely if finerenone and angiotensin II receptor antagonists are used together. Concomitant use may increase the risk of hyperkalemia. (Moderate) Monitor serum potassium during initiation or dose adjustment of either finerenone or amlodipine; a finerenone dosage reduction may be necessary. Concomitant use may increase finerenone exposure and the risk of hyperkalemia. Finerenone is a CYP3A substrate and amlodipine is a weak CYP3A inhibitor. Coadministration with another weak CYP3A inhibitor increased overall exposure to finerenone by 21%.
Fish Oil, Omega-3 Fatty Acids (Dietary Supplements): (Moderate) High doses of fish oil supplements may produce a blood pressure lowering effect. It is possible that additive reductions in blood pressure may be seen when fish oils are used in a patient already taking antihypertensive agents.
Fluconazole: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with fluconazole is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate and fluconazole is a moderate CYP3A inhibitor. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A4 inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Flurbiprofen: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Flutamide: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as flutamide, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Fluvoxamine: (Moderate) A dose reduction of amlodipine may be required during coadministration of fluvoxamine. Administering amlodipine with CYP3A4 inhibitors, such as fluvoxamine, may increase plasma concentrations of amlodipine, which might lead to hypotension and peripheral edema in some individuals.
Fosamprenavir: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with protease inhibitors is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate and protease inhibitors are moderate to strong CYP3A inhibitors. Coadministration with a moderate CYP3A inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Fosphenytoin: (Moderate) Closely monitor blood pressure if coadministration of amlodipine with hydantoins is necessary. Amlodipine is a CYP3A4 substrate and hydantoins are strong CYP3A4 inducers. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
Gemfibrozil: (Moderate) Coadministration may result in an increase in olmesartan exposure. A dose reduction of olmesartan may be required if used concomitantly with gemfibrozil. Use olmesartan and gemfibrozil together with caution. Olmesartan is a substrate of the OATP1B1 transporter. Gemfibrozil inhibits OATP1B1.
General anesthetics: (Major) The depression of cardiac contractility, conductivity, and automaticity as well as the vascular dilation associated with general anesthetics may be potentiated by calcium-channel blockers. Alternatively, general anesthetics can potentiate the hypotensive effects of calcium-channel blockers. When used concomitantly, anesthetics and calcium-channel blockers should be titrated carefully to avoid excessive cardiovascular depression. (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Ginkgo, Ginkgo biloba: (Moderate) Ginkgo biloba appears to inhibit the metabolism of calcium-channel blockers, perhaps by inhibiting the CYP3A4 isoenzyme. A non-controlled pharmacokinetic study in healthy volunteers found that the concurrent administration of ginkgo with nifedipine resulted in a 53% increase in nifedipine peak concentrations. More study is needed regarding ginkgo's effects on CYP3A4 and whether clinically significant drug interactions result.
Ginseng, Panax ginseng: (Moderate) Ginseng appears to inhibit the metabolism of calcium-channel blockers, perhaps by inhibiting the CYP3A4 isoenzyme. A non-controlled pharmacokinetic study in healthy volunteers found that the concurrent administration of ginseng with nifedipine resulted in a 30% increase in nifedipine peak concentrations. More study is needed regarding ginseng's effects on CYP3A4 and whether clinically significant drug interactions result.
Glipizide; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Glyburide; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Guaifenesin; Hydrocodone: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like amlodipine can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If amlodipine is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the op ioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
Guaifenesin; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Guaifenesin; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Haloperidol: (Moderate) In general, antipsychotics like haloperidol should be used cautiously with antihypertensive agents due to the possibility of additive hypotension. (Moderate) In general, antipsychotics like haloperidol should be used cautiously with antihypertensive agents due to the possibility of additive hypotension.
Homatropine; Hydrocodone: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like amlodipine can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If amlodipine is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
Hydantoins: (Moderate) Closely monitor blood pressure if coadministration of amlodipine with hydantoins is necessary. Amlodipine is a CYP3A4 substrate and hydantoins are strong CYP3A4 inducers. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
Hydralazine; Isosorbide Dinitrate, ISDN: (Moderate) Concomitant use of nitrates with other antihypertensive agents can cause additive hypotensive effects. Dosage adjustments may be necessary. (Moderate) Nitroglycerin can cause hypotension. This action may be additive with other agents that can cause hypotension such as calcium-channel blockers. Patients should be monitored more closely for hypotension if nitroglycerin, including nitroglycerin rectal ointment, is used concurrently with a calcium-channel blocker.
Hydrocodone: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like amlodipine can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If amlodipine is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
Hydrocodone; Ibuprofen: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like amlodipine can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If amlodipine is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone. (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Hydrocodone; Pseudoephedrine: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like amlodipine can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If amlodipine is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Ibritumomab Tiuxetan: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Ibuprofen: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Ibuprofen; Famotidine: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Ibuprofen; Oxycodone: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like amlodipine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If amlodipine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Ibuprofen; Pseudoephedrine: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Idelalisib: (Moderate) Coadministration of idelalisib with amlodipine may increase the systemic exposure of amlodipine resulting in amlodipine-related adverse events. Consider an amlodipine dose reduction if these agents are administered together and monitor for symptoms of hypotension and edema.
Iloperidone: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Iloprost: (Moderate) Angiotensin II receptor antagonists can enhance the hypotensive effects of antihypertensive agents if given concomitantly. This additive effect may be desirable, but dosages must be adjusted accordingly. (Moderate) Calcium-channel blockers can have additive hypotensive effects with other antihypertensive agents. This additive effect can be desirable, but the patient should be monitored carefully and the dosage should be adjusted based on clinical response.
Imatinib: (Moderate) Administering amlodipine with CYP3A4 inhibitors, such as imatinib, may increase the plasma concentration of amlodipine; this effect might lead to hypotension in some individuals. Caution should be used when imatinib is coadministered with amlodipine; therapeutic response should be monitored.
Incretin Mimetics: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Indapamide: (Moderate) The effects of indapamide may be additive when administered with other antihypertensive agents or diuretics. In some patients, this may be desirable, but orthostatic hypotension may occur. Angiotensin II receptor antagonists tend to reverse the potassium loss, but not the serum uric acid rise associated with thiazide diuretic monotherapy.
Indinavir: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with protease inhibitors is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate and protease inhibitors are moderate to strong CYP3A inhibitors. Coadministration with a moderate CYP3A inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Indomethacin: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Insulins: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Intravenous Lipid Emulsions: (Moderate) High doses of fish oil supplements may produce a blood pressure lowering effect. It is possible that additive reductions in blood pressure may be seen when fish oils are used in a patient already taking antihypertensive agents.
Isavuconazonium: (Moderate) Concomitant use of isavuconazonium with amlodipine may result in increased serum concentrations of amlodipine. Amlodipine is a substrate of the hepatic isoenzyme CYP3A4; isavuconazole, the active moiety of isavuconazonium, is a moderate inhibitor of this enzyme. Caution and close monitoring are advised if these drugs are used together.
Isocarboxazid: (Moderate) Additive hypotensive effects may be seen when isocarboxazid is combined with angiotensin II receptor antagonists. Careful monitoring of blood pressure is suggested during concurrent therapy of isocarboxazid with angiotensin II receptor antagonists. Patients should be instructed to rise slowly from a sitting position, and to report syncope or changes in blood pressure or heart rate to their health care provider during concurrent use of isocarboxazid and an angiotensin II receptor antagonist. (Moderate) Additive hypotensive effects may be seen when monoamine oxidase inhibitors (MAOIs) are combined with antihypertensives. Careful monitoring of blood pressure is suggested during concurrent therapy of MAOIs with calcium-channel blockers. Patients should be instructed to rise slowly from a sitting position, and to report syncope or changes in blood pressure or heart rate to their health care provider.
Isoflurane: (Major) The depression of cardiac contractility, conductivity, and automaticity as well as the vascular dilation associated with general anesthetics may be potentiated by calcium-channel blockers. Alternatively, general anesthetics can potentiate the hypotensive effects of calcium-channel blockers. When used concomitantly, anesthetics and calcium-channel blockers should be titrated carefully to avoid excessive cardiovascular depression. (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Isoniazid, INH; Pyrazinamide, PZA; Rifampin: (Moderate) Rifampin is a potent inducer of the cytochrome P450 hepatic enzyme system and can reduce the plasma concentrations and possibly the efficacy of calcium-channel blockers. The dosage requirements of amlodipine may be increased in patients receiving concurrent enzyme inducers.
Isoniazid, INH; Rifampin: (Moderate) Rifampin is a potent inducer of the cytochrome P450 hepatic enzyme system and can reduce the plasma concentrations and possibly the efficacy of calcium-channel blockers. The dosage requirements of amlodipine may be increased in patients receiving concurrent enzyme inducers.
Isoproterenol: (Moderate) The pharmacologic effects of isoproterenol may cause an increase in blood pressure. If isoproterenol is used concomitantly with antihypertensives, the blood pressure should be monitored as the administration of isoproterenol can compromise the effectiveness of antihypertensive agents. (Moderate) The pharmacologic effects of isoproterenol may cause an increase in blood pressure. If isoproterenol is used concomitantly with antihypertensives, the blood pressure should be monitored as the administration of isoproterenol can compromise the effectiveness of antihypertensive agents.
Isosorbide Dinitrate, ISDN: (Moderate) Concomitant use of nitrates with other antihypertensive agents can cause additive hypotensive effects. Dosage adjustments may be necessary. (Moderate) Nitroglycerin can cause hypotension. This action may be additive with other agents that can cause hypotension such as calcium-channel blockers. Patients should be monitored more closely for hypotension if nitroglycerin, including nitroglycerin rectal ointment, is used concurrently with a calcium-channel blocker.
Isosorbide Mononitrate: (Moderate) Concomitant use of nitrates with other antihypertensive agents can cause additive hypotensive effects. Dosage adjustments may be necessary. (Moderate) Nitroglycerin can cause hypotension. This action may be additive with other agents that can cause hypotension such as calcium-channel blockers. Patients should be monitored more closely for hypotension if nitroglycerin, including nitroglycerin rectal ointment, is used concurrently with a calcium-channel blocker.
Itraconazole: (Moderate) Calcium-channel blockers can have a negative inotropic effect that may be additive to those of itraconazole. In addition, itraconazole may increase amlodipine serum concentrations via inhibition of CYP3A4 with the potential for amlodipine toxicity. Edema has been reported in patients receiving concomitantly itraconazole and amlodipine, therefore, caution is recommended when administering these medications in combination. A dosage reduction of the calcium-channel blocker may be appropriate.
Ixabepilone: (Moderate) Monitor for ixabepilone toxicity and reduce the ixabepilone dose as needed if concurrent use of amlodipine is necessary. Concomitant use may increase ixabepilone exposure and the risk of adverse reactions. Ixabepilone is a CYP3A substrate and amlodipine is a weak CYP3A inhibitor.
Ketamine: (Major) The depression of cardiac contractility, conductivity, and automaticity as well as the vascular dilation associated with general anesthetics may be potentiated by calcium-channel blockers. Alternatively, general anesthetics can potentiate the hypotensive effects of calcium-channel blockers. When used concomitantly, anesthetics and calcium-channel blockers should be titrated carefully to avoid excessive cardiovascular depression. (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Ketoconazole: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with ketoconazole is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate and ketoconazole is a strong CYP3A inhibitor. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. Strong CYP3A4 inhibitors may increase the plasma concentrations of amlodipine to a greater extent.
Ketoprofen: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Ketorolac: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Labetalol: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
Lacosamide: (Moderate) Use lacosamide with caution in patients taking concomitant medications that affect cardiac conduction, such as calcium-channel blockers, because of the risk of AV block, bradycardia, or ventricular tachyarrhythmia. If use together is necessary, obtain an ECG prior to lacosamide initiation and after treatment has been titrated to steady-state. In addition, monitor patients receiving lacosamide via the intravenous route closely.
Lanreotide: (Moderate) Concomitant administration of bradycardia-inducing drugs (e.g., calcium-channel blockers) may have an additive effect on the reduction of heart rate associated with lanreotide. Adjust the calcium-channel blocker dose if necessary.
Lansoprazole; Amoxicillin; Clarithromycin: (Major) Avoid coadministration of clarithromycin and amlodipine, particularly in geriatric patients, due to an increased risk of hypotension and acute kidney injury. If the use of a macrolide antibiotic is necessary in a patient receiving amlodipine therapy, azithromycin is the preferred agent. If coadministration is unavoidable, monitor for symptoms of hypotension and edema; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A4 substrate and clarithromycin is a strong CYP3A4 inhibitor. A retrospective, case crossover study, found the risk of hospitalization due to hypotension or shock to be significantly increased in geriatric patients exposed to clarithromycin during concurrent calcium-channel blocker therapy (OR 3.7, 95% CI 2.3-6.1). Concurrent use of azithromycin was not associated with an increased risk of hypotension (OR 1.5, 95% CI 0.8-2.8).
Lasmiditan: (Moderate) Monitor heart rate if lasmiditan is coadministered with calcium-channel blockers as concurrent use may increase the risk for bradycardia. Lasmiditan has been associated with lowering of heart rate. In a drug interaction study, addition of a single 200 mg dose of lasmiditan to another heart rate lowering drug decreased heart rate by an additional 5 beats per minute.
Lefamulin: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with oral lefamulin is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A4 substrate and oral lefamulin is a moderate CYP3A4 inhibitor; an interaction is not expected with intravenous lefamulin. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A4 inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Lenacapavir: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with lenacapavir is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate; lenacapavir is a moderate CYP3A inhibitor. Coadministration with a moderate CYP3A inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Lesinurad: (Moderate) Lesinurad may decrease the systemic exposure and therapeutic efficacy of amlodipine; monitor blood pressure closely. Amlodipine is a CYP3A substrate, and lesinurad is a weak CYP3A inducer.
Lesinurad; Allopurinol: (Moderate) Lesinurad may decrease the systemic exposure and therapeutic efficacy of amlodipine; monitor blood pressure closely. Amlodipine is a CYP3A substrate, and lesinurad is a weak CYP3A inducer.
Letermovir: (Moderate) Amlodipine dose reductions may be required during concurrent administration with letermovir; monitor for symptoms of hypotension and edema to determine the need for dose adjustment. The magnitude of this interaction may be increased in patients who are also receiving cyclosporine. Administering these drugs together may increase amlodipine concentration and risk for adverse events. Amlodipine is a substrate of CYP3A4. Letermovir is a moderate CYP3A4 inhibitor; however, when given with cyclosporine, the combined effect on CYP3A4 substrates may be similar to a strong CYP3A4 inhibitor. Concurrent administration with a moderate CYP3A inhibitor increased amlodipine exposure by 60%; however, another moderate inhibitor did not significantly change amlodipine exposure. Strong CYP3A4 inhibitors may increase amlodipine exposure to a greater extent.
Levobunolol: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
Levodopa: (Moderate) Concomitant use of antihypertensive agents with levodopa can result in additive hypotensive effects. (Moderate) Concomitant use of antihypertensive agents with levodopa can result in additive hypotensive effects.
Levoketoconazole: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with ketoconazole is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate and ketoconazole is a strong CYP3A inhibitor. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. Strong CYP3A4 inhibitors may increase the plasma concentrations of amlodipine to a greater extent.
Levonorgestrel; Ethinyl Estradiol: (Minor) Estrogen containing oral contraceptives can induce fluid retention and may increase blood pressure in some patients.
Levonorgestrel; Ethinyl Estradiol; Ferrous Bisglycinate: (Minor) Estrogen containing oral contraceptives can induce fluid retention and may increase blood pressure in some patients.
Levonorgestrel; Ethinyl Estradiol; Ferrous Fumarate: (Minor) Estrogen containing oral contraceptives can induce fluid retention and may increase blood pressure in some patients.
Lidocaine: (Moderate) Concomitant use of systemic lidocaine and amlodipine may increase lidocaine plasma concentrations by decreasing lidocaine clearance and therefore prolonging the elimination half-life. Monitor for lidocaine toxicity if used together. Lidocaine is a CYP3A4 and CYP1A2 substrate; amlodipine inhibits CYP3A4.
Lidocaine; Epinephrine: (Moderate) Antihypertensives, including angiotensin II receptor antagonists, antagonize the vasopressor effects of parenteral epinephrine. (Moderate) Antihypertensives, including calcium-channel blockers, antagonize the vasopressor effects of parenteral epinephrine. (Moderate) Concomitant use of systemic lidocaine and amlodipine may increase lidocaine plasma concentrations by decreasing lidocaine clearance and therefore prolonging the elimination half-life. Monitor for lidocaine toxicity if used together. Lidocaine is a CYP3A4 and CYP1A2 substrate; amlodipine inhibits CYP3A4.
Lidocaine; Prilocaine: (Moderate) Concomitant use of systemic lidocaine and amlodipine may increase lidocaine plasma concentrations by decreasing lidocaine clearance and therefore prolonging the elimination half-life. Monitor for lidocaine toxicity if used together. Lidocaine is a CYP3A4 and CYP1A2 substrate; amlodipine inhibits CYP3A4.
Linagliptin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Lisdexamfetamine: (Minor) Lisdexamfetamine may increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, such as angiotensin II receptor antagonists. Close monitoring of blood pressure is advised. (Minor) Lisdexamfetamine might increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, like calcium-channel blockers. Close monitoring of blood pressure is advised.
Lithium: (Moderate) Monitor for neurologic adverse reactions during concomitant use of lithium and calcium channel blockers. Concomitant use may increase the risk of neurologic adverse reactions, such as ataxia, tremors, nausea, vomiting, diarrhea, and/or tinnitus. (Moderate) Monitor serum lithium concentrations during concomitant angiotensin II receptor blocker use; reduce the lithium dose based on serum lithium concentration and clinical response. Concomitant use may increase steady-state lithium concentrations.
Lomitapide: (Major) Concomitant use of lomitapide and amlodipine may significantly increase the serum concentration of lomitapide. Therefore, the lomitapide dose should not exceed 30 mg/day PO during concurrent use. Amlodipine is a weak CYP3A4 inhibitor; the exposure to lomitapide is increased by approximately 2-fold in the presence of weak CYP3A4 inhibitors.
Lonafarnib: (Major) Avoid coadministration of lonafarnib and amlodipine; concurrent use may increase the exposure of both drugs and the risk of adverse effects. If coadministration is unavoidable, reduce to or continue lonafarnib at a dosage of 115 mg/m2 and closely monitor patients for lonafarnib-related adverse reactions and/or symptoms of hypotension and edema; adjust the dose of amlodipine as clinically appropriate. Resume previous lonafarnib dosage 14 days after discontinuing amlodipine. Lonafarnib is a sensitive CYP3A4 substrate and strong CYP3A4 inhibitor; amlodipine is a CYP3A4 substrate and weak CYP3A4 inhibitor.
Loop diuretics: (Moderate) Coadministration of furosemide and Angiotensin-converting enzyme inhibitors (ACE inhibitors) or angiotensin II receptor antagonists may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Lopinavir; Ritonavir: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with protease inhibitors is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate and protease inhibitors are moderate to strong CYP3A inhibitors. Coadministration with a moderate CYP3A inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Loratadine; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Lorlatinib: (Moderate) Monitor blood pressure if coadministration of amlodipine with lorlatinib is necessary. Amlodipine is a CYP3A4 substrate and lorlatinib is a moderate CYP3A4 inducer. Concomitant use may decrease amlodipine plasma concentrations, decreasing efficacy.
Lovastatin: (Moderate) Carefully weigh the benefits of combined use of amlodipine and lovastatin against the potential risks. Lovastatin exposure may increase resulting in increased risk of myopathy/rhabdomyolysis. Although FDA-approved labeling for amlodipine or lovastatin do not suggest dose adjustments, guidelines recommend limiting the dose of lovastatin to 20 mg/day if combined with amlodipine. Lovastatin is a CYP3A4 substrate; amlodipine is a weak CYP3A4 inhibitor.
Lumacaftor; Ivacaftor: (Moderate) Lumacaftor; ivacaftor may decrease the systemic exposure and therapeutic efficacy of amlodipine. If used together, monitor blood pressure closely; the dosage requirements of amlodipine may be increased. Amlodipine is a CYP3A substrate. Lumacaftor is a strong CYP3A inducer.
Lumacaftor; Ivacaftor: (Moderate) Lumacaftor; ivacaftor may decrease the systemic exposure and therapeutic efficacy of amlodipine. If used together, monitor blood pressure closely; the dosage requirements of amlodipine may be increased. Amlodipine is a CYP3A substrate. Lumacaftor is a strong CYP3A inducer.
Lurasidone: (Moderate) Due to the antagonism of lurasidone at alpha-1 adrenergic receptors, the drug may enhance the hypotensive effects of alpha-blockers and other antihypertensive agents. If concurrent use of lurasidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Magnesium Sulfate; Potassium Sulfate; Sodium Sulfate: (Moderate) Use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as angiotensin II receptor antagonists.
Maraviroc: (Minor) Use caution if coadministration of maraviroc with amlodipine is necessary, due to a possible increase in maraviroc exposure. Maraviroc is a CYP3A substrate and amlodipine is a weak CYP3A4 inhibitor. Monitor for an increase in adverse effects with concomitant use.
Mavacamten: (Moderate) Closely monitor blood pressure if coadministration of amlodipine with mavacamten is necessary. Amlodipine is a CYP3A substrate and mavacamten is a moderate CYP3A inducer. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
Meclofenamate Sodium: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Mefenamic Acid: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Meglitinides: (Moderate) Angiotensin II receptor antagonists (ARB) may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving an ARB in combination with antidiabetic agents should be monitored for changes in glycemic control.
Melatonin: (Moderate) Monitor blood pressure during concomitant calcium-channel blocker and melatonin use. Melatonin may impair the efficacy of calcium-channel blockers. In a placebo-controlled study, melatonin evening ingestion led to significant increases in blood pressure (6.5 mmHg systolic and 4.9 mmHg diastolic) and heart rate (3.9 bpm) throughout the day in patients taking a calcium channel blocker Melatonin appeared to antagonize the antihypertensive effects of the calcium channel blocker.
Meloxicam: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Metformin: (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Metformin; Repaglinide: (Moderate) Angiotensin II receptor antagonists (ARB) may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving an ARB in combination with antidiabetic agents should be monitored for changes in glycemic control. (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Metformin; Rosiglitazone: (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Metformin; Saxagliptin: (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Metformin; Sitagliptin: (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Methadone: (Moderate) Frequently monitor for respiratory depression and sedation if concurrent use of amlodipine is necessary; consider reducing the dose of methadone if clinically appropriate. If amlodipine is discontinued, monitor for evidence of opioid withdrawal; consider increasing the methadone dose if needed. Methadone is a CYP3A4 substrate; coadministration with a weak CYP3A4 inhibitor like amlodipine can increase methadone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of methadone. If amlodipine is discontinued, methadone plasma concentrations may decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to methadone.
Methamphetamine: (Minor) Amphetamines increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, like calcium-channel blockers. Close monitoring of blood pressure is advised. (Minor) Methamphetamine may increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, such as angiotensin II receptor antagonists. Close monitoring of blood pressure is advised.
Methohexital: (Moderate) Concurrent use of methohexital and antihypertensive agents increases the risk of developing hypotension.
Methoxsalen: (Minor) Preclinical data suggest that calcium-channel blockers could decrease the efficacy of photosensitizing agents used in photodynamic therapy.
Methylergonovine: (Moderate) Be alert for symptoms of ergot toxicity if using methylergonovine and amlodipine together is medically necessary. An ergot alkaloid dose reduction may be necessary if these drugs are used together. Concomitant use of amlodipine, a weak CYP3A4 inhibitor, and methylergonovine, a CYP3A4 substrate, may result in increased ergot alkaloid levels.
Methylphenidate Derivatives: (Moderate) Monitor blood pressure and adjust the dose of the angiotensin II blockers as needed during coadministration with methylphenidate. Methylphenidate may decrease the effectiveness of drugs used to treat hypertension. (Moderate) Periodic evaluation of blood pressure is advisable during concurrent use of methylphenidate derivatives and antihypertensive agents, particularly during initial coadministration and after dosage increases of methylphenidate derivatives. Methylphenidate derivatives can reduce the hypotensive effect of antihypertensive agents, including calcium-channel blockers.
Metoprolol: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
Mifepristone: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with mifepristone is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate and mifepristone is a strong CYP3A inhibitor. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. Strong CYP3A4 inhibitors may increase the plasma concentrations of amlodipine to a greater extent.
Miglitol: (Moderate) Angiotensin II receptor antagonists (ARBs) may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving an ARB in combination with antidiabetic agents should be monitored for changes in glycemic control.
Milrinone: (Moderate) Concurrent administration of antihypertensive agents could lead to additive hypotension when administered with milrinone. Titrate milrinone dosage according to hemodynamic response. (Moderate) Concurrent administration of antihypertensive agents could lead to additive hypotension when administered with milrinone. Titrate milrinone dosage according to hemodynamic response.
Mitotane: (Moderate) Use caution if mitotane and amlodipine are used concomitantly, and monitor for decreased efficacy of amlodipine and a possible change in dosage requirements. Mitotane is a strong CYP3A4 inducer and amlodipine is a CYP3A4 substrate; coadministration may result in decreased plasma concentrations of amlodipine.
Modafinil: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as modafinil are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Nabumetone: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Nadolol: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
Nafcillin: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as nafcillin, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Nanoparticle Albumin-Bound Sirolimus: (Major) Reduce the nab-sirolimus dose to 56 mg/m2 during concomitant use of amlodipine. Coadministration may increase sirolimus concentrations and increase the risk for sirolimus-related adverse effects. Sirolimus is a CYP3A substrate and amlodipine is a weak CYP3A inhibitor.
Naproxen: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Naproxen; Esomeprazole: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Naproxen; Pseudoephedrine: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Nateglinide: (Moderate) Angiotensin II receptor antagonists (ARB) may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving an ARB in combination with antidiabetic agents should be monitored for changes in glycemic control.
Nebivolol: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
Nebivolol; Valsartan: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
Nefazodone: (Moderate) Administering amlodipine with CYP3A4 inhibitors, such as nefazodone, may increase the plasma concentration of amlodipine; this effect might lead to hypotension in some individuals. Caution should be used when nefazodone is coadministered with amlodipine; therapeutic response should be monitored. (Minor) Although relatively infrequent, nefazodone may cause orthostatic hypotension in some patients; this effect may be additive with antihypertensive agents. Blood pressure monitoring is recommended. Dependent upon clinical response, dosage adjustments of either drug may be necessary.
Nelfinavir: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with protease inhibitors is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate and protease inhibitors are moderate to strong CYP3A inhibitors. Coadministration with a moderate CYP3A inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Nesiritide, BNP: (Major) The potential for hypotension may be increased when coadministering nesiritide with antihypertensive agents. (Major) The potential for hypotension may be increased when coadministering nesiritide with antihypertensive agents.
Netupitant, Fosnetupitant; Palonosetron: (Moderate) Coadministration of CYP3A4 inhibitors with amlodipine can theoretically decrease the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inhibitors, such as netupitant, are coadministered with calcium-channel blockers. Monitor therapeutic response; a dose reduction of amlodipine; valsartan may be required.
Neuromuscular blockers: (Moderate) Concomitant use of neuromuscular blockers and calcium-channel blockers may prolong neuromuscular blockade.
Niacin, Niacinamide: (Moderate) Cutaneous vasodilation induced by niacin may become problematic if high-dose niacin is used concomitantly with other antihypertensive agents, especially calcium-channel blockers. This effect is of particular concern in the setting of acute myocardial infarction, unstable angina, or other acute hemodynamic compromise. (Moderate) Cutaneous vasodilation induced by niacin may become problematic if high-dose niacin is used concomitantly with other antihypertensive agents. This effect is of particular concern in the setting of acute myocardial infarction, unstable angina, or other acute hemodynamic compromise.
Niacin; Simvastatin: (Major) Do not exceed a simvastatin dose of 20 mg/day in patients taking amlodipine due to increased risk of myopathy, including rhabdomyolysis. For patients chronically receiving simvastatin 80 mg/day who need to be started on amlodipine, consider switching to an alternative statin with less potential for interaction. Carefully weigh the benefits of combined use of amlodipine and simvastatin against the potential risks. Amlodipine increases the simvastatin exposure by approximately 1.5-fold. (Moderate) Cutaneous vasodilation induced by niacin may become problematic if high-dose niacin is used concomitantly with other antihypertensive agents, especially calcium-channel blockers. This effect is of particular concern in the setting of acute myocardial infarction, unstable angina, or other acute hemodynamic compromise. (Moderate) Cutaneous vasodilation induced by niacin may become problematic if high-dose niacin is used concomitantly with other antihypertensive agents. This effect is of particular concern in the setting of acute myocardial infarction, unstable angina, or other acute hemodynamic compromise.
Nilotinib: (Moderate) Coadministration of CYP3A4 inhibitors with amlodipine can theoretically decrease the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inhibitors, such as nilotinib, are coadministered with calcium-channel blockers. Monitor therapeutic response; a dose reduction of amlodipine may be required.
Nirmatrelvir; Ritonavir: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with protease inhibitors is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate and protease inhibitors are moderate to strong CYP3A inhibitors. Coadministration with a moderate CYP3A inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Nitrates: (Moderate) Concomitant use of nitrates with other antihypertensive agents can cause additive hypotensive effects. Dosage adjustments may be necessary. (Moderate) Nitroglycerin can cause hypotension. This action may be additive with other agents that can cause hypotension such as calcium-channel blockers. Patients should be monitored more closely for hypotension if nitroglycerin, including nitroglycerin rectal ointment, is used concurrently with a calcium-channel blocker.
Nitroglycerin: (Moderate) Concomitant use of nitrates with other antihypertensive agents can cause additive hypotensive effects. Dosage adjustments may be necessary. (Moderate) Nitroglycerin can cause hypotension. This action may be additive with other agents that can cause hypotension such as calcium-channel blockers. Patients should be monitored more closely for hypotension if nitroglycerin, including nitroglycerin rectal ointment, is used concurrently with a calcium-channel blocker.
Nitroprusside: (Moderate) Additive hypotensive effects may occur when nitroprusside is used concomitantly with other antihypertensive agents. Dosages should be adjusted carefully, according to blood pressure. (Moderate) Additive hypotensive effects may occur when nitroprusside is used concomitantly with other antihypertensive agents. Dosages should be adjusted carefully, according to blood pressure.
Nonsteroidal antiinflammatory drugs: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin II blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of angiotensin II blockers may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of angiotensin II blockers and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
Norethindrone Acetate; Ethinyl Estradiol; Ferrous fumarate: (Minor) Estrogen containing oral contraceptives can induce fluid retention and may increase blood pressure in some patients.
Norethindrone; Ethinyl Estradiol: (Minor) Estrogen containing oral contraceptives can induce fluid retention and may increase blood pressure in some patients.
Norethindrone; Ethinyl Estradiol; Ferrous fumarate: (Minor) Estrogen containing oral contraceptives can induce fluid retention and may increase blood pressure in some patients.
Norgestimate; Ethinyl Estradiol: (Minor) Estrogen containing oral contraceptives can induce fluid retention and may increase blood pressure in some patients.
Olanzapine: (Moderate) Olanzapine may induce orthostatic hypotension and thus enhance the effects of antihypertensive agents.
Olanzapine; Fluoxetine: (Moderate) Olanzapine may induce orthostatic hypotension and thus enhance the effects of antihypertensive agents.
Olanzapine; Samidorphan: (Moderate) Olanzapine may induce orthostatic hypotension and thus enhance the effects of antihypertensive agents.
Omeprazole; Amoxicillin; Rifabutin: (Moderate) Rifabutin may induce the CYP3A4 metabolism of calcium-channel blockers such as amlodipine and thereby reduce their oral bioavailability. The dosage requirements of amlodipine may be increased in patients receiving concurrent enzyme inducers.
Oritavancin: (Moderate) Amlodipine is metabolized by CYP3A4; oritavancin is a weak CYP3A4 inducer. Plasma concentrations and efficacy of amlodipine may be reduced if these drugs are administered concurrently.
Oxaprozin: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Oxcarbazepine: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as oxcarbazepine, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Oxycodone: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like amlodipine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If amlodipine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Oxymetazoline: (Major) The vasoconstricting actions of oxymetazoline, an alpha adrenergic agonist, may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. If these drugs are used together, closely monitor for changes in blood pressure. (Major) The vasoconstricting actions of oxymetazoline, an alpha adrenergic agonist, may reduce the antihypertensive effects produced by calcium-channel blockers. If these drugs are used together, closely monitor for changes in blood pressure.
Paliperidone: (Moderate) Paliperidone may cause orthostatic hypotension, thereby enhancing the hypotensive effects of antihypertensive agents. Orthostatic vital signs should be monitored in patients receiving paliperidone and angiotensin II receptor antagonists who are susceptible to hypotension. (Moderate) Paliperidone may cause orthostatic hypotension, thereby enhancing the hypotensive effects of antihypertensive agents. Orthostatic vital signs should be monitored in patients receiving paliperidone and calcium-channel blockers who are susceptible to hypotension.
Pasireotide: (Major) Pasireotide may cause a decrease in heart rate. Closely monitor patients who are also taking drugs associated with bradycardia such as calcium-channel blockers. Dose adjustments of calcium-channel blockers may be necessary.
Pazopanib: (Moderate) Pazopanib is a weak inhibitor of CYP3A4. Coadministration of pazopanib and amlodipine, a CYP3A4 substrate, may cause an increase in systemic concentrations of amlodipine. Use caution when administering these drugs concomitantly.
Pentoxifylline: (Moderate) Pentoxifylline has been used concurrently with antihypertensive drugs (beta blockers, diuretics) without observed problems. Small decreases in blood pressure have been observed in some patients treated with pentoxifylline; periodic systemic blood pressure monitoring is recommended for patients receiving concomitant antihypertensives. If indicated, dosage of the antihypertensive agents should be reduced.
Perampanel: (Moderate) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as perampanel, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Pexidartinib: (Moderate) Closely monitor blood pressure if coadministration of amlodipine with pexidartinib is necessary. Amlodipine is a CYP3A4 substrate and pexidartinib is a moderate CYP3A4 inducer. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
Phenelzine: (Moderate) Additive hypotensive effects may be seen when monoamine oxidase inhibitors (MAOIs) are combined with antihypertensives. Careful monitoring of blood pressure is suggested during concurrent therapy of MAOIs with calcium-channel blockers. Patients should be instructed to rise slowly from a sitting position, and to report syncope or changes in blood pressure or heart rate to their health care provider. (Moderate) Additive hypotensive effects may be seen when phenelzine is combined with angiotensin II receptor antagonists. Careful monitoring of blood pressure is suggested during concurrent therapy of phenelzine with angiotensin II receptor antagonists. Patients should be instructed to rise slowly from a sitting position, and to report syncope or changes in blood pressure or heart rate to their health care provider during concurrent use of phenelzine and angiotensin II receptor antagonists.
Phentermine; Topiramate: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as topiramate, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Phenytoin: (Moderate) Closely monitor blood pressure if coadministration of amlodipine with hydantoins is necessary. Amlodipine is a CYP3A4 substrate and hydantoins are strong CYP3A4 inducers. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
Photosensitizing agents (topical): (Minor) Preclinical data suggest that calcium-channel blockers could decrease the efficacy of photosensitizing agents used in photodynamic therapy.
Pindolol: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
Pioglitazone; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Piroxicam: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Polyethylene Glycol; Electrolytes: (Moderate) Use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as angiotensin II receptor antagonists.
Polyethylene Glycol; Electrolytes; Ascorbic Acid: (Moderate) Use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as angiotensin II receptor antagonists.
Posaconazole: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with posaconazole is necessary; adjust the dose of amlodipine as clinically appropriate. Posaconazole is a strong CYP3A inhibitor and amlodipine is a CYP3A substrate. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. Strong CYP3A4 inhibitors may increase the plasma concentrations of amlodipine to a greater extent.
Potassium Phosphate: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Potassium Phosphate; Sodium Phosphate: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Potassium: (Moderate) Monitor serum potassium concentrations closely if potassium supplements and angiotensin II receptor antagonists are used together. Concomitant use may increase the risk of hyperkalemia.
Pramlintide: (Moderate) Angiotensin II receptor antagonists (ARBs) may enhance the hypoglycemic effects of pramlintide by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving an ARB in combination with pramlintide should be monitored for changes in glycemic control.
Prazosin: (Moderate) Monitor blood pressure during concomitant use of prazosin and angiotensin II receptor blockers (ARBs). Concomitant use may produce additive hypotension and increase the risk for syncope. The risk for significant hypotension and syncope is greatest when adding an antihypertensive to a regimen that includes high dose prazosin and following a rapid dosage increase. To minimize the risk for adverse effects, consider reducing the prazosin dose to 1 to 2 mg three times a day during initiation of a new antihypertensive and then retitrating prazosin based on clinical response. (Moderate) Prazosin is well-known to produce a 'first-dose' phenomenon. Some patients develop significant hypotension shortly after administration of the first dose. The first dose response (acute postural hypotension) of prazosin may be exaggerated in patients who are receiving beta-adrenergic blockers, diuretics, or other antihypertensive agents. Concomitant administration of prazosin with other antihypertensive agents is not prohibited, however. This can be therapeutically advantageous, but lower dosages of each agent should be used. The use of alpha-blockers with verapamil can lead to excessive hypotension; In addition, verapamil has been reported to increase the AUC and Cmax of prazosin.
Prilocaine; Epinephrine: (Moderate) Antihypertensives, including angiotensin II receptor antagonists, antagonize the vasopressor effects of parenteral epinephrine. (Moderate) Antihypertensives, including calcium-channel blockers, antagonize the vasopressor effects of parenteral epinephrine.
Procainamide: (Moderate) Procainamide can decrease blood pressure and should be used cautiously in patients receiving antihypertensive agents. Intravenous administration of procainamide is more likely to cause hypotensive effects.
Promethazine; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Propofol: (Major) The depression of cardiac contractility, conductivity, and automaticity as well as the vascular dilation associated with general anesthetics may be potentiated by calcium-channel blockers. Alternatively, general anesthetics can potentiate the hypotensive effects of calcium-channel blockers. When used concomitantly, anesthetics and calcium-channel blockers should be titrated carefully to avoid excessive cardiovascular depression. (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Propranolol: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
Propranolol; Hydrochlorothiazide, HCTZ: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
Protease inhibitors: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with protease inhibitors is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate and protease inhibitors are moderate to strong CYP3A inhibitors. Coadministration with a moderate CYP3A inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Pseudoephedrine; Triprolidine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Quinidine: (Moderate) Monitor for increased quinidine adverse reactions if coadministered with amlodipine. Taking these drugs together may increase quinidine plasma concentrations, potentially resulting in adverse events. Amlodipine is a weak CYP3A4 inhibitor; quinidine is a substrate of CYP3A4 with a narrow therapeutic index. In addition, quinidine can decrease blood pressure and should be used cautiously in patients receiving antihypertensive agents due to the potential for additive hypotension. (Moderate) Quinidine can decrease blood pressure and should be used cautiously in patients receiving antihypertensive agents due to the potential for additive hypotension.
Quinine: (Moderate) Coadministration of CYP3A4 inhibitors with amlodipine can theoretically decrease the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inhibitors, such as quinine, are coadministered with calcium-channel blockers. Monitor therapeutic response; a dose reduction of amlodipine may be required.
Rasagiline: (Moderate) Additive hypotensive effects may be seen when monoamine oxidase inhibitors (MAOIs) are combined with antihypertensives. Careful monitoring of blood pressure is suggested during concurrent therapy of MAOIs with calcium-channel blockers. Patients should be instructed to rise slowly from a sitting position, and to report syncope or changes in blood pressure or heart rate to their health care provider during concurrent use of an MAOI and a calcium-channel blocker. (Moderate) Additive hypotensive effects may be seen when rasagiline is combined with angiotensin II receptor antagonists. Careful monitoring of blood pressure is suggested during coadministration. Patients should be instructed to rise slowly from a sitting position, and to report syncope or changes in blood pressure or heart rate to their health care provider.
Remifentanil: (Moderate) The risk of significant hypotension and/or bradycardia during therapy with remifentanil may be increased in patients receiving calcium-channel blockers due to additive hypotensive effects.
Repaglinide: (Moderate) Angiotensin II receptor antagonists (ARB) may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving an ARB in combination with antidiabetic agents should be monitored for changes in glycemic control.
Ribociclib: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with ribociclib is necessary; adjust the dose of amlodipine as clinically appropriate. Ribociclib is a strong CYP3A inhibitor and amlodipine is a CYP3A substrate. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. Strong CYP3A4 inhibitors may increase the plasma concentrations of amlodipine to a greater extent.
Ribociclib; Letrozole: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with ribociclib is necessary; adjust the dose of amlodipine as clinically appropriate. Ribociclib is a strong CYP3A inhibitor and amlodipine is a CYP3A substrate. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. Strong CYP3A4 inhibitors may increase the plasma concentrations of amlodipine to a greater extent.
Rifabutin: (Moderate) Rifabutin may induce the CYP3A4 metabolism of calcium-channel blockers such as amlodipine and thereby reduce their oral bioavailability. The dosage requirements of amlodipine may be increased in patients receiving concurrent enzyme inducers.
Rifampin: (Moderate) Rifampin is a potent inducer of the cytochrome P450 hepatic enzyme system and can reduce the plasma concentrations and possibly the efficacy of calcium-channel blockers. The dosage requirements of amlodipine may be increased in patients receiving concurrent enzyme inducers.
Rifapentine: (Moderate) Closely monitor blood pressure if coadministration of amlodipine with rifapentine is necessary. Amlodipine is a CYP3A4 substrate and rifapentine is a strong CYP3A4 inducer. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
Risperidone: (Moderate) Risperidone has been associated with orthostatic hypotension and may enhance the hypotensive effects of antihypertensive agents. Clinically significant hypotension has been observed with concomitant use of risperidone and antihypertensive medications. Lower initial doses or slower dose titration of risperidone may be necessary in patients receiving antihypertensive agents concomitantly. (Moderate) Risperidone may induce orthostatic hypotension and thus enhance the hypotensive effects of angiotensin II receptor antagonists. Lower initial doses or slower dose titration of risperidone may be necessary in patients receiving angiotensin II receptor antagonists concomitantly.
Ritlecitinib: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with ritlecitinib is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate; ritlecitinib is a moderate CYP3A inhibitor. Coadministration with a moderate CYP3A inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Ritonavir: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with protease inhibitors is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate and protease inhibitors are moderate to strong CYP3A inhibitors. Coadministration with a moderate CYP3A inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Saquinavir: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with protease inhibitors is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate and protease inhibitors are moderate to strong CYP3A inhibitors. Coadministration with a moderate CYP3A inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Segesterone Acetate; Ethinyl Estradiol: (Minor) Estrogen containing oral contraceptives can induce fluid retention and may increase blood pressure in some patients.
Sevoflurane: (Major) The depression of cardiac contractility, conductivity, and automaticity as well as the vascular dilation associated with general anesthetics may be potentiated by calcium-channel blockers. Alternatively, general anesthetics can potentiate the hypotensive effects of calcium-channel blockers. When used concomitantly, anesthetics and calcium-channel blockers should be titrated carefully to avoid excessive cardiovascular depression. (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
SGLT2 Inhibitors: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Sildenafil: (Moderate) Monitor for additive hypotension if amlodipine is administered concurrently with sildenafil, as both agents act independently to reduce blood pressure. When sildenafil 100 mg was co-administered with amlodipine (5 mg or 10 mg) to hypertensive patients, the mean additional reduction on supine blood pressure (SBP) was 8 mmHg systolic and 7 mmHg diastolic.
Silodosin: (Moderate) During clinical trials with silodosin, the incidence of dizziness and orthostatic hypotension was higher in patients receiving concomitant antihypertensive treatment. Thus, caution is advisable when silodosin is administered with antihypertensive agents. (Moderate) Monitor for adverse effects if silodosin is coadministered with amlodipine. The incidence of dizziness and orthostatic hypotension were increased in patients also receiving antihypertensive medications in clinical trials.
Simvastatin: (Major) Do not exceed a simvastatin dose of 20 mg/day in patients taking amlodipine due to increased risk of myopathy, including rhabdomyolysis. For patients chronically receiving simvastatin 80 mg/day who need to be started on amlodipine, consider switching to an alternative statin with less potential for interaction. Carefully weigh the benefits of combined use of amlodipine and simvastatin against the potential risks. Amlodipine increases the simvastatin exposure by approximately 1.5-fold.
Sincalide: (Moderate) Sincalide-induced gallbladder ejection fraction may be affected by calcium-channel blockers. False study results are possible in patients with drug-induced hyper- or hypo-responsiveness; thorough patient history is important in the interpretation of results.
Sirolimus: (Moderate) Monitor sirolimus concentrations and adjust sirolimus dosage as appropriate during concomitant use of amlodipine. Coadministration may increase sirolimus concentrations and increase the risk for sirolimus-related adverse effects. Sirolimus is a CYP3A substrate and amlodipine is a weak CYP3A inhibitor.
Sodium Phosphate Monobasic Monohydrate; Sodium Phosphate Dibasic Anhydrous: (Moderate) Concomitant use of medicines with potential to alter renal perfusion or function such as angiotensin II receptor antagonists, may increase the risk of acute phosphate nephropathy in patients taking sodium phosphate monobasic monohydrate; sodium phosphate dibasic anhydrous.
Sodium picosulfate; Magnesium oxide; Anhydrous citric acid: (Moderate) Use caution when prescribing sodium picosulfate; magnesium oxide; anhydrous citric acid in patients taking concomitant medications that may affect renal function such as angiotensin II receptor antagonists. In addition, use caution in patients receiving drugs where hypokalemia is a particular risk.
Sofosbuvir; Velpatasvir: (Moderate) Use caution when administering velpatasvir with amlodipine. Taking these drugs together may increase velpatasvir plasma concentrations, potentially resulting in adverse events. Amlodipine is a weak CYP3A4 inhibitor; velpatasvir is a substrate of CYP3A4.
Sofosbuvir; Velpatasvir; Voxilaprevir: (Moderate) Use caution when administering velpatasvir with amlodipine. Taking these drugs together may increase velpatasvir plasma concentrations, potentially resulting in adverse events. Amlodipine is a weak CYP3A4 inhibitor; velpatasvir is a substrate of CYP3A4.
Sotalol: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
Sotorasib: (Moderate) Closely monitor blood pressure if coadministration of amlodipine with sotorasib is necessary. Amlodipine is a CYP3A4 substrate and sotorasib is a moderate CYP3A4 inducer. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
Sparsentan: (Contraindicated) Concomitant use of sparsentan and angiotensin receptor blockers (ARBs) is contraindicated due to the additive risk for serious adverse effects such as hypotension, syncope, hyperkalemia, and renal dysfunction.
Spironolactone: (Moderate) Monitor serum potassium concentrations closely if angiotensin II receptor antagonists and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Spironolactone; Hydrochlorothiazide, HCTZ: (Moderate) Monitor serum potassium concentrations closely if angiotensin II receptor antagonists and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
St. John's Wort, Hypericum perforatum: (Moderate) Closely monitor blood pressure if coadministration of amlodipine with St. John's Wort is necessary. Amlodipine is a CYP3A substrate and St. John's Wort is a strong CYP3A inducer. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
Sufentanil: (Moderate) Because the dose of the sufentanil sublingual tablets cannot be titrated, consider an alternate opiate if amlodipine must be administered. Consider a reduced dose of sufentanil injection with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the sufentanil injection dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Sufentanil is a CYP3A4 substrate, and coadministration with a weak CYP3A4 inhibitor like amlodipine can increase sufentanil exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of sufentanil. If amlodipine is discontinued, sufentanil plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to sufentanil.
Sulfamethoxazole; Trimethoprim, SMX-TMP, Cotrimoxazole: (Moderate) Monitor for hyperkalemia if concomitant use of an angiotensin II receptor antagonist and trimethoprim is necessary. Avoid concomitant use and consider alternative antibiotic therapy in patients with additional risk factors for hyperkalemia, including patients older than 65 years, those with underlying disorders of potassium metabolism, renal insufficiency, or those requiring high doses of trimethoprim. Amongst patients older than 65 years, concomitant use has been associated with a 2- to 7-fold increased risk of significant hyperkalemia compared to other antibiotics. Trimethoprim has a potassium-sparing effect on the distal nephron and may induce hyperkalemia, especially in those with pre-existing risk factors.
Sulfonylureas: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Sulindac: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Sumatriptan; Naproxen: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Tacrolimus: (Moderate) Monitor for increased tacrolimus adverse reactions if coadministered with amlodipine. Taking these drugs together may increase tacrolimus plasma concentrations, potentially resulting in adverse events. Amlodipine is a weak CYP3A4 inhibitor; tacrolimus is a substrate of CYP3A4 with a narrow therapeutic index.
Tamsulosin: (Moderate) The concomitant administration of tamsulosin with other antihypertensive agents can cause additive hypotensive effects. In addition, diltiazem, nicardipine, and verapamil may increase tamsulosin plasma concentrations via CYP3A4 inhibition. This interaction can be therapeutically advantageous, but dosages must be adjusted accordingly.
Temsirolimus: (Moderate) Monitor for signs and symptoms of angioedema if temsirolimus is administered concomitantly with amlodipine. Angioedema has been reported in patients taking mammalian target of rapamycin (mTOR) inhibitors in combination with amlodipine.
Tetrabenazine: (Moderate) Tetrabenazine may induce orthostatic hypotension and thus enhance the hypotensive effects of antihypertensive agents. Lower initial doses or slower dose titration of tetrabenazine may be necessary in patients receiving antihypertensive agents concomitantly.
Tetracaine: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. Use extreme caution with the concomitant use of tetracaine and antihypertensive agents. (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. Use extreme caution with the concomitant use of tetracaine and antihypertensive agents.
Thalidomide: (Moderate) Thalidomide and other agents that slow cardiac conduction such as calcium-channel blockers should be used cautiously due to the potential for additive bradycardia.
Thiazolidinediones: (Moderate) Monitor blood glucose during concomitant thiazolidinedione and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Thiothixene: (Moderate) Thiothixene should be used cautiously in patients receiving antihypertensive agents. Additive hypotensive effects are possible.
Timolol: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
Tipranavir: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with protease inhibitors is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate and protease inhibitors are moderate to strong CYP3A inhibitors. Coadministration with a moderate CYP3A inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Tizanidine: (Moderate) Concurrent use of tizanidine with antihypertensive agents can result in significant hypotension. Caution is advised when tizanidine is to be used in patients receiving concurrent antihypertensive therapy.
Tolmetin: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Tolvaptan: (Moderate) Monitor serum potassium concentrations closely if tolvaptan and angiotensin II receptor blockers are used together. In clinical studies, hyperkalemia was reported at a rate 1% to 2% higher when tolvaptan was administered with angiotensin II receptor blockers compared to administration of these medications with placebo.
Topiramate: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as topiramate, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Tramadol: (Moderate) Consider a tramadol dosage reduction until stable drug effects are achieved if coadministration with amlodipine is necessary. Closely monitor for seizures, serotonin syndrome, and signs of sedation and respiratory depression. Respiratory depression from increased tramadol exposure may be fatal. Concurrent use of amlodipine, a weak CYP3A4 inhibitor, may increase tramadol exposure and result in greater CYP2D6 metabolism thereby increasing exposure to the active metabolite M1, which is a more potent mu-opioid agonist.
Tramadol; Acetaminophen: (Moderate) Consider a tramadol dosage reduction until stable drug effects are achieved if coadministration with amlodipine is necessary. Closely monitor for seizures, serotonin syndrome, and signs of sedation and respiratory depression. Respiratory depression from increased tramadol exposure may be fatal. Concurrent use of amlodipine, a weak CYP3A4 inhibitor, may increase tramadol exposure and result in greater CYP2D6 metabolism thereby increasing exposure to the active metabolite M1, which is a more potent mu-opioid agonist.
Trandolapril; Verapamil: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with verapamil is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate and verapamil is a moderate CYP3A inhibitor. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A4 inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Tranylcypromine: (Contraindicated) The use of hypotensive agents and tranylcypromine is contraindicated by the manufacturer of tranylcypromine because the effects of hypotensive agents may be markedly potentiated. (Major) Avoid concomitant use of calcium-channel blockers and tranylcypromine due to the risk of additive hypotension. Potential for this interaction persists for up to 10 days after discontinuation of tranylcypromine (or 4 to 5 half-lives after discontinuation of the calcium-channel blocker). If a medication-free interval is not feasible, initiate therapy at the lowest appropriate dose and monitor blood pressure closely.
Trazodone: (Minor) Due to additive hypotensive effects, patients receiving antihypertensive agents concurrently with trazodone may have excessive hypotension. Decreased dosage of the antihypertensive agent may be required when given with trazodone. (Minor) Due to additive hypotensive effects, patients receiving antihypertensive agents concurrently with trazodone may have excessive hypotension. Decreased dosage of the antihypertensive agent may be required when given with trazodone.
Treprostinil: (Moderate) Calcium-channel blockers can have additive hypotensive effects with other antihypertensive agents. This additive effect can be desirable, but the patient should be monitored carefully and the dosage should be adjusted based on clinical response.
Triamterene: (Moderate) Monitor serum potassium concentrations in patients receiving angiotensin II receptor antagonists concomitantly with triamterene. Concomitant use may result in hyperkalemia.
Triamterene; Hydrochlorothiazide, HCTZ: (Moderate) Monitor serum potassium concentrations in patients receiving angiotensin II receptor antagonists concomitantly with triamterene. Concomitant use may result in hyperkalemia.
Triazolam: (Moderate) Monitor for signs of triazolam toxicity during coadministration with amlodipine and consider appropriate dose reduction of triazolam if clinically indicated. Coadministration may increase triazolam exposure. Triazolam is a sensitive CYP3A substrate and amlodipine is a weak CYP3A inhibitor.
Trimethoprim: (Moderate) Monitor for hyperkalemia if concomitant use of an angiotensin II receptor antagonist and trimethoprim is necessary. Avoid concomitant use and consider alternative antibiotic therapy in patients with additional risk factors for hyperkalemia, including patients older than 65 years, those with underlying disorders of potassium metabolism, renal insufficiency, or those requiring high doses of trimethoprim. Amongst patients older than 65 years, concomitant use has been associated with a 2- to 7-fold increased risk of significant hyperkalemia compared to other antibiotics. Trimethoprim has a potassium-sparing effect on the distal nephron and may induce hyperkalemia, especially in those with pre-existing risk factors.
Tucatinib: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with tucatinib is necessary; adjust the dose of amlodipine as clinically appropriate. Tucatinib is a strong CYP3A inhibitor and amlodipine is a CYP3A substrate. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. Strong CYP3A4 inhibitors may increase the plasma concentrations of amlodipine to a greater extent.
Valdecoxib: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Valproic Acid, Divalproex Sodium: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as valproic acid, divalproex sodium, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Vemurafenib: (Moderate) Vemurafenib is an inducer of CYP3A4 and decreased plasma concentrations of drugs metabolized by this enzyme, such as amlodipine, could be expected with concurrent use. Use caution, and monitor therapeutic effects of amlodipine when coadministered with vemurafenib.
Verapamil: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with verapamil is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate and verapamil is a moderate CYP3A inhibitor. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A4 inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Verteporfin: (Moderate) Use caution if coadministration of verteporfin with calcium channel blockers is necessary due to the risk of increased photosensitivity. Verteporfin is a light-activated drug used in photodynamic therapy; all patients treated with verteporfin will be photosensitive. Concomitant use with calcium channel blockers could enhance the rate of verteporfin uptake by the vascular endothelium, resulting in enhanced photosensitivity.
Vinorelbine: (Moderate) Monitor for an earlier onset and/or increased severity of vinorelbine-related adverse reactions, including constipation and peripheral neuropathy, if coadministration with amlodipine is necessary. Vinorelbine is a CYP3A4 substrate and amlodipine is a weak CYP3A4 inhibitor.
Vonoprazan; Amoxicillin; Clarithromycin: (Major) Avoid coadministration of clarithromycin and amlodipine, particularly in geriatric patients, due to an increased risk of hypotension and acute kidney injury. If the use of a macrolide antibiotic is necessary in a patient receiving amlodipine therapy, azithromycin is the preferred agent. If coadministration is unavoidable, monitor for symptoms of hypotension and edema; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A4 substrate and clarithromycin is a strong CYP3A4 inhibitor. A retrospective, case crossover study, found the risk of hospitalization due to hypotension or shock to be significantly increased in geriatric patients exposed to clarithromycin during concurrent calcium-channel blocker therapy (OR 3.7, 95% CI 2.3-6.1). Concurrent use of azithromycin was not associated with an increased risk of hypotension (OR 1.5, 95% CI 0.8-2.8).
Voriconazole: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with voriconazole is necessary; adjust the dose of amlodipine as clinically appropriate. Voriconazole is a strong CYP3A inhibitor and amlodipine is a CYP3A substrate. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. Strong CYP3A4 inhibitors may increase the plasma concentrations of amlodipine to a greater extent.
Voxelotor: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with voxelotor is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate; voxelotor is a moderate CYP3A inhibitor. Coadministration with a moderate CYP3A inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Warfarin: (Moderate) Closely monitor the INR if coadministration of warfarin with amlodipine is necessary as concurrent use may increase the exposure of warfarin leading to increased bleeding risk. Amlodipine is a weak CYP3A4 inhibitor and the R-enantiomer of warfarin is a CYP3A4 substrate. The S-enantiomer of warfarin exhibits 2 to 5 times more anticoagulant activity than the R-enantiomer, but the R-enantiomer generally has a slower clearance.
Zafirlukast: (Minor) Zafirlukast is a CYP3A4 inhibitor which theoretically may decrease the hepatic metabolism of amlodipine, a CYP3A4 substrate.
Ziprasidone: (Minor) Ziprasidone is a moderate antagonist of alpha-1 receptors and may cause orthostatic hypotension with or without tachycardia, dizziness, or syncope. Additive hypotensive effects are possible if ziprasidone is used concurrently with antihypertensive agents. (Minor) Ziprasidone is a moderate antagonist of alpha-1 receptors and may cause orthostatic hypotension with or without tachycardia, dizziness, or syncope. Additive hypotensive effects are possible if ziprasidone is used concurrently with antihypertensive agents.

ration of clarithromycin and amlodipine, particularly in geriatric patients, due to an increased risk of hypotension and acute kidney injury. If the use of a macrolide antibiotic is necessary in a patient receiving amlodipine therapy, azithromycin is the preferred agent. If coadministration is unavoidable, monitor for symptoms of hypotension and edema; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A4 substrate and clarithromycin is a strong CYP3A4 inhibitor. A retrospective, case crossover study, found the risk of hospitalization due to hypotension or shock to be significantly increased in geriatric patients exposed to clarithromycin during concurrent calcium-channel blocker therapy (OR 3.7, 95% CI 2.3-6.1). Concurrent use of azithromycin was not associated with an increased risk of hypotension (OR 1.5, 95% CI 0.8-2.8).
Voriconazole: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with voriconazole is necessary; adjust the dose of amlodipine as clinically appropriate. Voriconazole is a strong CYP3A inhibitor and amlodipine is a CYP3A substrate. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. Strong CYP3A4 inhibitors may increase the plasma concentrations of amlodipine to a greater extent.
Voxelotor: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with voxelotor is necessary; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A substrate; voxelotor is a moderate CYP3A inhibitor. Coadministration with a moderate CYP3A inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A inhibitor in healthy volunteers did not significantly change amlodipine exposure.
Warfarin: (Moderate) Closely monitor the INR if coadministration of warfarin with amlodipine is necessary as concurrent use may increase the exposure of warfarin leading to increased bleeding risk. Amlodipine is a weak CYP3A4 inhibitor and the R-enantiomer of warfarin is a CYP3A4 substrate. The S-enantiomer of warfarin exhibits 2 to 5 times more anticoagulant activity than the R-enantiomer, but the R-enantiomer generally has a slower clearance.
Zafirlukast: (Minor) Zafirlukast is a CYP3A4 inhibitor which theoretically may decrease the hepatic metabolism of amlodipine, a CYP3A4 substrate.
Ziprasidone: (Minor) Ziprasidone is a moderate antagonist of alpha-1 receptors and may cause orthostatic hypotension with or without tachycardia, dizziness, or syncope. Additive hypotensive effects are possible if ziprasidone is used concurrently with antihypertensive agents. (Minor) Ziprasidone is a moderate antagonist of alpha-1 receptors and may cause orthostatic hypotension with or without tachycardia, dizziness, or syncope. Additive hypotensive effects are possible if ziprasidone is used concurrently with antihypertensive agents.

How Supplied

Amlodipine Besylate, Olmesartan Medoxomil/Amlodipine, Olmesartan Medoxomil/AZOR Oral Tab: 10-20mg, 10-40mg, 5-20mg, 5-40mg

Maximum Dosage
Adults

10 mg/day PO amlodipine; 40 mg/day PO olmesartan.

Elderly

10 mg/day PO amlodipine; 40 mg/day PO olmesartan.

Adolescents

Safety and efficacy have not been established.

Children

Safety and efficacy have not been established.

Mechanism Of Action

Amlodipine; olmesartan combines two antihypertensive agents with different mechanisms to lower blood pressure; the effects of amlodipine and olmesartan on blood pressure are additive.
•Amlodipine: Amlodipine inhibits the influx of extracellular calcium across cell membranes selectively, with a greater effect on vascular smooth muscle cell membranes than on cardiac muscle cells. The decrease in intracellular calcium inhibits the contractile processes of the myocardial smooth muscle cells, resulting in dilation of the coronary and systemic arteries. Serum calcium levels remain unchanged. Amlodipine has no significant effect on sinus node function or cardiac conduction, nor does it possess negative inotropic effects at clinical doses. Because it has a gradual onset, reflex tachycardia does not occur, a side effect that is common with other peripheral vasodilators. Amlodipine therapy usually does not affect hemodynamic parameters in patients with normal ventricular function.
•Olmesartan: Olmesartan is an angiotensin II receptor antagonist. Angiotensin II is the primary vasoactive hormone of the renin-angiotensin system and plays an important role in the pathophysiology of hypertension and congestive heart failure. In addition to being a potent vasoconstrictor, effects of angiotensin II include cardiac stimulation, renal reabsorption of sodium, and stimulation of the synthesis and release of aldosterone. Olmesartan blocks angiotensin II by selectively blocking the binding of angiotensin II to the AT1 receptor in vascular smooth muscle. By blocking the effects of angiotensin II, olmesartan decreases systemic vascular resistance without a marked change in heart rate. In addition, blocking the angiotensin II receptors inhibits the negative regulatory feedback of angiotensin II on renin secretion; however, the increase in plasma angiotensin II concentration and renin activity do not overcome the effect of olmesartan on blood pressure. Because olmesartan does not inhibit angiotensin-converting enzyme (ACE), it does not affect the breakdown of bradykinin. Similar to ACE inhibitors, angiotensin II antagonists reduce LVH, do not worsen insulin resistance or serum lipid profiles, and generally do not cause sexual dysfunction.

Pharmacokinetics

Amlodipine; olmesartan is administered orally. The pharmacokinetics of amlodipine; olmesartan are equivalent to the pharmacokinetics of each individual drug when administered separately.
Amlodipine: Amlodipine is approximately 93% bound to plasma proteins, but drug interactions secondary to displacement from binding sites have not been documented. Steady-state plasma concentrations are reached after 7 to 8 days of consecutive once-daily dosing. Chronic once-daily administration of amlodipine results in the maintenance of antihypertensive effects for at least 24 hours. Like other calcium-channel blockers, amlodipine is primarily metabolized by CYP3A4 isoenzymes. It is extensively (approximately 90%) metabolized to inactive compounds, and 10% of the parent compound and 60% of the inactive metabolites are excreted in the urine. The terminal half-life is 30 to 50 hours.
Olmesartan: Olmesartan is highly bound to plasma proteins (99%). Steady state levels are achieved in 3 to 5 days, and no accumulation in plasma occurs with once-daily dosing. Olmesartan medoxomil is rapidly and completely converted (de-esterified) to olmesartan during absorption from the gastrointestinal tract. Following conversion of olmesartan medoxomil to olmesartan, there is virtually no further metabolism of olmesartan. Olmesartan appears to be eliminated in a biphasic manner with a terminal elimination half-life of approximately 13 hours. Approximately 35 to 50% of the administered dose is excreted in the urine, while the remainder is eliminated in the feces via biliary excretion.

Oral Route

Amlodipine: The absolute bioavailability of amlodipine ranges from 64% to 90%. Peak plasma concentrations are achieved 6 to 12 hours post-dose, and absorption is not affected by food.
Olmesartan: Olmesartan medoxomil is rapidly and completely converted (de-esterified) to olmesartan during absorption from the gastrointestinal tract. The absolute bioavailability of olmesartan is approximately 26%. Peak plasma concentrations are reached about 1 to 2 hours after dosing, and absorption is not affected by food.

Pregnancy And Lactation
Pregnancy

When pregnancy is detected, every effort should be made to discontinue amlodipine; olmesartan therapy. Women of child-bearing age should be made aware of the potential risk, and olmesartan should only be given after careful counseling and consideration of individual risks and benefits. When used during the second and third trimesters, medications that affect the renin-angiotensin system (e.g., ACE inhibitors, angiotensin II receptor antagonists) have been associated with reduced fetal renal function and increased fetal and neonatal morbidity and death. Use of drugs that affect the renin-angiotensin system during pregnancy can cause fetal death or injury such as hypotension, neonatal skull hypoplasia, reversible or irreversible renal failure and death. Anhydramnios and oligohydramnios have also been reported. Development of oligohydramnios may be associated with decreased fetal renal function leading to anuria and renal failure and results in fetal limb contractures, craniofacial deformation, hypotension, hypoplastic lung development, and death. Retrospective data indicate that first trimester use of ACE inhibitors has been associated with a potential risk of birth defects. However, a much larger observational study (n = 465,754) found that the risk of birth defects was similar in infants exposed to ACE inhibitors during the first trimester, in infants exposed to other antihypertensives during the first trimester, and in those whose mothers were hypertensive but were not treated. Infants born to mothers with hypertension, either treated or untreated, had a higher risk of birth defects than those born to mothers without hypertension. The authors concluded that the presence of hypertension likely contributed to the development of birth defects rather than the use of medications. An observational cohort study evaluating the outcomes of angiotensin receptor blockers (ARBs) use during the first trimester of pregnancy found an increased rate of major birth defects compared to non-hypertensive pregnancies, 5.4% and 3%, respectively; the difference did not reach statistical significance. The authors noted that there was a higher risk of major birth defects with ARB therapy beyond 6 weeks of gestation compared to discontinuation of ARBs before week 6, 7.3% and 2.8%, respectively. The rates of prematurity and reduced birth weight were also increased in the ARB group. There were no statistically significant differences in the rates of major birth defects, spontaneous abortions, or preterm births between women with chronic hypertension treated with an ARB versus methyldopa. Data with amlodipine use in pregnancy are insufficient to inform a drug-associated risk for major birth defects and miscarriage. Data from animal reproductive studies indicate no evidence of adverse developmental effects when pregnant rats and rabbits received oral amlodipine during organogenesis at doses approximately 10- and 20-times the maximum recommended human dose, respectively. Litter size for rats was decreased by about 50%, and the number of intrauterine deaths was increased by approximately 5-fold. Amlodipine has been shown to prolong the gestation period and duration of labor in rats at this dose.[29090] In rare cases when another antihypertensive agent cannot be used to treat a pregnant patient, serial ultrasound examinations should be performed to assess the intraamniotic environment. If oligohydramnios is observed, discontinue amlodipine; olmesartan unless it is considered life-saving for the mother. It should be noted that oligohydramnios may not appear until after the fetus has sustained irreversible injury. Closely observe newborns with histories of in utero exposure to amlodipine; olmesartan for hypotension, oliguria, and hyperkalemia. If oliguria or hypotension occurs, blood pressure and renal perfusion support may be required, as well as exchange transfusion or dialysis to reverse hypotension and/or support decreased renal function.

There is limited information on the presence of amlodipine; olmesartan in human breast milk, the effects on the breastfed infant, or the effects on milk production. Breast-feeding is not recommended during amlodipine; olmesartan therapy due to the potential for adverse effects on the nursing infant; thus, a decision should be made to discontinue breast-feeding or amlodipine; olmesartan therapy. Amlodipine is present in human breast milk. It is not known whether olmesartan is excreted into human milk. In a study of 31 lactating patients with pregnancy-induced hypertension, the median relative infant dose (RID) of amlodipine in human milk was 4.2% (interquartile range, 3.12% to 7.25%) and the maximum RID was 15.2%. In another study that enrolled 8 lactating patients, the average RID for amlodipine was 3.4% (range, 1.56% to 4.32%).[64368] Alternative therapies may be considered. Due to low levels in breast milk, guidelines generally consider the ACE inhibitors captopril and enalapril to be compatible with breast-feeding unless high doses are required. In addition, benazepril and quinapril are excreted in low quantities into breast milk and have been suggested as options during breast-feeding. Only small quantities of the calcium channel blocker nifedipine are excreted into breast milk; therefore, it is generally considered safe during breast-feeding. Consider the benefits of breast-feeding, the risk of potential infant drug exposure, and the risk of an untreated or inadequately treated condition.