Hyzaar

Browse PDR's full list of drug information

Hyzaar

Classes

Angiotensin-II Receptor Blocker/ARBs and Diuretic Combinations

Administration
Oral Administration

Losartan; hydrochlorothiazide may be administered without regard to meals.

Adverse Reactions
Severe

hyperkalemia / Delayed / 0.4-0.4
ventricular fibrillation / Early / Incidence not known
atrial fibrillation / Early / Incidence not known
stroke / Early / Incidence not known
bradycardia / Rapid / Incidence not known
AV block / Early / Incidence not known
myocardial infarction / Delayed / Incidence not known
arrhythmia exacerbation / Early / Incidence not known
ventricular tachycardia / Early / Incidence not known
angioedema / Rapid / Incidence not known
anaphylactoid reactions / Rapid / Incidence not known
vasculitis / Delayed / Incidence not known
exfoliative dermatitis / Delayed / Incidence not known
toxic epidermal necrolysis / Delayed / Incidence not known
erythema multiforme / Delayed / Incidence not known
Stevens-Johnson syndrome / Delayed / Incidence not known
hemolytic anemia / Delayed / Incidence not known
aplastic anemia / Delayed / Incidence not known
agranulocytosis / Delayed / Incidence not known
rhabdomyolysis / Delayed / Incidence not known
pulmonary edema / Early / Incidence not known
pancreatitis / Delayed / Incidence not known
teratogenesis / Delayed / Incidence not known
ocular hypertension / Delayed / Incidence not known
visual impairment / Early / Incidence not known
renal failure (unspecified) / Delayed / Incidence not known
interstitial nephritis / Delayed / Incidence not known
oliguria / Early / Incidence not known
azotemia / Delayed / Incidence not known
skin cancer / Delayed / Incidence not known

Moderate

hypokalemia / Delayed / 6.7-6.7
palpitations / Early / 1.4-1.4
edema / Delayed / 1.3-1.3
ataxia / Delayed / Incidence not known
memory impairment / Delayed / Incidence not known
depression / Delayed / Incidence not known
confusion / Early / Incidence not known
peripheral neuropathy / Delayed / Incidence not known
migraine / Early / Incidence not known
impotence (erectile dysfunction) / Delayed / Incidence not known
sinus tachycardia / Rapid / Incidence not known
chest pain (unspecified) / Early / Incidence not known
angina / Early / Incidence not known
hypotension / Rapid / Incidence not known
orthostatic hypotension / Delayed / Incidence not known
hypovolemia / Early / Incidence not known
elevated hepatic enzymes / Delayed / Incidence not known
jaundice / Delayed / Incidence not known
hyperbilirubinemia / Delayed / Incidence not known
anemia / Delayed / Incidence not known
hepatitis / Delayed / Incidence not known
hemolysis / Early / Incidence not known
erythema / Early / Incidence not known
glycosuria / Early / Incidence not known
hyperglycemia / Delayed / Incidence not known
leukopenia / Delayed / Incidence not known
thrombocytopenia / Delayed / Incidence not known
hyperuricemia / Delayed / Incidence not known
nephrolithiasis / Delayed / Incidence not known
gout / Delayed / Incidence not known
hypomagnesemia / Delayed / Incidence not known
hypercalcemia / Delayed / Incidence not known
hypertriglyceridemia / Delayed / Incidence not known
hypercholesterolemia / Delayed / Incidence not known
sialadenitis / Delayed / Incidence not known
gastritis / Delayed / Incidence not known
constipation / Delayed / Incidence not known
myasthenia / Delayed / Incidence not known
pneumonitis / Delayed / Incidence not known
dyspnea / Early / Incidence not known
xanthopsia / Delayed / Incidence not known
conjunctivitis / Delayed / Incidence not known
blurred vision / Early / Incidence not known
myopia / Delayed / Incidence not known
hyponatremia / Delayed / Incidence not known
metabolic alkalosis / Delayed / Incidence not known

Mild

infection / Delayed / 6.1-6.1
dizziness / Early / 5.7-5.7
cough / Delayed / 2.6-2.6
back pain / Delayed / 2.1-2.1
rash / Early / 1.4-1.4
abdominal pain / Early / 1.2-1.2
sinusitis / Delayed / 1.2-1.2
asthenia / Delayed / 1.0
fatigue / Early / 1.0
headache / Early / 1.0
nausea / Early / 1.0
diarrhea / Early / 1.0
pharyngitis / Delayed / 1.0
weakness / Early / Incidence not known
paresthesias / Delayed / Incidence not known
libido decrease / Delayed / Incidence not known
restlessness / Early / Incidence not known
vertigo / Early / Incidence not known
hypoesthesia / Delayed / Incidence not known
insomnia / Early / Incidence not known
tremor / Early / Incidence not known
anxiety / Delayed / Incidence not known
drowsiness / Early / Incidence not known
syncope / Early / Incidence not known
purpura / Delayed / Incidence not known
photosensitivity / Delayed / Incidence not known
diaphoresis / Early / Incidence not known
pruritus / Rapid / Incidence not known
urticaria / Rapid / Incidence not known
flushing / Rapid / Incidence not known
alopecia / Delayed / Incidence not known
ecchymosis / Delayed / Incidence not known
xerosis / Delayed / Incidence not known
xerostomia / Early / Incidence not known
dyspepsia / Early / Incidence not known
flatulence / Early / Incidence not known
dental pain / Delayed / Incidence not known
anorexia / Delayed / Incidence not known
vomiting / Early / Incidence not known
musculoskeletal pain / Early / Incidence not known
muscle cramps / Delayed / Incidence not known
arthralgia / Delayed / Incidence not known
myalgia / Early / Incidence not known
dysgeusia / Early / Incidence not known
nasal congestion / Early / Incidence not known
rhinitis / Early / Incidence not known
epistaxis / Delayed / Incidence not known
fever / Early / Incidence not known
malaise / Early / Incidence not known
tinnitus / Delayed / Incidence not known
ocular irritation / Rapid / Incidence not known
increased urinary frequency / Early / Incidence not known
nocturia / Early / Incidence not known

Boxed Warning
Pregnancy

When pregnancy is detected, discontinue losartan; hydrochlorothiazide therapy as soon as possible. Women of child-bearing age should be made aware of the potential risk and losartan; hydrochlorothiazide should only be given after careful counseling and consideration of risks and benefits. When used during the second and third trimesters, drugs that affect the renin-angiotensin system (e.g., ACE inhibitors, angiotensin II receptor antagonists) reduce fetal renal function and increase fetal and neonatal morbidity and death. Use of drugs that affect the renin-angiotensin system during pregnancy can cause fetal death or injury such as hypotension, neonatal skull hypoplasia, reversible or irreversible renal failure and death. Anhydramnios and oligohydramnios have also been reported. Development of oligohydramnios may be associated with decreased fetal renal function leading to anuria and renal failure and results in fetal limb contractures, craniofacial deformation, hypotension, hypoplastic lung development, and death. Retrospective data indicate that first trimester use of ACE inhibitors has been associated with a potential risk of birth defects. However, a much larger observational study (n = 465,754) found that the risk of birth defects was similar in infants exposed to ACE inhibitors during the first trimester, in infants exposed to other antihypertensives during the first trimester, and in those whose mothers were hypertensive but were not treated. Infants born to mothers with hypertension, either treated or untreated, had a higher risk of birth defects than those born to mothers without hypertension. The authors concluded that the presence of hypertension likely contributed to the development of birth defects rather than the use of medications. An observational cohort study evaluating the outcomes of angiotensin receptor blockers (ARBs) use during the first trimester of pregnancy found an increased rate of major birth defects compared to non-hypertensive pregnancies, 5.4% and 3%, respectively; the difference did not reach statistical significance. The authors noted that there was a higher risk of major birth defects with ARB therapy beyond 6 weeks of gestation compared to discontinuation of ARBs before week 6, 7.3% and 2.8%, respectively. The rates of prematurity and reduced birth weight were also increased in the ARB group. There were no statistically significant differences in the rates of major birth defects, spontaneous abortions, or preterm births between women with chronic hypertension treated with an ARB versus methyldopa. Thiazide diuretics can cross the placenta resulting in umbilical cord concentrations similar to maternal plasma concentrations and amniotic fluid concentrations that are up to 19 times greater than in the umbilical vein. Based on the results from one large study, first trimester use of thiazide and related diuretics may increase the risk for congenital defects. In addition to malformations, other fetal risks associated with thiazide use during pregnancy include hypoperfusion, fetal or neonatal jaundice, hypoglycemia, thrombocytopenia, hyponatremia, hypokalemia, and death from maternal complications. Once pregnancy is detected, ultrasound examination should be performed if losartan; hydrochlorothiazide exposure occurs beyond the first trimester. In rare cases when another antihypertensive agent cannot be used to treat a pregnant patient, serial ultrasound examinations should be performed to assess the intraamniotic environment. If oligohydramnios is observed, discontinue losartan; hydrochlorothiazide unless it is considered life-saving for the mother. It should be noted that oligohydramnios may not appear until after the fetus has sustained irreversible injury. Closely observe newborns with histories of in utero exposure to losartan; hydrochlorothiazide for hypotension, oliguria, and hyperkalemia. If oliguria or hypotension occurs, blood pressure and renal perfusion support may be required, as well as exchange transfusion or dialysis to reverse hypotension and/or support decreased renal function.

Common Brand Names

Hyzaar

Dea Class

Rx

Description

Angiotensin II blocker and thiazide diuretic
Once-daily product for hypertension; additive efficacy
Less potassium loss and hyperuricemia compared to diuretic monotherapy; losartan has an active metabolite (E-3174)

Dosage And Indications
For the treatment of hypertension.
NOTE: Hyzaar is available as losartan 50 mg/hydrochlorothiazide 12.5 mg, losartan 100 mg/hydrochlorothiazide 12.5 mg, losartan 100 mg/hydrochlorothiazide 25 mg dosage strengths, respectively. Individualize dosage by titration of the separate components. If the optimal dose corresponds to the ratio contained in the combination formulation, Hyzaar can be substituted.
For patients who do not respond to monotherapy. Oral dosage Adults

Patients whose blood pressure is not adequately controlled with losartan or hydrochlorothiazide (HCTZ) monotherapy may be switched to losartan 50 mg/hydrochlorothiazide 12.5 mg PO once daily. Hyzaar is not intended as first-line therapy, except when the hypertension is severe enough that the value of achieving prompt blood pressure control exceeds the risk of initiating combination therapy. The dosage for Hyzaar is best determined by individual titration with the separate components. Adjust dosage based on clinical response after 3 weeks or more. Dosage may be increased to 2 tablets of losartan 50 mg/hydrochlorothiazide 12.5 mg once daily or 1 tablet of losartan 100 mg/hydrochlorothiazide 25 PO once daily. The maximum dosage is 100 mg/day of losartan combined with 25 mg/day of hydrochlorothiazide. The usual starting dose of losartan monotherapy is 50 mg PO once daily, with 25 mg PO recommended for patients with intravascular volume depletion (e.g., patients treated with diuretics) or a history of hepatic impairment. The addition of a diuretic has a greater effect on lowering blood pressure than increasing the losartan dosage beyond 50 mg/day. The addition of hydrochlorothiazide 12.5 mg to losartan 50 mg once daily results in an additional 50% reduction in DBP and SBP.

Geriatric

See adult dosage. Greater sensitivity in some older individuals is possible. Adjust dosage based on clinical response.

For severe hypertension. Oral dosage Adults

Hyzaar is not intended as first-line therapy, except when the hypertension is severe enough that the value of achieving prompt blood pressure control exceeds the risk of initiating combination therapy. Initiate therapy with losartan 50 mg/hydrochlorothiazide 12.5 mg PO once daily. Adjust dosage based on clinical response after 2 to 4 weeks. Dosage may be increased to 1 tablet of losartan 100 mg/hydrochlorothiazide 25 PO once daily. The maximum dosage is 100 mg/day of losartan combined with 25 mg/day of hydrochlorothiazide.

Geriatric

See adult dosage. Greater sensitivity in some older individuals is possible. Adjust dosage based on clinical response.

For stroke prophylaxis in hypertensive patients with left ventricular hypertrophy (LVH).
NOTE: There is evidence that this benefit does not apply to Black patients.
NOTE: Hyzaar is available as losartan 50 mg/hydrochlorothiazide 12.5 mg, losartan 100 mg/hydrochlorothiazide 12.5 mg, losartan 100 mg/hydrochlorothiazide 25 mg dosage strengths, respectively. Individualize dosage by titration of the separate components. If the optimal dose corresponds to the ratio contained in the combination formulation, Hyzaar can be substituted.
Oral dosage Adults

Initially, 50 mg PO losartan once daily. Maximal antihypertensive effects generally occur within 3 to 6 weeks. If needed for blood pressure (BP) reduction, add hydrochlorothiazide (HCTZ) 12.5 mg PO once daily. If additional blood pressure reduction is needed, increase the losartan dose to 100 mg, or losartan 100mg/hydrochlorothiazide 12.5 mg PO once daily may be substituted. The maximum daily dosage is losartan 100 mg and hydrochlorothiazide 25 mg. This FDA-approved indication is based on the findings of the LIFE trial which compared losartan versus atenolol in patients with hypertension and LVH. In this trial, losartan reduced the risk of stroke (nonfatal and fatal) by 25% compared to atenolol. The overall findings demonstrate that losartan is more effective than atenolol in reducing total mortality and cardiovascular morbidity and mortality, and is associated with less drug-related adverse events. In a pre-specified subanalysis of the LIFE study in diabetic hypertensives with LVH, similar findings are reported.

Dosing Considerations
Hepatic Impairment

The fixed combination product, Hyzaar, is not recommended for initial titration in patients with hepatic impairment since the appropriate 25 mg starting dose of losartan cannot be administered. See Losartan monograph for dosing in patients with hepatic impairment. Hydrochlorothiazide should be used with caution in patients with hepatic disease since minor alterations of fluid and electrolyte balance may precipitate hepatic coma.

Renal Impairment

CrCl more than 30 mL/min: No dosage adjustment is necessary.
CrCl is 30 mL/min or less: Combination therapy with losartan and hydrochlorothiazide is not recommended. Thiazide diuretics are not effective in this setting.
 
Intermittent hemodialysis
Combination therapy with hydrochlorothiazide is not recommended in patients with CrCl is 30 mL/min or less. Thiazide diuretics are generally not effective in this setting.

Drug Interactions

Acarbose: (Moderate) Angiotensin II receptor antagonists (ARBs) may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving an ARB in combination with antidiabetic agents should be monitored for changes in glycemic control. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Acetaminophen; Caffeine; Dihydrocodeine: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure.
Acetaminophen; Chlorpheniramine; Phenylephrine : (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Acetaminophen; Codeine: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Acetaminophen; Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure.
Acetaminophen; Dextromethorphan; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Acetaminophen; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure.
Acetaminophen; Dichloralphenazone; Isometheptene: (Major) Isometheptene has sympathomimetic properties. Patients taking antihypertensive agents may need to have their therapy modified. Careful blood pressure monitoring is recommended. (Moderate) Isometheptene has sympathomimetic properties. Patients taking antihypertensive agents may need to have their therapy modified. Careful blood pressure monitoring is recommended.
Acetaminophen; Guaifenesin; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Acetaminophen; Hydrocodone: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and hydrocodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Acetaminophen; Ibuprofen: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Acetaminophen; Oxycodone: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Acetaminophen; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Acetaminophen; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure.
Acetazolamide: (Moderate) Acetazolamide promotes electrolyte excretion including hydrogen ions, sodium, and potassium. It can enhance the sodium depleting effects of other diuretics when used concurrently. Pre-existing hypokalemia and hyperuricemia can also be potentiated by carbonic anhydrase inhibitors. Monitor serum potassium to determine the need for potassium supplementation and alteration in drug therapy.
Aclidinium; Formoterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Acrivastine; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure.
Adagrasib: (Moderate) Closely monitor blood pressure during coadministration of losartan and adagrasib; adjust the dose of losartan as clinically appropriate. Concomitant use may decrease exposure to the active metabolite of losartan and decrease losartan efficacy. Losartan is a CYP2C9 substrate; adagrasib is a moderate CYP2C9 inhibitor. Coadministration with a moderate CYP2C9 inhibitor in two pharmacokinetic studies with healthy volunteers decreased concentrations of the active metabolite of losartan by 30% to 56%.
Albuterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Albuterol; Budesonide: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Aldesleukin, IL-2: (Moderate) Angiotensin II receptor antagonists may potentiate the hypotension seen with aldesleukin, IL 2. (Moderate) Thiazide diuretics may potentiate the hypotension seen with aldesleukin, IL 2.
Alemtuzumab: (Moderate) Alemtuzumab may cause hypotension. Careful monitoring of blood pressure and hypotensive symptoms is recommended especially in patients with ischemic heart disease and in patients on antihypertensive agents.
Alendronate; Cholecalciferol: (Moderate) Dose adjustment of vitamin D or vitamin D analogs may be necessary during coadministration with thiazide diuretics. Additionally, serum calcium concentrations should be monitored frequently. Monitor more frequently in patients with a history of hypercalcemia. Hypercalcemia may be exacerbated by coadministration of vitamin D or vitamin D analogs and thiazide diuretics. Thiazide diuretics are known to induce hypercalcemia by reducing the excretion of calcium in the urine.
Alfentanil: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a thiazide diuretic is administered with alfentanil. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Aliskiren: (Major) Aliskiren-containing products are contraindicated in combination with angiotensin II receptor antagonists (ARBs) in patients with diabetes mellitus. In general, avoid combined use of two renin-angiotensin-aldosterone system (RAAS) inhibitors, particularly in patients with CrCl less than 60 mL/minute. Combination therapy increases the risk for hyperkalemia, renal impairment, hypotension, and other side effects. Most patients receiving a comination of two RAAS inhibitors, such as ARBs and aliskiren, do not obtain any additional benefit compared to monotherapy. Closely monitor blood pressure, renal function, and electrolytes if aliskiren must be combined with another RAAS inhibitor. In the ALTITUDE trial, patients with type 2 diabetes and renal impairment, a population at high risk for cardiovascular and renal events, were given aliskiren in addition to ACE inhibitors or ARBs. The trial was stopped early because aliskiren was associated with an increased risk of non-fatal stroke, renal complications, hyperkalemia, and hypotension. In the Veterans Affairs Nephropathy in Diabetes (VA NEPHRON-D) trial, no additional benefit over monotherapy was seen in patients receiving the combination of losartan and lisinopril compared to monotherapy; however, there was an increased incidence of hyperkalemia and acute renal injury.
Aliskiren; Hydrochlorothiazide, HCTZ: (Major) Aliskiren-containing products are contraindicated in combination with angiotensin II receptor antagonists (ARBs) in patients with diabetes mellitus. In general, avoid combined use of two renin-angiotensin-aldosterone system (RAAS) inhibitors, particularly in patients with CrCl less than 60 mL/minute. Combination therapy increases the risk for hyperkalemia, renal impairment, hypotension, and other side effects. Most patients receiving a comination of two RAAS inhibitors, such as ARBs and aliskiren, do not obtain any additional benefit compared to monotherapy. Closely monitor blood pressure, renal function, and electrolytes if aliskiren must be combined with another RAAS inhibitor. In the ALTITUDE trial, patients with type 2 diabetes and renal impairment, a population at high risk for cardiovascular and renal events, were given aliskiren in addition to ACE inhibitors or ARBs. The trial was stopped early because aliskiren was associated with an increased risk of non-fatal stroke, renal complications, hyperkalemia, and hypotension. In the Veterans Affairs Nephropathy in Diabetes (VA NEPHRON-D) trial, no additional benefit over monotherapy was seen in patients receiving the combination of losartan and lisinopril compared to monotherapy; however, there was an increased incidence of hyperkalemia and acute renal injury.
Allopurinol: (Moderate) Monitor renal function and for signs and symptoms of hypersensitivity and skin rash during concomitant use of allopurinol and thiazide diuretics; reduce the allopurinol dose in persons with renal impairment and concomitant thiazide diuretic use. Concomitant use may increase the risk of severe skin rash and renal impairment may further increase the risk. Discontinue allopurinol at the first appearance of skin rash or other signs which may indicate a hypersensitivity when using these drugs concomitantly.
Alogliptin: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Alogliptin; Metformin: (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Alogliptin; Pioglitazone: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Alpha-glucosidase Inhibitors: (Moderate) Angiotensin II receptor antagonists (ARBs) may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving an ARB in combination with antidiabetic agents should be monitored for changes in glycemic control. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Alprostadil: (Minor) The concomitant use of systemic alprostadil injection and antihypertensive agents, such as angiotensin II receptor antagonists (angiotensin receptor blockers, or ARBs), may cause additive hypotension. Caution is advised with this combination. Systemic drug interactions with the urethral suppository (MUSE) or alprostadil intracavernous injection are unlikely in most patients because low or undetectable amounts of the drug are found in the peripheral venous circulation following administration. In those men with significant corpora cavernosa venous leakage, hypotension might be more likely. Use caution with in-clinic dosing for erectile dysfunction (ED) and monitor for the effects on blood pressure. However, in clinical trials with alprostadil intracavernous injection, anti-hypertensive agents had no apparent effect on the safety and efficacy of alprostadil. (Minor) The concomitant use of systemic alprostadil injection and antihypertensive agents, such as thiazide diuretics, may cause additive hypotension. Caution is advised with this combination. Systemic drug interactions with the urethral suppository (MUSE) or alprostadil intracavernous injection are unlikely in most patients because low or undetectable amounts of the drug are found in the peripheral venous circulation following administration. In those men with significant corpora cavernosa venous leakage, hypotension might be more likely. Use caution with in-clinic dosing for erectile dysfunction (ED) and monitor for the effects on blood pressure. In addition, the presence of medications in the circulation that attenuate erectile function may influence the response to alprostadil. However, in clinical trials with alprostadil intracavernous injection, anti-hypertensive agents had no apparent effect on the safety and efficacy of alprostadil.
Amifostine: (Major) Patients receiving angiotensin II receptor antagonists should be closely monitored during amifostine infusions due to additive effects. Patients receiving amifostine at doses recommended for chemotherapy should have antihypertensive therapy interrupted 24 hours preceding administration of amifostine. If the antihypertensive cannot be stopped, patients should not receive amifostine. (Major) Patients receiving antihypertensive agents should be closely monitored during amifostine infusions due to additive effects. If possible, patients should not take their antihypertensive medication 24 hours before receiving amifostine. Patients who can not stop their antihypertensive agents should not receive amifostine or be closely monitored during the infusion and, possibly, given lower doses.
Amiloride: (Major) Potassium-sparing diuretics, such as amiloride, should be used with caution in patients taking drugs that may increase serum potassium levels such as angiotensin II receptor antagonists. Concurrent use can cause hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Amiloride; Hydrochlorothiazide, HCTZ: (Major) Potassium-sparing diuretics, such as amiloride, should be used with caution in patients taking drugs that may increase serum potassium levels such as angiotensin II receptor antagonists. Concurrent use can cause hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Aminolevulinic Acid: (Moderate) Thiazide diuretics may cause photosensitivity and may increase the photosensitization effects of photosensitizing agents used in photodynamic therapy. Prevention of photosensitivity includes adequate protection from sources of UV radiation (e.g., avoiding sun exposure and tanning booths) and the use of protective clothing and sunscreens on exposed skin.
Amiodarone: (Moderate) Closely monitor blood pressure during coadministration of losartan and amiodarone; adjust the dose of losartan as clinically appropriate. Concomitant use may decrease exposure to the active metabolite of losartan and decrease losartan efficacy. Losartan is a CYP2C9 substrate; amiodarone is a moderate CYP2C9 inhibitor. Coadministration with a moderate CYP2C9 inhibitor in two pharmacokinetic studies with healthy volunteers decreased concentrations of the active metabolite of losartan by 30% to 56%.
Amlodipine; Benazepril: (Major) Discontinue the thiazide diuretic prior to starting benazepril, if possible, or start benazepril at the lower dose of 5 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure.
Amlodipine; Celecoxib: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Amobarbital: (Moderate) Concurrent use of amobarbital with antihypertensive agents may lead to hypotension. Monitor for decreases in blood pressure during times of coadministration.
Amoxicillin; Clarithromycin; Omeprazole: (Moderate) Monitor magnesium concentration before and periodically during concomitant omeprazole and thiazide diuretic use due to risk for hypomagnesemia.
Amphetamine; Dextroamphetamine Salts: (Minor) Amphetamines increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, such as angiotensin II receptor antagonists. Close monitoring of blood pressure is advised. (Minor) Amphetamines may counteract the activity of some antihypertensive agents, such as thiazide diuretics. Close monitoring of blood pressure is advised. Thiazide diuretics may also increase and prolong the actions of amphetamines by increasing the urinary pH.
Amphotericin B lipid complex (ABLC): (Moderate) The risk of developing severe hypokalemia can be increased when amphotericin B is coadministered with thiazide diuretics. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
Amphotericin B liposomal (LAmB): (Moderate) The risk of developing severe hypokalemia can be increased when amphotericin B is coadministered with thiazide diuretics. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
Amphotericin B: (Moderate) The risk of developing severe hypokalemia can be increased when amphotericin B is coadministered with thiazide diuretics. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
Angiotensin II: (Moderate) Angiotensin II receptor antagonists (angiotensin receptor blockers, or ARBs) may decrease the response to angiotensin II. Angiotensin II is a naturally occurring peptide hormone of the renin-angiotensin-aldosterone system (RAAS) that causes vasoconstriction and an increase in blood pressure. ARBs block the vasoconstrictor and aldosterone-secreting effects of angiotensin II by selectively blocking the binding of angiotensin II to the angiotensin receptor in many tissues.
Angiotensin-converting enzyme inhibitors: (Major) In general, avoid combined use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) due to lack of benefit with concomitant use in most patients. Closely monitor blood pressure, renal function, and electrolytes in patients on ACE inhibitors and ARBs. Dual blockade of the renin-angiotensin system with ACE inhibitors and ARBs is associated with increased risks of hypotension, syncope, hyperkalemia, and changes in renal function, including acute renal failure, compared to monotherapy.
Anticholinergics: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Apomorphine: (Moderate) Use of angiotensin II receptor antagonists and apomorphine together can increase the hypotensive effects of apomorphine. Monitor blood pressure regularly during use of this combination. (Moderate) Use of thiazide diuretics and apomorphine together can increase the hypotensive effects of apomorphine. Monitor blood pressure regularly during use of this combination.
Apraclonidine: (Minor) Alpha blockers as a class may reduce heart rate and blood pressure. While no specific drug interactions have been identified with systemic agents and apraclonidine during clinical trials, it is theoretically possible that additive blood pressure reductions could occur when apraclonidine is combined with the use of antihypertensive agents. Patients using cardiovascular drugs concomitantly with apraclonidine should have their pulse and blood pressure monitored periodically.
Aprepitant, Fosaprepitant: (Moderate) Use caution if losartan and aprepitant, fosaprepitant are used concurrently, and monitor for an increase in losartan-related adverse effects for several days after administration of a multi-day aprepitant regimen. Losartan is a CYP3A4 substrate. Aprepitant, when administered as a 3-day oral regimen (125 mg/80 mg/80 mg), is a moderate CYP3A4 inhibitor and inducer and may increase plasma concentrations of losartan. For example, a 5-day oral aprepitant regimen increased the AUC of another CYP3A4 substrate, midazolam (single dose), by 2.3-fold on day 1 and by 3.3-fold on day 5. After a 3-day oral aprepitant regimen, the AUC of midazolam (given on days 1, 4, 8, and 15) increased by 25% on day 4, and then decreased by 19% and 4% on days 8 and 15, respectively. As a single 125 mg or 40 mg oral dose, the inhibitory effect of aprepitant on CYP3A4 is weak, with the AUC of midazolam increased by 1.5-fold and 1.2-fold, respectively. After administration, fosaprepitant is rapidly converted to aprepitant and shares many of the same drug interactions. However, as a single 150 mg intravenous dose, fosaprepitant only weakly inhibits CYP3A4 for a duration of 2 days; there is no evidence of CYP3A4 induction. Fosaprepitant 150 mg IV as a single dose increased the AUC of midazolam (given on days 1 and 4) by approximately 1.8-fold on day 1; there was no effect on day 4. Less than a 2-fold increase in the midazolam AUC is not considered clinically important. Aprepitant is also a CYP2C9 inducer and losartan is a CYP2C9 substrate. Administration of a CYP2C9 substrate, tolbutamide, on days 1, 4, 8, and 15 with a 3-day regimen of oral aprepitant (125 mg/80 mg/80 mg) decreased the tolbutamide AUC by 23% on day 4, 28% on day 8, and 15% on day 15. The AUC of tolbutamide was decreased by 8% on day 2, 16% on day 4, 15% on day 8, and 10% on day 15 when given prior to oral administration of aprepitant 40 mg on day 1, and on days 2, 4, 8, and 15. The effects of aprepitant on tolbutamide were not considered significant.
Arformoterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Aripiprazole: (Minor) Aripiprazole may enhance the hypotensive effects of antihypertensive agents.
Arsenic Trioxide: (Moderate) Concomitant use of thiazide diuretics and arsenic trioxide should be done cautiously. Electrolyte abnormalities, such as hypokalemia and hypomagnesemia, may increase the risk for QT prolongation and torsade de pointes.
Articaine; Epinephrine: (Moderate) Antihypertensives, including angiotensin II receptor antagonists, antagonize the vasopressor effects of parenteral epinephrine. (Moderate) Monitor blood pressure and heart rate during concomitant epinephrine and thiazide diuretic use. Thiazide diuretics may antagonize the pressor effects and potentiate the arrhythmogenic effects of epinephrine.
Asciminib: (Moderate) Closely monitor blood pressure during coadministration of losartan and asciminib at doses greater than or equal to 200 mg BID; adjust the dose of losartan as clinically appropriate. Concomitant use may decrease exposure to the active metabolite of losartan and decrease losartan efficacy. Losartan is a CYP2C9 substrate; asciminib at doses greater than or equal to 200 mg BID is a moderate CYP2C9 inhibitor. Coadministration with a moderate CYP2C9 inhibitor in two pharmacokinetic studies with healthy volunteers decreased concentrations of the active metabolite of losartan by 30% to 56%.
Asenapine: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Aspirin, ASA; Carisoprodol; Codeine: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Aspirin, ASA; Omeprazole: (Moderate) Monitor magnesium concentration before and periodically during concomitant omeprazole and thiazide diuretic use due to risk for hypomagnesemia.
Aspirin, ASA; Oxycodone: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Atazanavir: (Minor) Caution is warranted when atazanavir is administered with losartan as there is a potential for elevated losartan concentrations. Losartan is a substrate of CYP3A4; atazanavir is an inhibitor of CYP3A4.
Atazanavir; Cobicistat: (Minor) Caution is warranted when atazanavir is administered with losartan as there is a potential for elevated losartan concentrations. Losartan is a substrate of CYP3A4; atazanavir is an inhibitor of CYP3A4. (Minor) Caution is warranted when cobicistat is administered with losartan as there is a potential for increased losartan concentrations. Losartan is a substrate of CYP3A4; cobicistat is an inhibitor of CYP3A4.
Atracurium: (Moderate) Concomitant use of neuromuscular blockers and thiazide diuretics may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
Atropine: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Atropine; Difenoxin: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Baclofen: (Moderate) Baclofen has been associated with hypotension. Concurrent use with baclofen and antihypertensive agents may result in additive hypotension. Dosage adjustments of the antihypertensive medication may be required.
Barbiturates: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Belladonna; Opium: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with opium. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Benazepril: (Major) Discontinue the thiazide diuretic prior to starting benazepril, if possible, or start benazepril at the lower dose of 5 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure.
Benazepril; Hydrochlorothiazide, HCTZ: (Major) Discontinue the thiazide diuretic prior to starting benazepril, if possible, or start benazepril at the lower dose of 5 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure.
Benzhydrocodone; Acetaminophen: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with benzhydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde. (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Benzphetamine: (Minor) Amphetamines may counteract the activity of some antihypertensive agents, such as thiazide diuretics. Close monitoring of blood pressure is advised. Thiazide diuretics may also increase and prolong the actions of amphetamines by increasing the urinary pH. (Minor) Benzphetamine may increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, such as angiotensin II receptor antagonists. Close monitoring of blood pressure is advised.
Benztropine: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Beta-agonists: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Bortezomib: (Moderate) Patients on antihypertensive agents receiving bortezomib treatment may require close monitoring of their blood pressure and dosage adjustment of their medication. During clinical trials of bortezomib, hypotension was reported in roughly 12 percent of patients.
Brexpiprazole: (Moderate) Due to brexpiprazole's antagonism at alpha 1-adrenergic receptors, the drug may enhance the hypotensive effects of alpha-blockers and other antihypertensive agents.
Brompheniramine; Dextromethorphan; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Brompheniramine; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Brompheniramine; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure.
Brompheniramine; Pseudoephedrine; Dextromethorphan: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure.
Budesonide; Formoterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Budesonide; Glycopyrrolate; Formoterol: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms. (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Bupivacaine; Epinephrine: (Moderate) Antihypertensives, including angiotensin II receptor antagonists, antagonize the vasopressor effects of parenteral epinephrine. (Moderate) Monitor blood pressure and heart rate during concomitant epinephrine and thiazide diuretic use. Thiazide diuretics may antagonize the pressor effects and potentiate the arrhythmogenic effects of epinephrine.
Bupivacaine; Meloxicam: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Buprenorphine: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and buprenorphine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Buprenorphine; Naloxone: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and buprenorphine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Butalbital; Acetaminophen; Caffeine; Codeine: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Butalbital; Aspirin; Caffeine; Codeine: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Cabergoline: (Moderate) Cabergoline should be used cautiously with antihypertensive agents, including angiotensin II receptor antagonists. Cabergoline has been associated with hypotension. Initial doses of cabergoline higher than 1 mg may produce orthostatic hypotension. It may be advisable to monitor blood pressure. (Moderate) Cabergoline should be used cautiously with antihypertensive agents, including thiazide diuretics. Cabergoline has been associated with hypotension. Initial doses of cabergoline higher than 1 mg may produce orthostatic hypotension. It may be advisable to monitor blood pressure.
Calcium Phosphate, Supersaturated: (Moderate) Concomitant use of medicines with potential to alter renal perfusion or function such as angiotensin II receptor antagonists, may increase the risk of acute phosphate nephropathy in patients taking sodium phosphate monobasic monohydrate; sodium phosphate dibasic anhydrous. (Moderate) Concomitant use of medicines with potential to alter renal perfusion or function such as diuretics, may increase the risk of acute phosphate nephropathy in patients taking sodium phosphate monobasic monohydrate; sodium phosphate dibasic anhydrous.
Calcium: (Moderate) Monitor serum calcium concentration during concomitant calcium and thiazide diuretic use due to the risk for hypercalcemia. Thiazide diuretics may decrease urinary calcium excretion and cause intermittent and slight increases in serum calcium.
Calcium; Vitamin D: (Moderate) Dose adjustment of vitamin D or vitamin D analogs may be necessary during coadministration with thiazide diuretics. Additionally, serum calcium concentrations should be monitored frequently. Monitor more frequently in patients with a history of hypercalcemia. Hypercalcemia may be exacerbated by coadministration of vitamin D or vitamin D analogs and thiazide diuretics. Thiazide diuretics are known to induce hypercalcemia by reducing the excretion of calcium in the urine.
Canagliflozin: (Major) Assess and correct volume status before initiating canagliflozin in persons receiving concomitant thiazide diuretics. Monitor for signs and symptoms of volume depletion and loss of glycemic control after initiating therapy due to increased risk for volume depletion or hypotension and loss of blood glucose control. Persons receiving thiazide diuretics may be at increased risk for volume depletion or hypotension with concomitant canagliflozin therapy. Thiazide diuretics tend to produce hyperglycemia and may lead to loss of glycemic control.
Canagliflozin; Metformin: (Major) Assess and correct volume status before initiating canagliflozin in persons receiving concomitant thiazide diuretics. Monitor for signs and symptoms of volume depletion and loss of glycemic control after initiating therapy due to increased risk for volume depletion or hypotension and loss of blood glucose control. Persons receiving thiazide diuretics may be at increased risk for volume depletion or hypotension with concomitant canagliflozin therapy. Thiazide diuretics tend to produce hyperglycemia and may lead to loss of glycemic control. (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Captopril: (Major) Discontinue the thiazide diuretic prior to starting captopril, if possible, or start captopril at the lower dose of 6.25 or 12.5 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure.
Captopril; Hydrochlorothiazide, HCTZ: (Major) Discontinue the thiazide diuretic prior to starting captopril, if possible, or start captopril at the lower dose of 6.25 or 12.5 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure.
Carbamazepine: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant use of carbamazepine and thiazide diuretics due to additive risk of developing hyponatremia.
Carbidopa; Levodopa: (Moderate) Concomitant use of antihypertensive agents with levodopa can result in additive hypotensive effects. (Moderate) Monitor blood pressure during concomitant levodopa and thiazide diuretic use due to risk for additive hypotension; a thiazide diuretic dosage adjustment may be necessary. Symptomatic postural hypotension has occurred when carbidopa; levodopa was added in a person receiving antihypertensive drugs.
Carbidopa; Levodopa; Entacapone: (Moderate) Concomitant use of antihypertensive agents with levodopa can result in additive hypotensive effects. (Moderate) Monitor blood pressure during concomitant levodopa and thiazide diuretic use due to risk for additive hypotension; a thiazide diuretic dosage adjustment may be necessary. Symptomatic postural hypotension has occurred when carbidopa; levodopa was added in a person receiving antihypertensive drugs.
Cardiac glycosides: (Moderate) Monitor serum magnesium and potassium during concomitant cardiac glycoside and thiazide diuretic use. Potassium-depleting diuretics are a major contributing factor to digoxin toxicity.
Cariprazine: (Moderate) Orthostatic vital signs should be monitored in patients who are at risk for hypotension, such as those receiving cariprazine in combination with antihypertensive agents. Atypical antipsychotics may cause orthostatic hypotension and syncope, most commonly during treatment initiation and dosage increases. Patients should be informed about measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning, or rising slowly from a seated position. Consider a cariprazine dose reduction if hypotension occurs.
Celecoxib: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Celecoxib; Tramadol: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and tramadol; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Cetirizine; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure.
Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure.
Chlordiazepoxide; Clidinium: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Chloroprocaine: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents.
Chlorpheniramine; Codeine: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure.
Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Chlorpheniramine; Hydrocodone: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and hydrocodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Moderate) Monitor blood pressure as well as

for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure.
Chlorpheniramine; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Chlorpheniramine; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure.
Chlorpropamide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Cholestyramine: (Moderate) Cholestyramine, an ion exchange resin, binds hydrochlorothiazide and reduces its absorption from the gastrointestinal tract by up to 85% when co-administered as single doses. Although the manufacturer for Questran recommends that other medicines be taken at least 1 hour before or 4-6 hours after cholestyramine, it has been recommended that thiazides be administered at least 4 hours before or after cholestyramine to minimize the reduction in absorption. By administering hydrochlorothiazide at least 4 hours before cholestyramine, the decrease in absorption of hydrochlorothiazide is approximately 30-35%.
Cidofovir: (Contraindicated) The administration of cidofovir with another potentially nephrotoxic agent, such as diuretics, is contraindicated. Diuretics should be discontinued at least 7 days prior to beginning cidofovir.
Cisapride: (Major) Cisapride should be used with great caution in patients receiving thiazide diuretics. Drugs that are associated with depletion of electrolytes may cause cisapride-induced cardiac arrhythmias. Serum electrolytes and creatinine should be assessed prior to administration of cisapride and whenever conditions develop that may affect electrolyte imbalance or renal function.
Cisatracurium: (Moderate) Concomitant use of neuromuscular blockers and thiazide diuretics may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
Citalopram: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Clindamycin; Tretinoin: (Moderate) A manufacturer of topical tretinoin states that tretinoin, ATRA should be administered with caution in patients who are also taking drugs known to be photosensitizers, such as thiazide diuretics, as concomitant use may augment phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure of treated areas.
Clozapine: (Moderate) Caution is advisable during concurrent use of clozapine and thiazide diuretics as concurrent use may increase the risk and severity of hypotension. In addition, electrolyte imbalance caused by thiazide diuretics may increase the risk of QT prolongation by clozapine. (Moderate) Clozapine used concomitantly with the antihypertensive agents can increase the risk and severity of hypotension by potentiating the effect of the antihypertensive drug.
Cobicistat: (Minor) Caution is warranted when cobicistat is administered with losartan as there is a potential for increased losartan concentrations. Losartan is a substrate of CYP3A4; cobicistat is an inhibitor of CYP3A4.
Cocaine: (Major) Use of cocaine with antihypertensive agents may increase the antihypertensive effects of the antihypertensive medications or may potentiate cocaine-induced sympathetic stimulation.
Codeine: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Codeine; Guaifenesin: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Codeine; Guaifenesin; Pseudoephedrine: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure.
Codeine; Phenylephrine; Promethazine: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Codeine; Promethazine: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Co-Enzyme Q10, Ubiquinone: (Moderate) Co-enzyme Q10, ubiquinone (CoQ10) may lower blood pressure. CoQ10 use in combination with antihypertensive agents may lead to additional reductions in blood pressure in some individuals. Patients who choose to take CoQ10 concurrently with antihypertensive medications should receive periodic blood pressure monitoring. Patients should be advised to inform their prescriber of their use of CoQ10. (Moderate) Monitor blood pressure during concomitant co-enzyme Q10 (ubiquinone) and thiazide diuretic use. Concomitant use may result in additive hypotension.
Colestipol: (Moderate) Although to a lesser extent than cholestyramine, colestipol also has been shown to inhibit the GI absorption and therapeutic response of thiazide diuretics. Single doses of colestipol resins reduce the absorption of HCTZ by up to 43%. Administering thiazide diuretics at least 2 hours before colestipol has been suggested to minimize the interaction.
Corticosteroids: (Moderate) Monitor potassium concentrations during concomitant corticosteroid and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticosteroids and thiazide diuretics cause increased renal potassium loss.
Corticotropin, ACTH: (Minor) Monitor potassium concentrations during concomitant corticotropin and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticotropin and thiazide diuretics cause increased renal potassium loss.
Cosyntropin: (Moderate) Use cosyntropin cautiously in patients receiving diuretics. Cosyntropin may accentuate the electrolyte loss associated with diuretic therapy.
Cyclophosphamide: (Moderate) Closely monitor complete blood counts if coadministration of cyclophosphamide with thiazide diuretics is necessary as there is an increased risk of hematologic toxicity and immunosuppression.
Cyclosporine: (Moderate) Coadministration of cyclosporine and an angiotensin II receptor antagonist, like losartan, may increase the risk of hyperkalemia and reduced renal function. In response to cyclosporine-induced renal afferent vasoconstriction and glomerular hypoperfusion, angiotensin II is required to maintain an adequate glomerular filtration rate. Inhibition of angiotensin-converting enzyme (ACE) could reduce renal function acutely. Several cases of acute renal failure have been associated with the addition of enalapril to cyclosporine therapy in renal transplant patients. Also, cyclosporine can cause hyperkalemia, and inhibition of angiotensin II leads to reduced aldosterone concentrations, which can increase the serum potassium concentration. Closely monitor renal function and serum potassium concentrations in patients receiving cyclosporine concurrently with losartan.
Dabrafenib: (Moderate) The concomitant use of dabrafenib, a CYP29 inducer and losartan, a CYP2C9 substrate, may result in decreased levels of losartan; avoid concomitant use if possible. If another agent cannot be substituted and coadministration of these agents is unavoidable, monitor patients closely for loss of losartan efficacy.
Dapagliflozin: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Dapagliflozin; Metformin: (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Dapagliflozin; Saxagliptin: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Darunavir: (Minor) Caution is warranted when darunavir is administered with losartan as there is a potential for elevated losartan concentrations. Losartan is a substrate of CYP3A4; darunavir is an inhibitor of CYP3A4.
Darunavir; Cobicistat: (Minor) Caution is warranted when cobicistat is administered with losartan as there is a potential for increased losartan concentrations. Losartan is a substrate of CYP3A4; cobicistat is an inhibitor of CYP3A4. (Minor) Caution is warranted when darunavir is administered with losartan as there is a potential for elevated losartan concentrations. Losartan is a substrate of CYP3A4; darunavir is an inhibitor of CYP3A4.
Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Minor) Caution is warranted when cobicistat is administered with losartan as there is a potential for increased losartan concentrations. Losartan is a substrate of CYP3A4; cobicistat is an inhibitor of CYP3A4. (Minor) Caution is warranted when darunavir is administered with losartan as there is a potential for elevated losartan concentrations. Losartan is a substrate of CYP3A4; darunavir is an inhibitor of CYP3A4.
Delavirdine: (Minor) Inhibitors of the hepatic CYP2C9 isoenzyme, such as delavirdine, have potential to inhibit the conversion of losartan to its active metabolite E-3174. The importance of theoretical CYP2C9 interactions has not been established; monitor therapeutic response to individualize losartan dosage.
Desloratadine; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure.
Desmopressin: (Moderate) Monitor serum sodium more frequently during concomitant desmopressin and thiazide diuretic use due to increased risk of water intoxication with hyponatremia.
Desvenlafaxine: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and serotonin norepinephrine reuptake inhibitor (SNRI) use; consider discontinuing the SNRI if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Dexbrompheniramine; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure.
Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure.
Dexlansoprazole: (Moderate) Proton pump inhibitors have been associated with hypomagnesemia. Hypomagnesemia occurs with thiazide diuretics (chlorothiazide, hydrochlorothiazide, indapamide, and metolazone). Low serum magnesium may lead to serious adverse events such as muscle spasm, seizures, and arrhythmias. Therefore, clinicians should monitor serum magnesium concentrations periodically in patients taking a PPI and diuretics concomitantly. Patients who develop hypomagnesemia may require PPI discontinuation in addition to magnesium replacement.
Dextromethorphan; Diphenhydramine; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure.
Dextromethorphan; Quinidine: (Moderate) Quinidine can decrease blood pressure and should be used cautiously in patients receiving antihypertensive agents due to the potential for additive hypotension.
Diazoxide: (Moderate) Additive hypotensive effects can occur with the concomitant administration of diazoxide with other antihypertensive agents. This interaction can be therapeutically advantageous, but dosages must be adjusted accordingly. The manufacturer advises that IV diazoxide should not be administered to patients within 6 hours of receiving beta-blockers, hydralazine, methyldopa, minoxidil, nitrites, prazosin, reserpine, or other antihypertensive agents. (Moderate) Enhanced hyperglycemia is possible during concurrent use of diazoxide and thiazide diuretics. Additive hypotensive effects can also occur with the concomitant administration of diazoxide with thiazide diuretics.
Dichlorphenamide: (Moderate) Use dichlorphenamide and diuretics together with caution. Dichlorphenamide increases potassium excretion and can cause hypokalemia and should be used cautiously with other drugs that may cause hypokalemia including loop diuretics and thiazide diuretics. Measure potassium concentrations at baseline and periodically during dichlorphenamide treatment. If hypokalemia occurs or persists, consider reducing the dose or discontinuing dichlorphenamide therapy.
Diclofenac: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Diclofenac; Misoprostol: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Dicyclomine: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Diethylpropion: (Major) Diethylpropion has vasopressor effects and may limit the benefit of thiazide diuretics. Although leading drug interaction texts differ in the potential for an interaction between diethylpropion and this group of antihypertensive agents, these effects are likely to be clinically significant and have been described in hypertensive patients on these medications. (Moderate) Diethylpropion has vasopressor effects and may limit the benefit of angiotensin II receptor antagonists. Although leading drug interaction texts differ in the potential for an interaction between diethylpropion and this group of antihypertensive agents, these effects are likely to be clinically significant and have been described in hypertensive patients on these medications.
Diflunisal: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Digoxin: (Moderate) Monitor for signs and symptoms of digoxin toxicity during concomitant losartan use. A decline in GFR or tubular secretion, as from angiotensin receptor blockers, may impair the excretion of digoxin. (Moderate) Monitor serum magnesium and potassium during concomitant cardiac glycoside and thiazide diuretic use. Potassium-depleting diuretics are a major contributing factor to digoxin toxicity.
Diphenhydramine; Ibuprofen: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Diphenhydramine; Naproxen: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Diphenhydramine; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Diphenoxylate; Atropine: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Dobutamine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives such as metolazone when administered concomitantly.
Dofetilide: (Contraindicated) Hypokalemia or hypomagnesemia may occur with administration of potassium-depleting drugs such as loop diuretics and thiazide diuretics, increasing the potential for dofetilide-induced torsade de pointes. Additionally, in patients treated with either hydrochlorothiazide 50 mg or hydrochlorothiazide/triamterene 50 mg/100 mg daily in combination with dofetilide 500 mcg twice daily for 5 days, dofetilide AUC and Cmax concentrations increased by 27% and 21%, respectively, for the hydrochlorothiazide alone group and by 30% and 16%, respectively, for the hydrochlorothiazide/triamterene group. Furthermore, a 197% and 190% QTc increase over time was seen in the hydrochlorothiazide and hydrochlorothiazide/triamterene groups, respectively. Based on these findings, the manufacturer of dofetilide contraindicates the concomitant use of hydrochlorothiazide (alone or in combination with other drugs such as triamterene); these findings can be explained both by an increase in the plasma concentration of dofetilide and a reduction in the serum potassium concentration. In a population pharmacokinetic analysis of plasma dofetilide concentrations, the mean dofetilide clearance of dofetilide was 16% lower in patients on thiazide diuretics. It is prudent to avoid the use of any thiazide diuretic in combination with dofetilide.
Dolasetron: (Moderate) Caution is advisable during concurrent use of dolasetron and thiazide diuretics as electrolyte imbalance caused by diuretics may increase the risk of QT prolongation with dolasetron.
Donepezil; Memantine: (Minor) Memantine reduced the bioavailability of hydrochlorothiazide by roughly 20% in a drug interaction study. The clinical significance of this pharmacokinetic interaction, if any, is unknown.
Dopamine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives such as metolazone when administered concomitantly.
Dronedarone: (Moderate) Dronedarone is metabolized by and is an inhibitor of CYP3A. Losartan is a substrate for CYP3A4. The concomitant administration of dronedarone and CYP3A substrates may result in increased exposure of the substrate and should, therefore, be undertaken with caution.
Droperidol: (Moderate) Caution is advised when using droperidol in combination with thiazide diuretics which may lead to electrolyte abnormalities, especially hypokalemia or hypomagnesemia, as such abnormalities may increase the risk for QT prolongation or cardiac arrhythmias.
Drospirenone: (Moderate) Drospirenone has antimineralocorticoid effects and may increase serum potassium. The concurrent use of angiotensin II receptor antagonists (ARBs) may increase the risk of hyperkalemia, especially in the presence of renal impairment. Monitor serum potassium during the 1st month of drospirenone treatment if ARBs are used concurrently and thereafter as clinically indicated. Also monitor for any changes in blood pressure, fluid retention, or renal function.
Drospirenone; Estetrol: (Moderate) Drospirenone has antimineralocorticoid effects and may increase serum potassium. The concurrent use of angiotensin II receptor antagonists (ARBs) may increase the risk of hyperkalemia, especially in the presence of renal impairment. Monitor serum potassium during the 1st month of drospirenone treatment if ARBs are used concurrently and thereafter as clinically indicated. Also monitor for any changes in blood pressure, fluid retention, or renal function.
Drospirenone; Estradiol: (Moderate) Drospirenone has antimineralocorticoid effects and may increase serum potassium. The concurrent use of angiotensin II receptor antagonists (ARBs) may increase the risk of hyperkalemia, especially in the presence of renal impairment. Monitor serum potassium during the 1st month of drospirenone treatment if ARBs are used concurrently and thereafter as clinically indicated. Also monitor for any changes in blood pressure, fluid retention, or renal function.
Drospirenone; Ethinyl Estradiol: (Moderate) Drospirenone has antimineralocorticoid effects and may increase serum potassium. The concurrent use of angiotensin II receptor antagonists (ARBs) may increase the risk of hyperkalemia, especially in the presence of renal impairment. Monitor serum potassium during the 1st month of drospirenone treatment if ARBs are used concurrently and thereafter as clinically indicated. Also monitor for any changes in blood pressure, fluid retention, or renal function.
Drospirenone; Ethinyl Estradiol; Levomefolate: (Moderate) Drospirenone has antimineralocorticoid effects and may increase serum potassium. The concurrent use of angiotensin II receptor antagonists (ARBs) may increase the risk of hyperkalemia, especially in the presence of renal impairment. Monitor serum potassium during the 1st month of drospirenone treatment if ARBs are used concurrently and thereafter as clinically indicated. Also monitor for any changes in blood pressure, fluid retention, or renal function.
Dulaglutide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Duloxetine: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and serotonin norepinephrine reuptake inhibitor (SNRI) use; consider discontinuing the SNRI if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia. (Moderate) Orthostatic hypotension and syncope have been reported during duloxetine administration. The concurrent administration of antihypertensive agents and duloxetine may increase the risk of hypotension. Monitor blood pressure if the combination is necessary.
Efavirenz: (Minor) Efavirenz inhibits CYP2C9 and CYP2C19 and may inhibit the metabolism of drugs that are substrates for CYP2C9 or CYP2C19 including losartan.
Efavirenz; Emtricitabine; Tenofovir Disoproxil Fumarate: (Minor) Efavirenz inhibits CYP2C9 and CYP2C19 and may inhibit the metabolism of drugs that are substrates for CYP2C9 or CYP2C19 including losartan.
Efavirenz; Lamivudine; Tenofovir Disoproxil Fumarate: (Minor) Efavirenz inhibits CYP2C9 and CYP2C19 and may inhibit the metabolism of drugs that are substrates for CYP2C9 or CYP2C19 including losartan.
Elbasvir; Grazoprevir: (Minor) Administering losartan with grazoprevir may result in elevated losartan plasma concentrations. Losartan is a substrate of CYP3A; grazoprevir is a weak CYP3A inhibitor. If these drugs are used together, closely monitor for signs of adverse events.
Elexacaftor; tezacaftor; ivacaftor: (Moderate) Increased monitoring is recommended if ivacaftor is administered concurrently with CYP2C9 substrates, such as losartan. Ivacaftor is an inhibitor of CYP3A and a weak inhibitor of CYP2C9; losartan is metabolized by CYP3A and CYP2C9. Co-administration of ivacaftor with CYP3A and CYP2C9 substrates,such as losartan, can theoretically increase losartan exposure leading to increased or prolonged therapeutic effects and adverse events; however, the clinical impact of this has not yet been determined.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Alafenamide: (Moderate) Caution is warranted when elvitegravir is administered with losartan as there is a potential for decreased losartan concentrations. Losartan is a substrate of CYP2C9; elvitegravir is a CYP2C9 inducer. (Minor) Caution is warranted when cobicistat is administered with losartan as there is a potential for increased losartan concentrations. Losartan is a substrate of CYP3A4; cobicistat is an inhibitor of CYP3A4.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Moderate) Caution is warranted when elvitegravir is administered with losartan as there is a potential for decreased losartan concentrations. Losartan is a substrate of CYP2C9; elvitegravir is a CYP2C9 inducer. (Minor) Caution is warranted when cobicistat is administered with losartan as there is a potential for increased losartan concentrations. Losartan is a substrate of CYP3A4; cobicistat is an inhibitor of CYP3A4.
Empagliflozin: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Empagliflozin; Linagliptin: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Empagliflozin; Linagliptin; Metformin: (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Empagliflozin; Metformin: (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Enalapril, Enalaprilat: (Major) Discontinue the thiazide diuretic prior to starting enalapril, if possible, or start enalapril at the lower dose of 2.5 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure.
Enalapril; Hydrochlorothiazide, HCTZ: (Major) Discontinue the thiazide diuretic prior to starting enalapril, if possible, or start enalapril at the lower dose of 2.5 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure.
Ephedrine: (Major) The cardiovascular effects of sympathomimetics, such as ephedrine, may reduce the antihypertensive effects produced by thiazide diuretics. Blood pressure and heart rates should be monitored closely to confirm that the desired antihypertensive effect is achieved. (Moderate) The cardiovascular effects of sympathomimetics, such as ephedrine, may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Blood pressure and heart rates should be monitored closely to confirm that the desired antihypertensive effect is achieved.
Ephedrine; Guaifenesin: (Major) The cardiovascular effects of sympathomimetics, such as ephedrine, may reduce the antihypertensive effects produced by thiazide diuretics. Blood pressure and heart rates should be monitored closely to confirm that the desired antihypertensive effect is achieved. (Moderate) The cardiovascular effects of sympathomimetics, such as ephedrine, may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Blood pressure and heart rates should be monitored closely to confirm that the desired antihypertensive effect is achieved.
Epinephrine: (Moderate) Antihypertensives, including angiotensin II receptor antagonists, antagonize the vasopressor effects of parenteral epinephrine. (Moderate) Monitor blood pressure and heart rate during concomitant epinephrine and thiazide diuretic use. Thiazide diuretics may antagonize the pressor effects and potentiate the arrhythmogenic effects of epinephrine.
Eplerenone: (Major) Monitor serum potassium and serum creatinine concentrations within 3 to 7 days of initiating coadministration of eplerenone and angiotensin II receptor antagonists (ARBs). Hyperkalemia risk is increased when eplerenone is used with ARBs. Patients who develop hyperkalemia may continue eplerenone with proper dose adjustment; eplerenone dose reduction decreases potassium concentrations.
Epoprostenol: (Moderate) Angiotensin II receptor antagonists can enhance the hypotensive effects of antihypertensive agents if given concomitantly. This additive effect may be desirable, but dosages must be adjusted accordingly.
Ertugliflozin; Metformin: (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Ertugliflozin; Sitagliptin: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Erythromycin: (Minor) Losartan is metabolized to an active metabolite E-3174. The AUC of this active metabolite of oral losartan is not affected by erythromycin, a CYP3A4 inhibitor; however, the AUC of losartan is increased by 30%.
Escitalopram: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and escitalopram use; consider discontinuing escitalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Esomeprazole: (Moderate) Monitor magnesium concentration before and periodically during concomitant esomeprazole and thiazide diuretic use due to risk for hypomagnesemia.
Estradiol: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness. (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Ethanol: (Major) Advise patients to avoid alcohol while taking thiazide diuretics. Ingesting alcohol can increase the risk for orthostatic hypotension when taking a thiazide diuretic.
Etodolac: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Etomidate: (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Exenatide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Fenofibric Acid: (Minor) At therapeutic concentrations, fenofibric acid is a mild-to-moderate inhibitor of CYP2C9. Concomitant use of fenofibric acid with CYP2C9 substrates, such as losartan, has not been formally studied. Fenofibric acid may theoretically increase plasma concentrations of CYP2C9 substrates and could lead to toxicity for drugs that have a narrow therapeutic range. Monitor the therapeutic effect of losartan during coadministration with fenofibric acid.
Fenoprofen: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Fentanyl: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and fentanyl; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Fexofenadine; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure.
Finerenone: (Moderate) Monitor serum potassium concentrations closely if finerenone and angiotensin II receptor antagonists are used together. Concomitant use may increase the risk of hyperkalemia.
Fish Oil, Omega-3 Fatty Acids (Dietary Supplements): (Moderate) High doses of fish oil supplements may produce a blood pressure lowering effect. It is possible that additive reductions in blood pressure may be seen when fish oils are used in a patient already taking antihypertensive agents. (Moderate) Monitor blood pressure during concomitant fish oil and thiazide diuretic use. Concomitant use may result in additive hypotension; high doses of fish oil may produce a blood pressure lowering effect.
Flavoxate: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Fluconazole: (Moderate) Closely monitor blood pressure during coadministration of losartan and fluconazole; adjust the dose of losartan as clinically appropriate. Concomitant use may decrease exposure to the active metabolite of losartan and decrease losartan efficacy. Losartan is a CYP2C9 substrate; fluconazole is a moderate CYP2C9 inhibitor. Coadministration with fluconazole in two pharmacokinetic studies with healthy volunteers decreased concentrations of the active metabolite of losartan by 30% to 56%. (Moderate) Monitor for fluconazole-related adverse events during concomitant hydrochlorothiazide use. Hydrochlorothiazide may decrease the renal clearance of fluconazole. Coadministration of fluconazole 100 mg PO and hydrochlorothiazide 50 mg PO for 10 days in normal volunteers (n = 13) resulted in a significant increase in fluconazole AUC and Cmax compared to fluconazole given alone. There was a mean +/- SD increase in fluconazole AUC and Cmax of 45% +/- 31% and 43% +/- 31%, respectively. These changes are attributed to a mean +/- SD reduction in fluconazole renal clearance of 30% +/- 12%.
Fluocinolone; Hydroquinone; Tretinoin: (Moderate) A manufacturer of topical tretinoin states that tretinoin, ATRA should be administered with caution in patients who are also taking drugs known to be photosensitizers, such as thiazide diuretics, as concomitant use may augment phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure of treated areas.
Fluorouracil, 5-FU: (Moderate) Closely monitor blood pressure during coadministration of losartan and fluorouracil; adjust the dose of losartan as clinically appropriate. Concomitant use may decrease exposure to the active metabolite of losartan and decrease losartan efficacy. Losartan is a CYP2C9 substrate; fluorouracil is a moderate CYP2C9 inhibitor. Coadministration with a moderate CYP2C9 inhibitor in two pharmacokinetic studies with healthy volunteers decreased concentrations of the active metabolite of losartan by 30% to 56%.
Fluoxetine: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and fluoxetine use; consider discontinuing fluoxetine if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia. (Minor) Inhibitors of the hepatic CYP2C9 isoenzyme, such as fluoxetine, have potential to inhibit the conversion of losartan to its active metabolite. Monitor therapeutic response to individualize losartan dosage.
Flurbiprofen: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Fluticasone; Salmeterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Fluticasone; Umeclidinium; Vilanterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Fluticasone; Vilanterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Fluvoxamine: (Moderate) Inhibitors of the hepatic CYP2C9 isoenzyme, such as fluvoxamine, have the potential to inhibit the conversion of losartan, a prodrug, to its active metabolite. No specific management recommendations are currently available. Monitor therapeutic response to individualize losartan dosage to desired blood pressure or other therapeutic goals. (Moderate) Patients receiving a diuretic during treatment with fluvoxamine may be at greater risk of developing syndrome of inappropriate antidiuretic hormone secretion (SIADH). Hyponatremia due to SIADH has been reported during therapy with SSRIs. Cases involving serum sodium levels lower than 110 mmol/L have occurred. Hyponatremia may be potentiated by agents which can cause sodium depletion such as diuretics. Discontinuation of fluvoxamine should be considered in patients who develop symptomatic hyponatremia.
Formoterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Formoterol; Mometasone: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Fosinopril: (Major) Discontinue the thiazide diuretic prior to starting fosinopril, if possible, or start fosinopril at a lower dose to minimize hypotension. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure.
Fosinopril; Hydrochlorothiazide, HCTZ: (Major) Discontinue the thiazide diuretic prior to starting fosinopril, if possible, or start fosinopril at a lower dose to minimize hypotension. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure.
Fosphenytoin: (Minor) In a study of 16 healthy volunteers, phenytoin inhibited the CYP2C9-mediated conversion of losartan to its active metabolite. The clinical significance of this interaction is not known; however, a reduced clinical effect of losartan is possible via reduced formation of a metabolite which significantly contributes to the efficacy of losartan. A similar interaction might be expected with fosphenytoin.
General anesthetics: (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Glimepiride: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperg lycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Glipizide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Glipizide; Metformin: (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Glyburide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Glyburide; Metformin: (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Glycopyrrolate: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Glycopyrrolate; Formoterol: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms. (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Granisetron: (Moderate) According to the manufacturer, caution is warranted when administering granisetron to patients with preexisting electrolyte abnormalities. Patients taking certain diuretics may develop an electrolyte abnormality that may lead to cardiac dysrhythmias and/or QT prolongation. Hypokalemia or hypomagnesemia may occur with administration of potassium-depleting drugs such as loop diuretics and thiazide diuretics, increasing the potential for cardiac arrhythmias.
Grapefruit juice: (Major) Advise patients to avoid grapefruit and grapefruit juice during losartan treatment due to the risk for decreased exposure to the active metabolite of losartan and decreased losartan efficacy. Losartan is converted to a more active metabolite via CYP2C9 and grapefruit juice is a CYP2C9 inhibitor. Coadministration with a moderate CYP2C9 inhibitor in two pharmacokinetic studies with healthy volunteers decreased concentrations of the active metabolite of losartan by 30% to 56%.
Guaifenesin; Hydrocodone: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and hydrocodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Guaifenesin; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Guaifenesin; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure.
Halobetasol; Tazarotene: (Moderate) The manufacturer states that tazarotene should be administered with caution in patients who are also taking drugs known to be photosensitizers, such as thiazide diuretics, as concomitant use may augment phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure of treated areas.
Haloperidol: (Moderate) Caution is advisable during concurrent use of haloperidol and thiazide diuretics as electrolyte imbalance caused by diuretics may increase the risk of QT prolongation with haloperidol. Concomitant use may also cause additive hypotension. (Moderate) In general, antipsychotics like haloperidol should be used cautiously with antihypertensive agents due to the possibility of additive hypotension.
Homatropine; Hydrocodone: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and hydrocodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic. (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Hydralazine; Isosorbide Dinitrate, ISDN: (Moderate) Concomitant use of nitrates with other antihypertensive agents can cause additive hypotensive effects. Dosage adjustments may be necessary. (Moderate) Monitor blood pressure during concomitant thiazide diuretic and nitrate use due to risk for additive hypotension.
Hydrochlorothiazide, HCTZ; Moexipril: (Major) Discontinue the thiazide diuretic prior to starting moexipril, if possible, or start moexipril at the lower dose of 3.75 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure.
Hydrocodone: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and hydrocodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Hydrocodone; Ibuprofen: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and hydrocodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Hydrocodone; Pseudoephedrine: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and hydrocodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure.
Hydromorphone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Hyoscyamine: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate: (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde. (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Ibritumomab Tiuxetan: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Ibuprofen lysine: (Moderate) Ibuprofen lysine may reduce the effect of diuretics; diuretics can increase the risk of nephrotoxicity of NSAIDs in dehydrated patients. During coadministration of NSAIDs and diuretic therapy, patients should be monitored for changes in the effectiveness of their diuretic therapy and for signs and symptoms of renal impairment.
Ibuprofen: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Ibuprofen; Famotidine: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Ibuprofen; Oxycodone: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Ibuprofen; Pseudoephedrine: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure.
Icosapent ethyl: (Moderate) Thiazide diuretics may exacerbate hypertriglyceridemia and should be discontinued or changed to alternate therapy, if possible, prior to initiation of icosapent ethyl.
Idelalisib: (Major) Avoid concomitant use of idelalisib, a strong CYP3A inhibitor, with losartan, a CYP3A substrate, as losartan toxicities may be significantly increased. The AUC of a sensitive CYP3A substrate was increased 5.4-fold when coadministered with idelalisib.
Iloperidone: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Iloprost: (Moderate) Angiotensin II receptor antagonists can enhance the hypotensive effects of antihypertensive agents if given concomitantly. This additive effect may be desirable, but dosages must be adjusted accordingly.
Imatinib: (Minor) Imatinib, STI-571 is a potent inhibitor of the hepatic CYP2C9 isoenzyme and may inhibit the conversion of losartan to its more active metabolite E-3174. Monitor patients response to therapy closely if imatinib is added or discontinued in a patient receiving losartan.
Incretin Mimetics: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Indacaterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Indacaterol; Glycopyrrolate: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms. (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Indapamide: (Moderate) The effects of indapamide may be additive when administered with other antihypertensive agents or diuretics. In some patients, this may be desirable, but orthostatic hypotension may occur. Angiotensin II receptor antagonists tend to reverse the potassium loss, but not the serum uric acid rise associated with thiazide diuretic monotherapy.
Indomethacin: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Inotersen: (Moderate) Use caution with concomitant use of inotersen and diuretics due to the risk of glomerulonephritis and nephrotoxicity.
Insulin Degludec; Liraglutide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Insulin Glargine; Lixisenatide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Insulins: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Intravenous Lipid Emulsions: (Moderate) High doses of fish oil supplements may produce a blood pressure lowering effect. It is possible that additive reductions in blood pressure may be seen when fish oils are used in a patient already taking antihypertensive agents. (Moderate) Monitor blood pressure during concomitant fish oil and thiazide diuretic use. Concomitant use may result in additive hypotension; high doses of fish oil may produce a blood pressure lowering effect.
Ipratropium; Albuterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Isavuconazonium: (Moderate) Concomitant use of isavuconazonium with losartan may result in increased serum concentrations of losartan. Losartan is a substrate of the hepatic isoenzyme CYP3A4; isavuconazole, the active moiety of isavuconazonium, is a moderate inhibitor of this enzyme. Caution and close monitoring are advised if these drugs are used together.
Isocarboxazid: (Moderate) Additive hypotensive effects may be seen when isocarboxazid is combined with angiotensin II receptor antagonists. Careful monitoring of blood pressure is suggested during concurrent therapy of isocarboxazid with angiotensin II receptor antagonists. Patients should be instructed to rise slowly from a sitting position, and to report syncope or changes in blood pressure or heart rate to their health care provider during concurrent use of isocarboxazid and an angiotensin II receptor antagonist. (Moderate) Additive hypotensive effects may be seen when monoamine oxidase inhibitors (MAOIs) are combined with antihypertensives. Careful monitoring of blood pressure is suggested during concurrent therapy of MAOIs with diuretics. Patients should be instructed to rise slowly from a sitting position, and to report syncope or changes in blood pressure or heart rate to their health care provider.
Isoflurane: (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Isoniazid, INH; Pyrazinamide, PZA; Rifampin: (Moderate) Rifampin significantly induces the metabolism of losartan and its more potent metabolite, E-3174, resulting in a decrease in the AUC and half-life of both compounds; monitor for potential loss of losartan activity.
Isoniazid, INH; Rifampin: (Moderate) Rifampin significantly induces the metabolism of losartan and its more potent metabolite, E-3174, resulting in a decrease in the AUC and half-life of both compounds; monitor for potential loss of losartan activity.
Isoproterenol: (Moderate) The pharmacologic effects of isoproterenol may cause an increase in blood pressure. If isoproterenol is used concomitantly with antihypertensives, the blood pressure should be monitored as the administration of isoproterenol can compromise the effectiveness of antihypertensive agents.
Isosorbide Dinitrate, ISDN: (Moderate) Concomitant use of nitrates with other antihypertensive agents can cause additive hypotensive effects. Dosage adjustments may be necessary. (Moderate) Monitor blood pressure during concomitant thiazide diuretic and nitrate use due to risk for additive hypotension.
Isosorbide Mononitrate: (Moderate) Concomitant use of nitrates with other antihypertensive agents can cause additive hypotensive effects. Dosage adjustments may be necessary. (Moderate) Monitor blood pressure during concomitant thiazide diuretic and nitrate use due to risk for additive hypotension.
Ivacaftor: (Moderate) Increased monitoring is recommended if ivacaftor is administered concurrently with CYP2C9 substrates, such as losartan. Ivacaftor is an inhibitor of CYP3A and a weak inhibitor of CYP2C9; losartan is metabolized by CYP3A and CYP2C9. Co-administration of ivacaftor with CYP3A and CYP2C9 substrates,such as losartan, can theoretically increase losartan exposure leading to increased or prolonged therapeutic effects and adverse events; however, the clinical impact of this has not yet been determined.
Ketamine: (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Ketoprofen: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Ketorolac: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Lansoprazole: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Lansoprazole; Amoxicillin; Clarithromycin: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Lesinurad; Allopurinol: (Moderate) Monitor renal function and for signs and symptoms of hypersensitivity and skin rash during concomitant use of allopurinol and thiazide diuretics; reduce the allopurinol dose in persons with renal impairment and concomitant thiazide diuretic use. Concomitant use may increase the risk of severe skin rash and renal impairment may further increase the risk. Discontinue allopurinol at the first appearance of skin rash or other signs which may indicate a hypersensitivity when using these drugs concomitantly.
Levalbuterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Levodopa: (Moderate) Concomitant use of antihypertensive agents with levodopa can result in additive hypotensive effects. (Moderate) Monitor blood pressure during concomitant levodopa and thiazide diuretic use due to risk for additive hypotension; a thiazide diuretic dosage adjustment may be necessary. Symptomatic postural hypotension has occurred when carbidopa; levodopa was added in a person receiving antihypertensive drugs.
Levomilnacipran: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and serotonin norepinephrine reuptake inhibitor (SNRI) use; consider discontinuing the SNRI if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Levorphanol: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with levorphanol. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Lidocaine; Epinephrine: (Moderate) Antihypertensives, including angiotensin II receptor antagonists, antagonize the vasopressor effects of parenteral epinephrine. (Moderate) Monitor blood pressure and heart rate during concomitant epinephrine and thiazide diuretic use. Thiazide diuretics may antagonize the pressor effects and potentiate the arrhythmogenic effects of epinephrine.
Linagliptin: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Linagliptin; Metformin: (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Liraglutide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Lisdexamfetamine: (Minor) Amphetamines may counteract the activity of some antihypertensive agents, such as thiazide diuretics. Close monitoring of blood pressure is advised. Thiazide diuretics may also increase and prolong the actions of amphetamines by increasing the urinary pH. (Minor) Lisdexamfetamine may increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, such as angiotensin II receptor antagonists. Close monitoring of blood pressure is advised.
Lisinopril: (Major) Discontinue the thiazide diuretic prior to starting lisinopril, if possible, or start lisinopril at the lower dose of 5 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure.
Lisinopril; Hydrochlorothiazide, HCTZ: (Major) Discontinue the thiazide diuretic prior to starting lisinopril, if possible, or start lisinopril at the lower dose of 5 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure.
Lithium: (Moderate) Monitor lithium concentrations during concomitant use with thiazide diuretics; consider lower lithium starting doses and titrating slowly while frequently monitoring lithium concentrations and for signs of lithium toxicity. Thiazide diuretics reduce the renal clearance of lithium and increase the risk for lithium toxicity. (Moderate) Monitor serum lithium concentrations during concomitant angiotensin II receptor blocker use; reduce the lithium dose based on serum lithium concentration and clinical response. Concomitant use may increase steady-state lithium concentrations.
Lixisenatide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Loop diuretics: (Moderate) Coadministration of furosemide and Angiotensin-converting enzyme inhibitors (ACE inhibitors) or angiotensin II receptor antagonists may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative. (Moderate) Monitor blood pressure, renal function, and serum electrolytes during concomitant loop diuretic and thiazide diuretic use; dosage adjustments may be necessary. Concomitant use may result in additive hypotension and fluid and/or electrolyte loss.
Lopinavir; Ritonavir: (Moderate) Concurrent administration of losartan with ritonavir may result in elevated losartan plasma concentrations. Losartan is metabolized by the hepatic isoenzyme CYP3A4; ritonavir is an inhibitor of this enzyme. Caution and close monitoring are advised if these drugs are administered together.
Loratadine; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure.
Lumacaftor; Ivacaftor: (Moderate) Concomitant use of losartan and lumacaftor; ivacaftor may alter the therapeutic effects of losartan; caution and close monitoring of blood pressure are advised if these drugs are used together. Losartan is primarily metabolized by CYP2C9 and is also a substrate of CYP3A4. Lumacaftor is a strong CYP3A inducer; in vitro data suggest that lumacaftor; ivacaftor may induce and/or inhibit CYP2C9. Although induction of losartan through the CYP3A pathway may lead to decreased drug efficacy, the net effect of lumacaftor; ivacaftor on CYP2C9-mediated metabolism is not clear. Monitor the patient for decreased losartan efficacy or increased or prolonged therapeutic effects and adverse events.
Lumacaftor; Ivacaftor: (Moderate) Increased monitoring is recommended if ivacaftor is administered concurrently with CYP2C9 substrates, such as losartan. Ivacaftor is an inhibitor of CYP3A and a weak inhibitor of CYP2C9; losartan is metabolized by CYP3A and CYP2C9. Co-administration of ivacaftor with CYP3A and CYP2C9 substrates,such as losartan, can theoretically increase losartan exposure leading to increased or prolonged therapeutic effects and adverse events; however, the clinical impact of this has not yet been determined.
Lurasidone: (Moderate) Due to the antagonism of lurasidone at alpha-1 adrenergic receptors, the drug may enhance the hypotensive effects of alpha-blockers and other antihypertensive agents. If concurrent use of lurasidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Magnesium Sulfate; Potassium Sulfate; Sodium Sulfate: (Moderate) Use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as angiotensin II receptor antagonists. (Moderate) Use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as diuretics.
Mannitol: (Major) Avoid use of other diuretics with mannitol, if possible. Concomitant administration may potentiate the renal toxicity of mannitol.
Meclofenamate Sodium: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Mefenamic Acid: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Meglitinides: (Moderate) Angiotensin II receptor antagonists (ARB) may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving an ARB in combination with antidiabetic agents should be monitored for changes in glycemic control. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Meloxicam: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Memantine: (Minor) Memantine reduced the bioavailability of hydrochlorothiazide by roughly 20% in a drug interaction study. The clinical significance of this pharmacokinetic interaction, if any, is unknown.
Meperidine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with meperidine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Metaproterenol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Metformin: (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Metformin; Repaglinide: (Moderate) Angiotensin II receptor antagonists (ARB) may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving an ARB in combination with antidiabetic agents should be monitored for changes in glycemic control. (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Metformin; Rosiglitazone: (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Metformin; Saxagliptin: (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Metformin; Sitagliptin: (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Methadone: (Moderate) Diuretics can cause electrolyte disturbances such as hypomagnesemia and hypokalemia, which may prolong the QT interval. As methadone may also prolong the QT interval, cautious coadministration with diuretics is needed. In addition, opiate agonists may potentiate orthostatic hypotension when used concurrently with diuretics.
Methamphetamine: (Minor) Amphetamines may counteract the activity of some antihypertensive agents, such as thiazide diuretics. Close monitoring of blood pressure is advised. Thiazide diuretics may also increase and prolong the actions of amphetamines by increasing the urinary pH. (Minor) Methamphetamine may increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, such as angiotensin II receptor antagonists. Close monitoring of blood pressure is advised.
Methazolamide: (Moderate) Thiazide diuretics may increase the risk of hypokalemia if used concurrently with methazolamide. Monitor serum potassium levels to determine the need for potassium supplementation and/or alteration in drug therapy. There may also be an additive diuretic or hyperuricemic effect.
Methenamine: (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Methenamine; Sodium Acid Phosphate: (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Methenamine; Sodium Acid Phosphate; Methylene Blue; Hyoscyamine: (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde. (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Methenamine; Sodium Salicylate: (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Methohexital: (Moderate) Concurrent use of methohexital and antihypertensive agents increases the risk of developing hypotension.
Methotrexate: (Moderate) Monitor for increased methotrexate-related adverse reactions during concomitant thiazide diuretic use. Thiazide diuretics may decrease renal excretion of cytotoxic agents and enhance their myelosuppressive effects.
Methoxsalen: (Moderate) Concomitant administration of methoxsalen and other photosensitizing agents, such as thiazide diuretics, can increase the incidence or severity of photsensitization from either compound.
Methscopolamine: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Methylphenidate Derivatives: (Moderate) Monitor blood pressure and adjust the dose of the angiotensin II blockers as needed during coadministration with methylphenidate. Methylphenidate may decrease the effectiveness of drugs used to treat hypertension. (Moderate) Monitor blood pressure during concomitant thiazide diuretic and methylphenidate use; a thiazide diuretic dose adjustment may be necessary. Methylphenidate may decrease the effectiveness of medications used to treat hypertension.
Metoclopramide: (Minor) Coadministration of thiazides and prokinetic agents may result in decreased bioavailability of the thiazide diuretic.
Midodrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Mifepristone: (Moderate) Closely monitor blood pressure during coadministration of losartan and mifepristone; adjust the dose of losartan as clinically appropriate. Concomitant use may decrease exposure to the active metabolite of losartan and decrease losartan efficacy. Losartan is a CYP2C9 substrate; mifepristone is a moderate CYP2C9 inhibitor. Coadministration with a moderate CYP2C9 inhibitor in two pharmacokinetic studies with healthy volunteers decreased concentrations of the active metabolite of losartan by 30% to 56%.
Miglitol: (Moderate) Angiotensin II receptor antagonists (ARBs) may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving an ARB in combination with antidiabetic agents should be monitored for changes in glycemic control. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Howe ver, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Milnacipran: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and serotonin norepinephrine reuptake inhibitor (SNRI) use; consider discontinuing the SNRI if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Milrinone: (Moderate) Concurrent administration of antihypertensive agents could lead to additive hypotension when administered with milrinone. Titrate milrinone dosage according to hemodynamic response.
Mirtazapine: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and mirtazapine use; consider discontinuing mirtazapine if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Mitotane: (Major) Use caution if mitotane and losartan are used concomitantly, and monitor for decreased efficacy of losartan and a possible change in dosage requirements. Mitotane is a strong CYP3A4 inducer and losartan is a CYP3A4 substrate; coadministration may result in decreased plasma concentrations of losartan. Another strong CYP3A inducer, rifampin, decreased the AUC and half-life of losartan by 35% and 50%, respectively. In addition, rifampin decreased the AUC and half-life for the active metabolite of losartan, E-3174, by 40% and 50%, respectively.
Mivacurium: (Moderate) Concomitant use of neuromuscular blockers and thiazide diuretics may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
Moexipril: (Major) Discontinue the thiazide diuretic prior to starting moexipril, if possible, or start moexipril at the lower dose of 3.75 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure.
Morphine: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and morphine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Morphine; Naltrexone: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and morphine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Nabumetone: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Naproxen: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Naproxen; Esomeprazole: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor magnesium concentration before and periodically during concomitant esomeprazole and thiazide diuretic use due to risk for hypomagnesemia.
Naproxen; Pseudoephedrine: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure.
Nateglinide: (Moderate) Angiotensin II receptor antagonists (ARB) may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving an ARB in combination with antidiabetic agents should be monitored for changes in glycemic control. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Nefazodone: (Minor) Although relatively infrequent, nefazodone may cause orthostatic hypotension in some patients; this effect may be additive with antihypertensive agents. Blood pressure monitoring and dosage adjustments of either drug may be necessary. (Minor) Although relatively infrequent, nefazodone may cause orthostatic hypotension in some patients; this effect may be additive with antihypertensive agents. Blood pressure monitoring is recommended. Dependent upon clinical response, dosage adjustments of either drug may be necessary.
Neostigmine; Glycopyrrolate: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Nesiritide, BNP: (Major) The potential for hypotension may be increased when coadministering nesiritide with antihypertensive agents. (Moderate) The potential for hypotension may be increased when coadministering nesiritide with antihypertensive agents.
Neuromuscular blockers: (Moderate) Concomitant use of neuromuscular blockers and thiazide diuretics may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
Niacin, Niacinamide: (Moderate) Cutaneous vasodilation induced by niacin may become problematic if high-dose niacin is used concomitantly with other antihypertensive agents. This effect is of particular concern in the setting of acute myocardial infarction, unstable angina, or other acute hemodynamic compromise.
Niacin; Simvastatin: (Moderate) Cutaneous vasodilation induced by niacin may become problematic if high-dose niacin is used concomitantly with other antihypertensive agents. This effect is of particular concern in the setting of acute myocardial infarction, unstable angina, or other acute hemodynamic compromise.
Nirmatrelvir; Ritonavir: (Moderate) Concurrent administration of losartan with ritonavir may result in elevated losartan plasma concentrations. Losartan is metabolized by the hepatic isoenzyme CYP3A4; ritonavir is an inhibitor of this enzyme. Caution and close monitoring are advised if these drugs are administered together.
Nitrates: (Moderate) Concomitant use of nitrates with other antihypertensive agents can cause additive hypotensive effects. Dosage adjustments may be necessary. (Moderate) Monitor blood pressure during concomitant thiazide diuretic and nitrate use due to risk for additive hypotension.
Nitroglycerin: (Moderate) Concomitant use of nitrates with other antihypertensive agents can cause additive hypotensive effects. Dosage adjustments may be necessary. (Moderate) Monitor blood pressure during concomitant thiazide diuretic and nitrate use due to risk for additive hypotension.
Nitroprusside: (Moderate) Additive hypotensive effects may occur when nitroprusside is used concomitantly with other antihypertensive agents. Dosages should be adjusted carefully, according to blood pressure. (Moderate) Additive hypotensive effects may occur when nitroprusside is used concomitantly with other antihypertensive agents. Dosages should be adjusted carefully, according to blood pressure.
Non-Ionic Contrast Media: (Major) Do not use diuretics before non-ionic contrast media administration. Concomitant use of diuretics and non-ionic contrast media may increase the risk for acute kidney injury, including renal failure.
Nonsteroidal antiinflammatory drugs: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin II blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of angiotensin II blockers may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of angiotensin II blockers and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Norepinephrine: (Moderate) Thiazide diuretics can cause decreased arterial responsiveness to norepinephrine, but the effect is not sufficient to preclude their coadministration.
Octreotide: (Moderate) Patients receiving diuretics or other agents to control fluid and electrolyte balance may require dosage adjustments while receiving octreotide due to additive effects.
Olanzapine: (Moderate) Olanzapine may induce orthostatic hypotension and thus enhance the effects of antihypertensive agents.
Olanzapine; Fluoxetine: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and fluoxetine use; consider discontinuing fluoxetine if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia. (Moderate) Olanzapine may induce orthostatic hypotension and thus enhance the effects of antihypertensive agents. (Minor) Inhibitors of the hepatic CYP2C9 isoenzyme, such as fluoxetine, have potential to inhibit the conversion of losartan to its active metabolite. Monitor therapeutic response to individualize losartan dosage.
Olanzapine; Samidorphan: (Moderate) Olanzapine may induce orthostatic hypotension and thus enhance the effects of antihypertensive agents.
Oliceridine: (Moderate) Monitor patients for signs of diminished diuresis and/or effects on blood pressure if diuretics are used concomitantly with oliceridine; increase the dosage of the diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone.
Olodaterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Omeprazole: (Moderate) Monitor magnesium concentration before and periodically during concomitant omeprazole and thiazide diuretic use due to risk for hypomagnesemia.
Omeprazole; Amoxicillin; Rifabutin: (Moderate) Monitor magnesium concentration before and periodically during concomitant omeprazole and thiazide diuretic use due to risk for hypomagnesemia.
Omeprazole; Sodium Bicarbonate: (Moderate) Monitor magnesium concentration before and periodically during concomitant omeprazole and thiazide diuretic use due to risk for hypomagnesemia.
Oxaprozin: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Oxybutynin: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Oxycodone: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Oxymetazoline: (Major) The vasoconstricting actions of oxymetazoline, an alpha adrenergic agonist, may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. If these drugs are used together, closely monitor for changes in blood pressure. (Major) The vasoconstricting actions of oxymetazoline, an alpha adrenergic agonist, may reduce the antihypertensive effects produced by diuretics. If these drugs are used together, closely monitor for changes in blood pressure.
Oxymorphone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with oxymorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Paliperidone: (Moderate) Paliperidone may cause orthostatic hypotension, thereby enhancing the hypotensive effects of antihypertensive agents. Orthostatic vital signs should be monitored in patients receiving paliperidone and angiotensin II receptor antagonists who are susceptible to hypotension. (Moderate) Paliperidone may cause orthostatic hypotension, thereby enhancing the hypotensive effects of antihypertensive agents. Orthostatic vital signs should be monitored in patients receiving paliperidone and thiazide diuretics who are susceptible to hypotension.
Pancuronium: (Moderate) Concomitant use of neuromuscular blockers and thiazide diuretics may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
Pantoprazole: (Moderate) Monitor magnesium concentration before and periodically during concomitant pantoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Paroxetine: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and paroxetine use; consider discontinuing paroxetine if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Pasireotide: (Moderate) Cautious use of pasireotide and thiazide diuretics is advised as electrolyte imbalance caused by diuretics may increase the risk of QT prolongation with pasireotide. Assess the patient's potassium and magnesium concentration before and periodically during pasireotide receipt. Correct hypokalemia and hypomagnesemia before pasireotide receipt.
Pazopanib: (Moderate) Pazopanib is a weak inhibitor of CYP3A4. Coadministration of pazopanib and losartan, a CYP3A4 substrate, may cause an increase in systemic concentrations of losartan. Use caution when administering these drugs concomitantly.
Pentamidine: (Moderate) Drugs that are associated with hypokalemia and/or hypomagnesemia such as thiazide diuretics should be used with caution in patients also receiving pentamidine. Since pentamidine may cause QT prolongation independently of electrolyte imbalances, the risk for cardiac arrhythmias is potentiated by the concomitant use of agents associated with electrolyte loss. Closely monitor serum electrolytes during pentamidine therapy.
Pentazocine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with pentazocine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Pentazocine; Naloxone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with pentazocine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Pentoxifylline: (Moderate) Pentoxifylline has been used concurrently with antihypertensive drugs (beta blockers, diuretics) without observed problems. Small decreases in blood pressure have been observed in some patients treated with pentoxifylline; periodic systemic blood pressure monitoring is recommended for patients receiving concomitant antihypertensives. If indicated, dosage of the antihypertensive agents should be reduced.
Perindopril: (Major) Discontinue the thiazide diuretic prior to starting perindopril, if possible, or start perindopril at a lower dose to minimize hypotension. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure.
Perindopril; Amlodipine: (Major) Discontinue the thiazide diuretic prior to starting perindopril, if possible, or start perindopril at a lower dose to minimize hypotension. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure.
Phendimetrazine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Phenelzine: (Moderate) Additive hypotensive effects may be seen when phenelzine is combined with angiotensin II receptor antagonists. Careful monitoring of blood pressure is suggested during concurrent therapy of phenelzine with angiotensin II receptor antagonists. Patients should be instructed to rise slowly from a sitting position, and to report syncope or changes in blood pressure or heart rate to their health care provider during concurrent use of phenelzine and angiotensin II receptor antagonists. (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenelzine use due to risk for additive hypotension.
Phenobarbital: (Moderate) Phenobarbital causes a reduction of approximately 20 percent in the AUC of losartan and its metabolite. The clinical significance of this interaction is unknown.
Phenobarbital; Hyoscyamine; Atropine; Scopolamine: (Moderate) Phenobarbital causes a reduction of approximately 20 percent in the AUC of losartan and its metabolite. The clinical significance of this interaction is unknown. (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Phenothiazines: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Phentermine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Phentermine; Topiramate: (Moderate) Monitor serum potassium concentrations and for increased topiramate-related adverse effects during concomitant hydrochlorothiazide use. Concomitant use has been shown to increase topiramate exposure by 29% and may potentiate the potassium-wasting action of hydrochlorothiazide. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Phenytoin: (Minor) Phenytoin may inhibit the CYP2C9-mediated conversion of losartan to its active metabolite. A reduced clinical effect of losartan is possible via reduced formation of a metabolite which significantly contributes to the efficacy of losartan.
Photosensitizing agents (topical): (Moderate) Thiazide diuretics may cause photosensitivity and may increase the photosensitization effects of photosensitizing agents used in photodynamic therapy. Prevention of photosensitivity includes adequate protection from sources of UV radiation (e.g., avoiding sun exposure and tanning booths) and the use of protective clothing and sunscreens on exposed skin.
Pimozide: (Moderate) Caution is advisable during concurrent use of pimozide and thiazide diuretics as electrolyte imbalance caused by diuretics may increase the risk of QT prolongation with pimozide. Potassium deficiencies should be corrected prior to treatment with pimozide and normalized potassium levels should be maintained during treatment.
Pioglitazone: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Pioglitazone; Glimepiride: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Pioglitazone; Metformin: (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) Monitor blood glucose during concomitant metformin and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Piroxicam: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Polycarbophil: (Moderate) Coadministration may lead to hypercalcemia because thiazides cause a decrease in renal tubular excretion of calcium as well as increase in distal tubular reabsorption. Each 625 mg of calcium polycarbophil contains a substantial amount of calcium (approximately 125 mg). Moderate increases in serum calcium have been seen during the treatment with thiazides; if calcium polycarbophil is used concomitantly, monitoring of serum calcium may be prudent.
Polyethylene Glycol; Electrolytes: (Moderate) Use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as angiotensin II receptor antagonists. (Moderate) Use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as diuretics.
Polyethylene Glycol; Electrolytes; Ascorbic Acid: (Moderate) Use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as angiotensin II receptor antagonists. (Moderate) Use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as diuretics.
Porfimer: (Major) Avoid coadministration of porfimer with thiazide diuretics due to the risk of increased photosensitivity. Porfimer is a light-activated drug used in photodynamic therapy; all patients treated with porfimer will be photosensitive. Concomitant use of other photosensitizing agents like thiazide diuretics may increase the risk of a photosensitivity reaction.
Potassium Phosphate: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Potassium Phosphate; Sodium Phosphate: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Potassium: (Moderate) Monitor serum potassium concentrations closely if potassium supplements and angiotensin II receptor antagonists are used together. Concomitant use may increase the risk of hyperkalemia.
Pramlintide: (Moderate) Angiotensin II receptor antagonists (ARBs) may enhance the hypoglycemic effects of pramlintide by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving an ARB in combination with pramlintide should be monitored for changes in glycemic control. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Prazosin: (Moderate) Monitor blood pressure during concomitant use of prazosin and angiotensin II receptor blockers (ARBs). Concomitant use may produce additive hypotension and increase the risk for syncope. The risk for significant hypotension and syncope is greatest when adding an antihypertensive to a regimen that includes high dose prazosin and following a rapid dosage increase. To minimize the risk for adverse effects, consider reducing the prazosin dose to 1 to 2 mg three times a day during initiation of a new antihypertensive and then retitrating prazosin based on clinical response. (Moderate) Prazosin is well-known to produce a 'first-dose' phenomenon. Some patients develop significant hypotension shortly after administration of the first dose. The first dose response (acute postural hypotension) of prazosin may be exaggerated in patients who are receiving beta-adrenergic blockers, diuretics, or other antihypertensive agents. Concomitant administration of prazosin with other antihypertensive agents is not prohibited, however. This can be therapeutically advantageous, but lower dosages of each agent should be used.
Prilocaine; Epinephrine: (Moderate) Antihypertensives, including angiotensin II receptor antagonists, antagonize the vasopressor effects of parenteral epinephrine. (Moderate) Monitor blood pressure and heart rate during concomitant epinephrine and thiazide diuretic use. Thiazide diuretics may antagonize the pressor effects and potentiate the arrhythmogenic effects of epinephrine.
Probenecid: (Moderate) Thiazide diuretics can cause hyperuricemia. Although this effect represents a pharmacodynamic interaction and not a pharmacokinetic one, dosage adjustments of probenecid may be necessary if these agents are administered concurrently to patients being treated with probenecid.
Probenecid; Colchicine: (Moderate) Thiazide diuretics can cause hyperuricemia. Although this effect represents a pharmacodynamic interaction and not a pharmacokinetic one, dosage adjustments of probenecid may be necessary if these agents are administered concurrently to patients being treated with probenecid.
Procainamide: (Moderate) Procainamide can decrease blood pressure and should be used cautiously in patients receiving antihypertensive agents. Intravenous administration of procainamide is more likely to cause hypotensive effects. (Moderate) Procainamide can decrease blood pressure and should be used cautiously in patients receiving antihypertensive agents. Intravenous administration of procainamide is more likely to cause hypotensive effects.
Promethazine; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Propantheline: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Propofol: (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure.
Pseudoephedrine; Triprolidine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure.
Quinapril: (Major) Discontinue the thiazide diuretic prior to starting quinapril, if possible, or start quinapril at the lower dose of 5 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure.
Quinapril; Hydrochlorothiazide, HCTZ: (Major) Discontinue the thiazide diuretic prior to starting quinapril, if possible, or start quinapril at the lower dose of 5 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure.
Quinidine: (Moderate) Quinidine can decrease blood pressure and should be used cautiously in patients receiving antihypertensive agents due to the potential for additive hypotension.
Rabeprazole: (Moderate) Proton pump inhibitors have been associated with hypomagnesemia. Hypomagnesemia occurs with thiazide diuretics (chlorothiazide, hydrochlorothiazide, indapamide, and metolazone). Low serum magnesium may lead to serious adverse events such as muscle spasm, seizures, and arrhythmias. Therefore, clinicians should monitor serum magnesium concentrations periodically in patients taking a PPI and diuretics concomitantly. Patients who develop hypomagnesemia may require PPI discontinuation in addition to magnesium replacement.
Ramipril: (Major) Discontinue the thiazide diuretic prior to starting ramipril, if possible, or start ramipril at a lower dose to minimize hypotension. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure.
Rasagiline: (Moderate) Additive hypotensive effects may be seen when monoamine oxidase inhibitors (MAOIs) are combined with antihypertensives. Careful monitoring of blood pressure is suggested during concurrent therapy of MAOIs with diuretics. Patients should be instructed to rise slowly from a sitting position, and to report syncope or changes in blood pressure or heart rate to their health care provider. (Moderate) Additive hypotensive effects may be seen when rasagiline is combined with angiotensin II receptor antagonists. Careful monitoring of blood pressure is suggested during coadministration. Patients should be instructed to rise slowly from a sitting position, and to report syncope or changes in blood pressure or heart rate to their health care provider.
Remifentanil: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Repaglinide: (Moderate) Angiotensin II receptor antagonists (ARB) may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving an ARB in combination with antidiabetic agents should be monitored for changes in glycemic control. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Rifampin: (Moderate) Rifampin significantly induces the metabolism of losartan and its more potent metabolite, E-3174, resulting in a decrease in the AUC and half-life of both compounds; monitor for potential loss of losartan activity.
Risperidone: (Moderate) Risperidone may induce orthostatic hypotension and thus enhance the hypotensive effects of angiotensin II receptor antagonists. Lower initial doses or slower dose titration of risperidone may be necessary in patients receiving angiotensin II receptor antagonists concomitantly. (Moderate) Risperidone may induce orthostatic hypotension and thus enhance the hypotensive effects of antihypertensive agents. Lower initial doses or slower dose titration of risperidone may be necessary in patients receiving antihypertensive agents concomitantly.
Ritonavir: (Moderate) Concurrent administration of losartan with ritonavir may result in elevated losartan plasma concentrations. Losartan is metabolized by the hepatic isoenzyme CYP3A4; ritonavir is an inhibitor of this enzyme. Caution and close monitoring are advised if these drugs are administered together.
Rocuronium: (Moderate) Concomitant use of neuromuscular blockers and thiazide diuretics may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
Rosiglitazone: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Salicylates: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
Salmeterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Saxagliptin: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Scopolamine: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Semaglutide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Serotonin norepinephrine reuptake inhibitors: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and serotonin norepinephrine reuptake inhibitor (SNRI) use; consider discontinuing the SNRI if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Sertraline: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and sertraline use; consider discontinuing sertraline if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Sevoflurane: (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
SGLT2 Inhibitors: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Silodosin: (Moderate) During clinical trials with silodosin, the incidence of dizziness and orthostatic hypotension was higher in patients receiving concomitant antihypertensive treatment. Thus, caution is advisable when silodosin is administered with antihypertensive agents. (Moderate) During clinical trials with silodosin, the incidence of dizziness and orthostatic hypotension was higher in patients receiving concomitant antihypertensive treatment. Thus, caution is advisable when silodosin is administered with antihypertensive agents.
Sitagliptin: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Sodium Phosphate Monobasic Monohydrate; Sodium Phosphate Dibasic Anhydrous: (Moderate) Concomitant use of medicines with potential to alter renal perfusion or function such as angiotensin II receptor antagonists, may increase the risk of acute phosphate nephropathy in patients taking sodium phosphate monobasic monohydrate; sodium phosphate dibasic anhydrous. (Moderate) Concomitant use of medicines with potential to alter renal perfusion or function such as diuretics, may increase the risk of acute phosphate nephropathy in patients taking sodium phosphate monobasic monohydrate; sodium phosphate dibasic anhydrous.
Sodium picosulfate; Magnesium oxide; Anhydrous citric acid: (Moderate) Use caution when prescribing sodium picosulfate; magnesium oxide; anhydrous citric acid in patients taking concomitant medications that may affect renal function such as angiotensin II receptor antagonists. In addition, use caution in patients receiving drugs where hypokalemia is a particular risk. (Moderate) Use caution when prescribing sodium picosulfate; magnesium oxide; anhydrous citric acid in patients taking concomitant medications that may affect renal function such as diuretics. In addition, use caution in patients receiving drugs where hypokalemia is a particular risk.
Solifenacin: (Minor) Diuretics can increase urinary frequency, which may aggravate bladder symptoms. Risk versus benefit should be addressed in patients receiving diuretics and solifenacin.
Sparsentan: (Contraindicated) Concomitant use of sparsentan and angiotensin receptor blockers (ARBs) is contraindicated due to the additive risk for serious adverse effects such as hypotension, syncope, hyperkalemia, and renal dysfunction.
Spironolactone: (Moderate) Monitor serum potassium concentrations closely if angiotensin II receptor antagonists and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Spironolactone; Hydrochlorothiazide, HCTZ: (Moderate) Monitor serum potassium concentrations closely if angiotensin II receptor antagonists and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Streptozocin: (Minor) Because streptozocin is nephrotoxic, concurrent or subsequent administration of other nephrotoxic agents (e.g., aminoglycosides, amphotericin B, cisplatin, foscarnet, or diuretics) could exacerbate the renal insult.
Succinylcholine: (Moderate) Concomitant use of neuromuscular blockers and thiazide diuretics may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
Sufentanil: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with sufentanil. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Sulfacetamide: (Moderate) Sulfonamides may cause photosensitization and may increase the photosensitizing effects of thiazide diuretics.
Sulfacetamide; Sulfur: (Moderate) Sulfonamides may cause photosensitization and may increase the photosensitizing effects of thiazide diuretics.
Sulfamethoxazole; Trimethoprim, SMX-TMP, Cotrimoxazole: (Major) Avoid the concomitant use of sulfamethoxazole; trimethoprim and thiazide diuretics. An increased incidence of thrombocytopenia with purpura has been reported in elderly patients during coadministration. (Moderate) Monitor for hyperkalemia if concomitant use of an angiotensin II receptor antagonist and trimethoprim is necessary. Avoid concomitant use and consider alternative antibiotic therapy in patients with additional risk factors for hyperkalemia, including patients older than 65 years, those with underlying disorders of potassium metabolism, renal insufficiency, or those requiring high doses of trimethoprim. Amongst patients older than 65 years, concomitant use has been associated with a 2- to 7-fold increased risk of significant hyperkalemia compared to other antibiotics. Trimethoprim has a potassium-sparing effect on the distal nephron and may induce hyperkalemia, especially in those with pre-existing risk factors.
Sulfonamides: (Minor) Inhibitors of the hepatic CYP2C9 isoenzyme, such as sulfonamides, have potential to inhibit the conversion of losartan to its active metabolite. Monitor therapeutic response to individualize losartan dosage.
Sulfonylureas: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Sulindac: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Sumatriptan; Naproxen: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Tapentadol: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with tapentadol. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Tazarotene: (Moderate) The manufacturer states that tazarotene should be administered with caution in patients who are also taking drugs known to be photosensitizers, such as thiazide diuretics, as concomitant use may augment phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure of treated areas.
Tegaserod: (Minor) Coadminisitration of thiazides and prokinetic agents may result in decreased bioavailability of the thiazide diuretic.
Terbutaline: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Tetrabenazine: (Moderate) Tetrabenazine may induce orthostatic hypotension and thus enhance the hypotensive effects of antihypertensive agents. Lower initial doses or slower dose titration of tetrabenazine may be necessary in patients receiving antihypertensive agents concomitantly.
Tetracaine: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. Use extreme caution with the concomitant use of tetracaine and antihypertensive agents.
Tezacaftor; Ivacaftor: (Moderate) Increased monitoring is recommended if ivacaftor is administered concurrently with CYP2C9 substrates, such as losartan. Ivacaftor is an inhibitor of CYP3A and a weak inhibitor of CYP2C9; losartan is metabolized by CYP3A and CYP2C9. Co-administration of ivacaftor with CYP3A and CYP2C9 substrates,such as losartan, can theoretically increase losartan exposure leading to increased or prolonged therapeutic effects and adverse events; however, the clinical impact of this has not yet been determined.
Thiazolidinediones: (Moderate) Monitor blood glucose during concomitant thiazolidinedione and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Thiothixene: (Moderate) Thiothixene should be used cautiously in patients receiving antihypertensive agents. Additive hypotensive effects are possible.
Tiotropium; Olodaterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Tirzepatide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Tizanidine: (Moderate) Concurrent use of tizanidine with antihypertensive agents can result in significant hypotension. Caution is advised when tizanidine is to be used in patients receiving concurrent antihypertensive therapy. (Moderate) Monitor blood pressure during concomitant thiazide diuretic and tizanidine use due to risk for additive hypotension.
Tolazamide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Tolbutamide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Tolmetin: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Tolterodine: (Minor) Diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Tolvaptan: (Moderate) Monitor serum potassium concentrations closely if tolvaptan and angiotensin II receptor blockers are used together. In clinical studies, hyperkalemia was reported at a rate 1% to 2% higher when tolvaptan was administered with angiotensin II receptor blockers compared to administration of these medications with placebo. (Moderate) Monitor serum sodium closely if tolvaptan and thiazide diuretics are used together. Coadministration increases the risk of too rapid correction of serum sodium.
Topiramate: (Moderate) Monitor serum potassium concentrations and for increased topiramate-related adverse effects during concomitant hydrochlorothiazide use. Concomitant use has been shown to increase topiramate exposure by 29% and may potentiate the potassium-wasting action of hydrochlorothiazide.
Toremifene: (Moderate) Monitor serum calcium levels in patients receiving concomitant treatment with toremifene and thiazide diuretics. Thiazide diuretics decrease renal calcium excretion and may increase the risk of hypercalcemia in patients receiving toremifene.
Tramadol: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and tramadol; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Tramadol; Acetaminophen: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and tramadol; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Trandolapril: (Major) Discontinue the thiazide diuretic prior to starting trandolapril, if possible, or start trandolapril at the lower dose of 0.5 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure.
Trandolapril; Verapamil: (Major) Discontinue the thiazide diuretic prior to starting trandolapril, if possible, or start trandolapril at the lower dose of 0.5 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure.
Tranylcypromine: (Contraindicated) The use of hypotensive agents and tranylcypromine is contraindicated by the manufacturer of tranylcypromine because the effects of hypotensive agents may be markedly potentiated.
Trazodone: (Minor) Due to additive hypotensive effects, patients receiving antihypertensive agents concurrently with trazodone may have excessive hypotension. Decreased dosage of the antihypertensive agent may be required when given with trazodone.
Treprostinil: (Moderate) Thiazide diuretics can enhance the hypotensive effects of antihypertensive agents or diuretics if given concomitantly. This additive effect may be desirable, but dosages must be adjusted accordingly.
Tretinoin, ATRA: (Moderate) A manufacturer of topical tretinoin states that tretinoin, ATRA should be administered with caution in patients who are also taking drugs known to be photosensitizers, such as thiazide diuretics, as concomitant use may augment phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure of treated areas.
Tretinoin; Benzoyl Peroxide: (Moderate) A manufacturer of topical tretinoin states that tretinoin, ATRA should be administered with caution in patients who are also taking drugs known to be photosensitizers, such as thiazide diuretics, as concomitant use may augment phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure of treated areas.
Triamterene: (Moderate) Monitor serum potassium concentrations in patients receiving angiotensin II receptor antagonists concomitantly with triamterene. Concomitant use may result in hyperkalemia.
Triamterene; Hydrochlorothiazide, HCTZ: (Moderate) Monitor serum potassium concentrations in patients receiving angiotensin II receptor antagonists concomitantly with triamterene. Concomitant use may result in hyperkalemia.
Trihexyphenidyl: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Trimethoprim: (Moderate) Monitor for hyperkalemia if concomitant use of an angiotensin II receptor antagonist and trimethoprim is necessary. Avoid concomitant use and consider alternative antibiotic therapy in patients with additional risk factors for hyperkalemia, including patients older than 65 years, those with underlying disorders of potassium metabolism, renal insufficiency, or those requiring high doses of trimethoprim. Amongst patients older than 65 years, concomitant use has been associated with a 2- to 7-fold increased risk of significant hyperkalemia compared to other antibiotics. Trimethoprim has a potassium-sparing effect on the distal nephron and may induce hyperkalemia, especially in those with pre-existing risk factors.
Trospium: (Minor) Diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Umeclidinium; Vilanterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Valdecoxib: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Valproic Acid, Divalproex Sodium: (Moderate) Closely monitor blood pressure during coadministration of losartan and valproic acid; adjust the dose of losartan as clinically appropriate. Concomitant use may decrease exposure to the active metabolite of losartan and decrease losartan efficacy. Losartan is a CYP2C9 substrate; valproic acid is a moderate CYP2C9 inhibitor. Coadministration with a moderate CYP2C9 inhibitor in two pharmacokinetic studies with healthy volunteers decreased concentrations of the active metabolite of losartan by 30% to 56%.
Vecuronium: (Moderate) Concomitant use of neuromuscular blockers and thiazide diuretics may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
Vemurafenib: (Moderate) Concomitant use of vemurafenib and losartan may result in altered concentrations of losartan. Vemurafenib is an inhibitor of CYP2C9 and an inducer of CYP3A4. Losartan is a substrate of CYP2C9 and CYP3A4. Use caution and monitor patients for toxicity and efficacy.
Venlafaxine: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and serotonin norepinephrine reuptake inhibitor (SNRI) use; consider discontinuing the SNRI if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Verteporfin: (Moderate) Use caution if coadministration of verteporfin with thiazide diuretics is necessary due to the risk of increased photosensitivity. Verteporfin is a light-activated drug used in photodynamic therapy; all patients treated with verteporfin will be photosensitive. Concomitant use of other photosensitizing agents like thiazide diuretics may increase the risk of a photosensitivity reaction.
Vigabatrin: (Minor) Vigabatrin is not significantly metabolized; however, it is an inducer of CYP2C9. In theory, decreased exposure of drugs that are extensively metabolized by CYP2C9, such as losartan, may occur during concurrent use of vigabatrin.
Vilazodone: (Moderate) Patients receiving vilazodone with medications known to cause hyponatremia, such as diuretics, may be at increased risk of developing hyponatremia. Hyponatremia has occurred in association with the use of antidepressants such as selective serotonin reuptake inhibitors (SSRIs), serotonin norepinephrine reuptake inhibitors (SNRIs), and mirtazapine. Hyponatremia may manifest as headache, difficulty concentrating, memory impairment, confusion, weakness, and unsteadiness which may result in falls. Severe manifestations include hallucinations, syncope, seizure, coma, respiratory arrest, and death. Symptomatic hyponatremia may require discontinuation of vilazodone, as well as implementation of the appropriate medical interventions.
Vitamin D analogs: (Moderate) Monitor serum calcium concentrations during concomitant use of thiazide diuretics and vitamin D analogs; a dosage adjustment of the vitamin D analog may be needed. Hypercalcemia may be exacerbated by concomitant administration.
Vitamin D: (Moderate) Dose adjustment of vitamin D or vitamin D analogs may be necessary during coadministration with thiazide diuretics. Additionally, serum calcium concentrations should be monitored frequently. Monitor more frequently in patients with a history of hypercalcemia. Hypercalcemia may be exacerbated by coadministration of vitamin D or vitamin D analogs and thiazide diuretics. Thiazide diuretics are known to induce hypercalcemia by reducing the excretion of calcium in the urine.
Vitamin D: (Moderate) Dose adjustment of vitamin D or vitamin D analogs may be necessary during coadministration with thiazide diuretics. Additionally, serum calcium concentrations should be monitored frequently. Monitor more frequently in patients with a history of hypercalcemia. Hypercalcemia may be exacerbated by coadministration of vitamin D or vitamin D analogs and thiazide diuretics. Thiazide diuretics are known to induce hypercalcemia by reducing the excretion of calcium in the urine.
Voriconazole: (Moderate) Closely monitor blood pressure during coadministration of losartan and voriconazole; adjust the dose of losartan as clinically appropriate. Concomitant use may decrease exposure to the active metabolite of losartan and decrease losartan efficacy. Losartan is a CYP2C9 substrate; voriconazole is a moderate CYP2C9 inhibitor. Coadministration with a moderate CYP2C9 inhibitor in two pharmacokinetic studies with healthy volunteers decreased concentrations of the active metabolite of losartan by 30% to 56%.
Vorinostat: (Moderate) Use vorinostat and thiazide diuretics together with caution; the risk of QT prolongation and arrhythmias may be increased if electrolyte abnormalities occur. Thiazide diuretics may cause electrolyte imbalances including low potassium; hypomagnesemia, hypokalemia, or hypocalcemia may increase the risk of QT prolongation with vorinostat. Frequently monitor serum electrolytes if concomitant use of these drugs is necessary.
Vortioxetine: (Moderate) Patients receiving a diuretic during treatment with vortioxetine may be at greater risk of developing syndrome of inappropriate antidiuretic hormone secretion (SIADH). Clinically significant hyponatremia has been reported during therapy with vortioxetine. One case involving serum sodium levels lower than 110 mmol/l has occurred. Hyponatremia may be potentiated by agents which can cause sodium depletion such as diuretics. Discontinuation of vortioxetine should be considered in patients who develop symptomatic hyponatremia.
Zafirlukast: (Minor) Zafirlukast inhibits the CYP2C9 isoenzymes and should be used cautiously in patients stabilized on drugs metabolized by CYP2C9, such as losartan.
Ziconotide: (Moderate) Patients taking diuretics with ziconotide may be at higher risk of depressed levels of consciousness. If altered consciousness occurs, consideration of diuretic cessation is warranted in addition to ziconotide discontinuation.
Ziprasidone: (Moderate) Monitor potassium and magnesium levels when thiazide diuretics are used during ziprasidone therapy. The risk of QT prolongation from ziprasidone is increased in the presence of hypokalemia or hypomagnesemia. (Minor) Ziprasidone is a moderate antagonist of alpha-1 receptors and may cause orthostatic hypotension with or without tachycardia, dizziness, or syncope. Additive hypotensive effects are possible if ziprasidone is used concurrently with antihypertensive agents.

How Supplied

Hyzaar/Losartan Potassium, Hydrochlorothiazide Oral Tab: 100-12.5mg, 100-25mg, 50-12.5mg

Maximum Dosage
Adults

100 mg/day PO losartan and 25 mg/day PO hydrochlorothiazide.

Geriatric

100 mg/day PO losartan and 25 mg/day PO hydrochlorothiazide.

Adolescents

Safety and efficacy have not been established.

Children

Safety and efficacy have not been established.

Mechanism Of Action

The effects of losartan and hydrochlorothiazide on blood pressure are additive. Thiazide diuretics lower the blood pressure by increasing the excretion of sodium; whereas losartan and its principal metabolite lower blood pressure by selectively blocking the AT1 receptor to antagonize the actions of angiotensin II, the primary vasoactive hormone of the renin-angiotensin system. Losartan tends to reverse the hypokalemia caused by the hydrochlorothiazide; this effect is related to the dose of losartan. Due to the dose-related uricosuric effects of losartan, the combination of losartan with hydrochlorothiazide partially attenuates the rise in serum uric acid and the association with hydrochlorothiazide monotherapy.
Losartan: Losartan and its longer acting active metabolite (E-3174) are specific and selective AT1 receptor antagonists. While ACE inhibitors inhibit the actions of angiotensin II by preventing its formation from angiotensin I, losartan interferes with the binding of formed angiotensin II to its endogenous receptor. The active metabolite, E-3174, is 10-40 times more potent than losartan and is primarily responsible for the therapeutic effects of losartan. E-3174 directly antagonizes the vasopressor and aldosterone actions of angiotensin II by reversibly and non-competitively binding at the AT1 receptor site. Losartan and its metabolite have no agonist activity at the AT1 receptor. Angiotensin II is the primary vasoactive hormone of the renin-angiotensin system and plays an important role in the pathophysiology of hypertension. Besides being a potent vasoconstrictor, angiotensin II stimulates aldosterone secretion by the adrenal gland. Thus, by blocking the effects of angiotensin II, losartan decreases systemic vascular resistance without a marked change in heart rate. Type 1 angiotensin (AT1) receptors are found in many tissues, including vascular smooth muscle and the adrenal gland. AT2 receptors are also found in many tissues, although their relationship to cardiovascular hemostasis is not known. The affinity of losartan and its metabolite is about 1000-fold greater for the AT1 receptor than for the AT2 receptor. Neither losartan or its metabolite inhibit the angiotensin converting enzyme, other hormone receptors, or ion channels. Losartan therapy is associated with dose-related antiproteinuric effects. Losartan, but not its metabolite, has modest dose-related uricosuric properties; the mechanism of this unique effect is not known.
Hydrochlorothiazide, HCTZ: Thiazides increase the excretion of water by inhibiting the reabsorption of sodium and chloride ions at the distal renal tubule. The natriuretic effects are accompanied by a secondary loss of potassium and bicarbonate which can cause a mild hypokalemic, hypochloremic, metabolic alkalosis. Thiazides also decrease the elimination of calcium and uric acid. Thiazides diuretics usually do not affect normal blood pressure. When chronically administered, diuretics decrease peripheral vascular resistance. The exact mechanism responsible for the lowered peripheral resistance is not known; however, excretion of urinary sodium by the kidneys is required to achieve blood pressure reduction. Initially, diuretics lower blood pressure by decreasing cardiac output, plasma volume and extracellular fluid volume. Cardiac output eventually returns to normal, plasma and extracellular fluid values return to slightly less than normal, but peripheral vascular resistance is reduced, resulting in lower blood pressure. Thiazide diuretics also decrease the glomerular filtration rate, which contributes to the drug's lower efficacy in patients with renal impairment. The changes in plasma volume induce an elevation in plasma renin activity and aldosterone secretion which contributes to the potassium losses associated with thiazide diuretics. In general, diuretics can worsen glucose tolerance and lipid abnormalities.

Pharmacokinetics

Losartan; hydrochlorothiazide is administered orally. No pharmacokinetic drug interaction is observed between losartan and hydrochlorothiazide.
Losartan: The pharmacokinetics of losartan and its active metabolite are linear over the dose range up to 200 mg; however, the antihypertensive dose-response curve is nonlinear, with proportionally small decreases in blood pressure attained with increased dosage. Losartan and its active metabolite are highly protein bound, mainly to albumin. The free fraction in plasma of losartan is 1.3% and 0.2% for its metabolite. Losartan does not readily penetrate the blood-brain barrier. Approximately 35% an oral dose is renally excreted; overall 4% is excreted unchanged and 6% as metabolite is excreted in the urine. Approximately 60% of a dose is excreted in the feces. The terminal half-life of losartan is 2 hours and 6 hours for its active metabolite in patients without renal impairment.
Hydrochlorothiazide, HCTZ: Hydrochlorothiazide crosses the placenta, but not the blood-brain barrier, and is distributed into breast milk. Hydrochlorothiazide is not significantly metabolized and is excreted unchanged in the urine. At least 61% of the oral dose is eliminated unchanged within 24 hours. The elimination half-life ranges from 5.6 to 14.8 hours.

Oral Route

Losartan: Losartan is well absorbed, but undergoes substantial first-pass metabolism. The systemic bioavailability is approximately 35%; about 14% of an oral dose is carboxylated in the liver to its active metabolite. Peak serum concentrations occur at 1 hour and 3 to 4 hours, respectively for the parent drug and metabolite. Maximum serum concentrations are similar for losartan and its metabolite, but the AUC for the metabolite is approximately 4 times greater. Food decreases the maximum concentration and slightly (approximately 10%) decreases the AUC. The maximal effects of losartan usually occur within the first week of therapy, although in some studies maximal effect took 3 to 6 weeks.
Hydrochlorothiazide, HCTZ: Hydrochlorothiazide absorption from the GI tract varies depending on the formulation, dose, and presence of concomitant disease states. Absorption is reduced in patients with hepatic, cardiac, and/or renal disease. The bioavailability is approximately 60 to 70%. The onset of action is 2 hours following oral administration, with peak effects occurring at 4 hours. The duration of action ranges from 6 to 12 hours.

Pregnancy And Lactation
Pregnancy

When pregnancy is detected, discontinue losartan; hydrochlorothiazide therapy as soon as possible. Women of child-bearing age should be made aware of the potential risk and losartan; hydrochlorothiazide should only be given after careful counseling and consideration of risks and benefits. When used during the second and third trimesters, drugs that affect the renin-angiotensin system (e.g., ACE inhibitors, angiotensin II receptor antagonists) reduce fetal renal function and increase fetal and neonatal morbidity and death. Use of drugs that affect the renin-angiotensin system during pregnancy can cause fetal death or injury such as hypotension, neonatal skull hypoplasia, reversible or irreversible renal failure and death. Anhydramnios and oligohydramnios have also been reported. Development of oligohydramnios may be associated with decreased fetal renal function leading to anuria and renal failure and results in fetal limb contractures, craniofacial deformation, hypotension, hypoplastic lung development, and death. Retrospective data indicate that first trimester use of ACE inhibitors has been associated with a potential risk of birth defects. However, a much larger observational study (n = 465,754) found that the risk of birth defects was similar in infants exposed to ACE inhibitors during the first trimester, in infants exposed to other antihypertensives during the first trimester, and in those whose mothers were hypertensive but were not treated. Infants born to mothers with hypertension, either treated or untreated, had a higher risk of birth defects than those born to mothers without hypertension. The authors concluded that the presence of hypertension likely contributed to the development of birth defects rather than the use of medications. An observational cohort study evaluating the outcomes of angiotensin receptor blockers (ARBs) use during the first trimester of pregnancy found an increased rate of major birth defects compared to non-hypertensive pregnancies, 5.4% and 3%, respectively; the difference did not reach statistical significance. The authors noted that there was a higher risk of major birth defects with ARB therapy beyond 6 weeks of gestation compared to discontinuation of ARBs before week 6, 7.3% and 2.8%, respectively. The rates of prematurity and reduced birth weight were also increased in the ARB group. There were no statistically significant differences in the rates of major birth defects, spontaneous abortions, or preterm births between women with chronic hypertension treated with an ARB versus methyldopa. Thiazide diuretics can cross the placenta resulting in umbilical cord concentrations similar to maternal plasma concentrations and amniotic fluid concentrations that are up to 19 times greater than in the umbilical vein. Based on the results from one large study, first trimester use of thiazide and related diuretics may increase the risk for congenital defects. In addition to malformations, other fetal risks associated with thiazide use during pregnancy include hypoperfusion, fetal or neonatal jaundice, hypoglycemia, thrombocytopenia, hyponatremia, hypokalemia, and death from maternal complications. Once pregnancy is detected, ultrasound examination should be performed if losartan; hydrochlorothiazide exposure occurs beyond the first trimester. In rare cases when another antihypertensive agent cannot be used to treat a pregnant patient, serial ultrasound examinations should be performed to assess the intraamniotic environment. If oligohydramnios is observed, discontinue losartan; hydrochlorothiazide unless it is considered life-saving for the mother. It should be noted that oligohydramnios may not appear until after the fetus has sustained irreversible injury. Closely observe newborns with histories of in utero exposure to losartan; hydrochlorothiazide for hypotension, oliguria, and hyperkalemia. If oliguria or hypotension occurs, blood pressure and renal perfusion support may be required, as well as exchange transfusion or dialysis to reverse hypotension and/or support decreased renal function.

According to the manufacturer, because of the potential for adverse effects on the nursing infant, a decision should be made to discontinue breast-feeding or discontinue losartan; hydrochlorothiazide therapy. It is not known whether losartan is excreted into human milk. Alternative therapies may be considered. Due to low levels in breast milk, guidelines generally consider the ACE inhibitors captopril and enalapril to be compatible with breast-feeding unless high doses are required. In addition, benazepril and quinapril are excreted in low quantities into breast milk and have been suggested as options during breast-feeding. Hydrochlorothiazide distributes into breast milk at low quantities and is usually considered compatible with breast-feeding. High hydrochlorothiazide dosages (100 mg to 150 mg/day) have been used to suppress lactation. Suppression of lactation has not been reported with hydrochlorothiazide doses of 50 mg or less. Consider the benefits of breast-feeding, the risk of potential infant drug exposure, and the risk of an untreated or inadequately treated condition.