Marcaine

Browse PDR's full list of drug information

Marcaine

Classes

Amide Local Anesthetics

Administration

Bupivacaine is to be administered by or under the supervision of experienced clinicians who are well versed in the diagnosis and management of dose-related toxicity and other acute emergencies that might arise from bupivacaine exposure.
Ensure oxygen, resuscitative equipment and medications, and personnel resources are immediately available for proper management of toxic reactions and related emergencies.

Injectable Administration

Visually inspect parenteral products for particulate matter and discoloration prior to administration whenever solution and container permit.
Do not mix bupivacaine with other local anesthetics as there is insufficient data on the clinical use of such mixtures.
Avoid rapid administration of a large volume; administer in incremental doses when feasible.
Carefully monitor cardiovascular and respiratory vital signs, as well as the patient's state of consciousness after each local anesthetic injection.
Storage: Discard any partially used vials that do not contain preservatives.[52331]

Other Injectable Administration

Epidural Administration
Do not use solutions containing preservatives for epidural anesthesia.
Administer a test dose of local anesthetic with epinephrine initially and monitor the effects before the full dose is given. When using a "continuous" catheter technique, give the test dose before the initial and all supplemental doses.
Some experts question the use of bupivacaine in the test dose in children due to the potential for toxicity with unintentional intravascular administration.
Administer slowly in incremental doses with sufficient time between doses to detect toxicity. Perform frequent aspirations before and during the injection to avoid intravascular injection; negative aspiration does not guarantee intravascular injection has been avoided.
 
Spinal Administration
Do not use solutions containing preservatives for spinal anesthesia.
Both isobaric and hyperbaric 0.5% solutions have been used in neonates and infants, as well as the commercially available spinal injection (bupivacaine 0.75% in 8.25% dextrose solution).
Aspirate for blood and cerebrospinal fluid prior to injection. Aspiration of cerebrospinal fluid will result in an identifiable swirl in the solution. A negative aspiration for blood does not ensure against intravascular injection.
Avoid rapid administration.
Bupivacaine spinal solution may be autoclaved.
 
Peripheral Nerve Block Administration
Administer slowly in incremental doses. Perform frequent aspirations before and during the injection to avoid intravascular injection; negative aspiration does not guarantee intravascular injection has been avoided.
 
Local Infiltration Administration
Administer slowly in incremental doses. Perform frequent aspirations before and during the injection to avoid intravascular injection; negative aspiration does not guarantee intravascular injection has been avoided.

Other Administration Route(s)

Implant Administration
Do not use the implant if the packaging has been compromised.
Aseptically peel open the outer pouch, then remove and aseptically peel open the 3 inner blister packages containing the implants. To avoid cutting the implants before placement, do not open the blister packaging using scissors or a scalpel.
Carefully remove the implant from the inner blister packages and inspect each implant before use. Do not use the implant if it is discolored, contains foreign particulates, or is collapsed, compressed, or misshapen.
Avoid excessive handling and compression of the implant.
Avoid contact of the implant with liquids before placement. Premoistening may result in premature release of bupivacaine from the implant.
When a topical antiseptic such as povidone iodine is applied, allow the surgical site to dry before the implant is placed.
Using aseptic technique, cut each implant in half before placement into the surgical site.
Place 3 halves of implants below the site of mesh placement and 3 halves just below the skin closure.
Use care when moving the implant after placement. The implant may become difficult to move once placed in the surgical site and moistened.
Administration of additional local anesthetics, including bupivacaine, into the surgical site with the implant has not been studied.
Avoid additional local anesthetic administration within 96 hours after implantation. If additional local anesthetic administration cannot be avoided, monitor patients for neurologic and cardiovascular effects related to local anesthetic systemic toxicity.
 
Subacromial Space Infiltration Administration
Do not dilute or mix bupivacaine solution for infiltration (Posimir) with local anesthetics, other drugs, or diluents.
Draw up 5 mL of bupivacaine solution for infiltration into a 5 mL syringe using a large bore needle (16 gauge or larger). Discard the needle once the syringe has been filled.
Administer the entire 5 mL dose into the subacromial space using an 18 gauge or larger-bore needle at the close of surgery. The needle may be inserted through an existing arthroscopic port or through intact skin to reach the subacromial space.
Confirm correct placement of the needle tip within the subacromial space by direct arthroscopic visualization. Do not administer into the glenohumeral intra-articular space.
Avoid intravascular administration.
Compatible with commonly implantable materials, such as polypropylene and polyester, and silk, nylon, gut, polypropylene, polydioxanone, and polyglycolic acid sutures.
Avoid additional local anesthetic administration within 168 hours after administration of bupivacaine solution for infiltration.
Storage: For single-dose administration only.

Adverse Reactions
Severe

pulmonary hypertension / Delayed / 0-2.0
seizures / Delayed / 0.1-0.1
apnea / Delayed / Incidence not known
respiratory arrest / Rapid / Incidence not known
muscle paralysis / Delayed / Incidence not known
ventricular tachycardia / Early / Incidence not known
bradycardia / Rapid / Incidence not known
cardiac arrest / Early / Incidence not known
arrhythmia exacerbation / Early / Incidence not known
AV block / Early / Incidence not known
ventricular fibrillation / Early / Incidence not known
laryngeal edema / Rapid / Incidence not known
anaphylactoid reactions / Rapid / Incidence not known
angioedema / Rapid / Incidence not known
arachnoiditis / Early / Incidence not known
cranial nerve palsies / Delayed / Incidence not known
coma / Early / Incidence not known
fetal death / Delayed / Incidence not known
chondrolysis / Delayed / Incidence not known
malignant hyperthermia / Rapid / Incidence not known
methemoglobinemia / Early / Incidence not known

Moderate

dysuria / Early / 10.1-10.1
peripheral edema / Delayed / 3.9-3.9
dyspnea / Early / 3.8-3.8
blurred vision / Early / 3.6-3.6
urinary retention / Early / 2.7-2.7
angina / Early / 0-2.0
blepharospasm / Early / 0-2.0
hypoventilation / Rapid / Incidence not known
hypotension / Rapid / Incidence not known
palpitations / Early / Incidence not known
erythema / Early / Incidence not known
sinus tachycardia / Rapid / Incidence not known
urinary incontinence / Early / Incidence not known
meningitis / Delayed / Incidence not known
loss of consciousness / Rapid / Incidence not known
fecal incontinence / Early / Incidence not known
fetal acidosis / Delayed / Incidence not known
fetal bradycardia / Delayed / Incidence not known
decreased uterine contractility / Early / Incidence not known

Mild

dizziness / Early / 40.3-40.3
vomiting / Early / 29.0-29.0
headache / Early / 3.4-23.3
paresthesias / Delayed / 18.4-18.4
dysgeusia / Early / 7.5-17.6
hypoesthesia / Delayed / 2.2-17.3
tinnitus / Delayed / 13.2-13.2
fever / Early / 2.4-9.3
insomnia / Early / 7.1-7.1
pruritus / Rapid / 2.5-3.8
tremor / Early / 3.6-3.6
dysmenorrhea / Delayed / 2.7-2.7
nasal congestion / Early / 2.5-2.5
fatigue / Early / 0-2.0
weakness / Early / Incidence not known
chills / Rapid / Incidence not known
anxiety / Delayed / Incidence not known
drowsiness / Early / Incidence not known
nausea / Early / Incidence not known
miosis / Early / Incidence not known
restlessness / Early / Incidence not known
metallic taste / Early / Incidence not known
urticaria / Rapid / Incidence not known
sneezing / Early / Incidence not known
hyperhidrosis / Delayed / Incidence not known
syncope / Early / Incidence not known
injection site reaction / Rapid / Incidence not known
shivering / Rapid / Incidence not known
back pain / Delayed / Incidence not known

Boxed Warning
Intraarterial administration, intrathecal administration, intravenous administration

Avoid inadvertent intravenous administration, intraarterial administration, or intrathecal administration of bupivacaine. Bupivacaine is contraindicated for use as intravenous regional anesthesia (Bier Block) due to reports of cardiac arrest and death. Unintended intravascular or intrathecal injection may be associated with systemic toxicities, including central nervous system or cardiorespiratory depression and coma, ultimately progressing to respiratory arrest. Aspirate for blood or cerebrospinal fluid (when applicable) before injecting bupivacaine, both before the initial injection and with all subsequent doses, to avoid inadvertent intravascular or intrathecal administration. The absence of blood or cerebrospinal fluid does not ensure against intravascular or intrathecal injection. Administer an initial test dose before epidural administration. Monitor the patient for central nervous system and cardiovascular toxicity, as well as signs of inadvertent intrathecal administration (e.g., decreased sensation of the buttocks, paresis of the legs, absent knee jerk) for an appropriate amount of time before the full dose is given. When using a continuous catheter technique, give test doses initially and before any reinforcing doses.[52331] [60644] Inadvertent intravascular injection of bupivacaine solution for infiltration (Posimir) could cause bupivacaine droplets to be deposited in the pulmonary and other capillary beds. Confirm proper placement of the needle tip into the subacromial space using direct arthroscopic visualization before administering.

Epidural anesthesia, labor, obstetric delivery, paracervical nerve block, pregnancy, pudendal nerve block

Bupivacaine is contraindicated in patients undergoing obstetrical paracervical nerve block anesthesia; the use of bupivacaine in this technique has resulted in fetal bradycardia and death.[52331] Bupivacaine spinal products (bupivacaine hydrochloride in dextrose injection) should only be used for spinal anesthesia in obstetrical patients. Unintended fetal intracranial injection of local anesthetics after intended paracervical or pudendal nerve block for obstetrical anesthesia may cause neonatal depression and seizures. Supportive measures and forced urinary excretion of the local anesthetic have been used successfully to manage this complication.[43383] Only bupivacaine 0.25% and 0.5% are indicated for obstetrical anesthesia. Bupivacaine 0.75% is not recommended for obstetrical anesthesia. Experience with nonobstetric surgical procedures in pregnant patients is not sufficient to recommend use of bupivacaine 0.75% in these patients. Cardiac arrest with difficult resuscitation or death has occurred during use of bupivacaine for epidural anesthesia; in most cases, this has followed use of bupivacaine 0.75%. Resuscitation has been difficult or impossible despite adequate preparation and appropriate management. Cardiac arrest has occurred after convulsions resulting from systemic toxicity, presumably after unintentional intravascular injection. Reserve bupivacaine 0.75% for surgical procedures where a high degree of muscle relaxation and prolonged effect are necessary. Local anesthetics rapidly cross the placenta, and when used for epidural, caudal, or pudendal block anesthesia, can cause varying degrees of maternal, fetal, and neonatal toxicity. The incidence and degree of toxicity depend upon the procedure performed, the type and amount of drug used, and the technique of drug administration. Adverse reactions in the pregnant woman, fetus, and neonate involve alterations of the central nervous system, peripheral vascular tone, and cardiac function. There are no available data on the use of bupivacaine in human pregnancy to inform a drug-associated risk of adverse developmental outcomes. If bupivacaine is used during pregnancy, or if the patient becomes pregnant while taking this drug, inform the patient of the potential hazard to the fetus. It is extremely important to avoid aortocaval compression by the gravid uterus during administration of regional block to a pregnant patient. To do this, maintain the patient in the left lateral decubitus position, or a blanket roll or sandbag may be placed beneath the right hip and gravid uterus displaced to the left. Maternal hypotension has resulted from regional anesthesia. Local anesthetics produce vasodilation by blocking sympathetic nerves. During treatment of systemic toxicity, maternal hypotension, or fetal bradycardia after regional block, maintain the pregnant patient in the left lateral decubitus position if possible, or manually displace the uterus off the great vessels. Elevating the patient's legs will also help prevent decreases in blood pressure. Monitor the fetal heart rate continuously, and electronic fetal monitoring is highly advisable. Epidural, spinal, or pudendal nerve block may alter the forces of parturition through changes in uterine contractility or maternal expulsive efforts. Epidural anesthesia may prolong the second stage of labor by removing the reflex urge to bear down or interfering with motor function. The use of obstetrical anesthesia may increase the need for forceps assistance. The use of some local anesthetic drug products during labor and obstetric delivery may be followed by diminished muscle strength and tone in a neonate for the first day or 2 of life; however, this has not been reported with bupivacaine. Placental transfer of local anesthetics is dependent upon the degree of plasma protein binding, ionization, and lipid solubility of each agent. Fetal to maternal ratios of local anesthetics appear to be inversely related to the degree of plasma protein binding since only free, unbound drug is available for placental transfer. Bupivacaine is about 95% bound to plasma proteins, resulting in a low fetal to maternal ratio (0.2 to 0.4). Subcutaneous administration of bupivacaine to pregnant rabbits during organogenesis resulted in embryofetal lethality at clinically relevant doses. Decreased pup survival occurred at a dose comparable to the daily maximum recommended human dose on a body surface area basis in a rat pre- and post-natal developmental study.[52331] [65881]

Common Brand Names

Marcaine, Marcaine Spinal, POSIMIR, Sensorcaine, Sensorcaine MPF, Xaracoll

Dea Class

Rx

Description

Amide local anesthetic
Used for local or regional anesthesia or analgesia for surgery, dental and oral surgery procedures, diagnostic and therapeutic procedures, and obstetrical procedures
Not all blocks indicated for use with bupivacaine given clinically significant risks associated with use

Dosage And Indications
For local anesthesia, including infiltration anesthesia. Infiltration dosage (bupivacaine 0.25%) Adults

Up to 70 mL (up to 175 mg) by infiltration. May repeat dose every 3 hours as needed. Do not exceed 400 mg/day.

Children and Adolescents 12 to 17 years

Up to 70 mL (up to 175 mg) by infiltration. May repeat dose every 3 hours as needed. Do not exceed 400 mg/day.

For regional anesthesia, including caudal anesthesia, epidural anesthesia, or obstetric anesthesia. For caudal block. Intracaudal dosage (bupivacaine 0.25% or 0.5%) Adults

3 to 5 mL (7.5 to 25 mg) increments intracaudally up to 15 to 30 mL (37.5 to 150 mg). May repeat dose every 3 hours as needed. Do not exceed 400 mg/day. A test dose of bupivacaine; epinephrine is recommended before caudal block when clinical conditions permit.

Children and Adolescents 12 to 17 years

3 to 5 mL (7.5 to 25 mg) increments intracaudally up to 15 to 30 mL (37.5 to 150 mg). May repeat dose every 3 hours as needed. Do not exceed 400 mg/day. A test dose of bupivacaine; epinephrine is recommended before caudal block when clinical conditions permit.

For lumbar epidural block excluding obstetrical anesthesia. Epidural dosage (bupivacaine 0.25%, 0.5% or 0.75%) Adults

3 to 5 mL (7.5 to 37.5 mg) increments epidurally up to 10 to 20 mL (25 to 150 mg). May repeat dose every 3 hours as needed. Do not exceed 400 mg/day. A test dose of bupivacaine; epinephrine is recommended before epidural block when clinical conditions permit.

Children and Adolescents 12 to 17 years

3 to 5 mL (7.5 to 37.5 mg) increments epidurally up to 10 to 20 mL (25 to 150 mg). May repeat dose every 3 hours as needed. Do not exceed 400 mg/day. A test dose of bupivacaine; epinephrine is recommended before epidural block when clinical conditions permit.

For lumbar epidural block in obstetrical anesthesia. Epidural dosage (bupivacaine 0.25% or 0.5%) Adults

3 to 5 mL (7.5 to 25 mg) increments epidurally up to 10 to 20 mL (25 to 100 mg). May repeat dose every 3 hours as needed. Do not exceed 400 mg/day. A test dose of bupivacaine; epinephrine is recommended before epidural block when clinical conditions permit.

Children and Adolescents 12 to 17 years

3 to 5 mL (7.5 to 25 mg) increments epidurally up to 10 to 20 mL (25 to 100 mg). May repeat dose every 3 hours as needed. Do not exceed 400 mg/day. A test dose of bupivacaine; epinephrine is recommended before epidural block when clinical conditions permit.

For nerve block anesthesia, including peripheral nerve block and sympathetic nerve block. For sympathetic nerve block. Perineural dosage (bupivacaine 0.25%) Adults

20 to 50 mL (50 to 125 mg) perineurally. May repeat dose every 3 hours as needed. Do not exceed 400 mg/day.

Children and Adolescents 12 to 17 years

20 to 50 mL (50 to 125 mg) perineurally. May repeat dose every 3 hours as needed. Do not exceed 400 mg/day.

For peripheral nerve block. Perineural dosage (bupivacaine 0.25% or 0.5%) Adults

5 to 70 mL (12.5 to 175 mg) perineurally. May repeat dose every 3 hours as needed. Do not exceed 400 mg/day.

Children and Adolescents 12 to 17 years

5 to 70 mL (12.5 to 175 mg) perineurally. May repeat dose every 3 hours as needed. Do not exceed 400 mg/day.

For ophthalmic anesthesia, including retrobulbar nerve block. Retrobulbar dosage (bupivacaine 0.75%) Adults

2 to 4 mL (15 to 30 mg) by retrobulbar injection. May repeat dose every 3 hours as needed. Do not exceed bupivacaine 400 mg/day.

Children and Adolescents 12 to 17 years

2 to 4 mL (15 to 30 mg) by retrobulbar injection. May repeat dose every 3 hours as needed. Do not exceed bupivacaine 400 mg/day.

For spinal anesthesia, including Caesarean section anesthesia. For spinal anesthesia for lower extremity and perineal procedures, such as transurethral resection of the prostate (TURP) and vaginal hysterectomy. Intrathecal dosage (bupivacaine 0.75%) Adults

1 mL (7.5 mg) intrathecally once.

For spinal anesthesia for obstetric anesthesia in vaginal delivery. Intrathecal dosage (bupivacaine 0.75%) Adults

0.8 mL (6 mg) intrathecally once.

For spinal anesthesia for lower abdominal procedures, such as abdominal hysterectomy, tubal ligation, and appendectomy. Intrathecal dosage (bupivacaine 0.75%) Adults

1.6 mL (12 mg) intrathecally once.

For spinal anesthesia for Caesarean section anesthesia. Intrathecal dosage (bupivacaine 0.75%) Adults

1 to 1.4 mL (7.5 to 10.5 mg) intrathecally once.

For postsurgical local analgesia. For postsurgical local analgesia after open inguinal hernia repair. Implant dosage Adults

300 mg (3 x 100 mg implants) placed into the surgical site once. Safety and effectiveness have not been established in other surgical procedures.[65881]

For postsurgical local analgesia after arthroscopic subacromial decompression.
NOTE: Bupivacaine solution for infiltration is not bioequivalent with other formulations of bupivacaine and dosage conversion to or from other formulations is not possible.
Infiltration dosage (Posimir) Adults

660 mg by infiltration into the subacromial space once. Safety and effectiveness have not been established in other surgical procedures.

Dosing Considerations
Hepatic Impairment

Consider reduced dosing and increased monitoring for bupivacaine toxicity in patients with moderate to severe hepatic impairment.

Renal Impairment

The risk of toxicity may be greater in patients with renal impairment.

Drug Interactions

Acebutolol: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. Use extreme caution with the concomitant use of bupivacaine and antihypertensive agents. Peripheral vasodilation may occur after use of bupivacaine. Thus, patients receiving antihypertensive agents may experience additive hypotensive effects. Blood concentrations of local anesthetics achieved after therapeutic doses are associated with minimal change in peripheral vascular resistance. Higher blood concentrations of local anesthetics may occur due to inadvertent intravascular administration or repeated doses.
Acetaminophen: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Acetaminophen; Aspirin, ASA; Caffeine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Acetaminophen; Aspirin: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Acetaminophen; Aspirin; Diphenhydramine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Acetaminophen; Caffeine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Acetaminophen; Caffeine; Dihydrocodeine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Acetaminophen; Caffeine; Pyrilamine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Acetaminophen; Chlorpheniramine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Acetaminophen; Chlorpheniramine; Dextromethorphan: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Acetaminophen; Chlorpheniramine; Phenylephrine : (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Acetaminophen; Codeine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Acetaminophen; Dextromethorphan: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Acetaminophen; Dextromethorphan; Doxylamine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Acetaminophen; Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Acetaminophen; Dextromethorphan; Phenylephrine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Acetaminophen; Dextromethorphan; Pseudoephedrine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Acetaminophen; Dichloralphenazone; Isometheptene: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Acetaminophen; Diphenhydramine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Acetaminophen; Guaifenesin; Phenylephrine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Acetaminophen; Hydrocodone: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Acetaminophen; Ibuprofen: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Acetaminophen; Oxycodone: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Acetaminophen; Pamabrom; Pyrilamine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Acetaminophen; Phenylephrine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Acetaminophen; Pseudoephedrine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Alfentanil: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Aminosalicylate sodium, Aminosalicylic acid: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as aminosalicylic acid, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Amitriptyline: (Major) Coadminister bupivacaine and tricyclic antidepressants together with caution. If epinephrine is added to bupivacaine, severe and prolonged hypertension may occur in a patient taking a TCA. Tricyclic antidepressants can increase the sensitivity to epinephrine by inhibiting epinephrine reuptake or metabolism. If concurrent therapy is necessary, carefully monitor the patient.
Amobarbital: (Minor) Bupivacaine is metabolized by CYP3A4. Barbiturates induce these isoenzymes and if given concurrently with bupivacaine may decrease the efficacy of bupivacaine.
Aprepitant, Fosaprepitant: (Moderate) Use caution if bupivacaine and aprepitant, fosaprepitant are used concurrently and monitor for an increase in bupivacaine-related adverse effects for several days after administration of a multi-day aprepitant regimen. In vitro, bupivacaine is a CYP3A4 substrate. Aprepitant, when administered as a 3-day oral regimen (125 mg/80 mg/80 mg), is a moderate CYP3A4 inhibitor and inducer and may increase plasma concentrations of bupivacaine. For example, a 5-day oral aprepitant regimen increased the AUC of another CYP3A4 substrate, midazolam (single dose), by 2.3-fold on day 1 and by 3.3-fold on day 5. After a 3-day oral aprepitant regimen, the AUC of midazolam (given on days 1, 4, 8, and 15) increased by 25% on day 4, and then decreased by 19% and 4% on days 8 and 15, respectively. As a single 125 mg or 40 mg oral dose, the inhibitory effect of aprepitant on CYP3A4 is weak, with the AUC of midazolam increased by 1.5-fold and 1.2-fold, respectively. After administration, fosaprepitant is rapidly converted to aprepitant and shares many of the same drug interactions. However, as a single 150 mg intravenous dose, fosaprepitant only weakly inhibits CYP3A4 for a duration of 2 days; there is no evidence of CYP3A4 induction. Fosaprepitant 150 mg IV as a single dose increased the AUC of midazolam (given on days 1 and 4) by approximately 1.8-fold on day 1; there was no effect on day 4. Less than a 2-fold increase in the midazolam AUC is not considered clinically important.
Articaine; Epinephrine: (Major) Avoid use of other local anesthetics for 96 hours after liposomal bupivacaine administration. Use articaine and other formulations of bupivacaine together with caution. Monitor cardiovascular and respiratory vital signs, as well as the patient's state of consciousness if used concurrently due to potential for additive CNS and/or cardiovascular toxic effects. Manifestations of toxicity may include CNS excitation and/or depression, cardiac conduction depression, or peripheral vasodilation. Additionally, coadministration may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue local anesthetic use. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Aspirin, ASA; Butalbital; Caffeine: (Minor) Bupivacaine is metabolized by CYP3A4. Barbiturates induce these isoenzymes and if given concurrently with bupivacaine may decrease the efficacy of bupivacaine.
Aspirin, ASA; Carisoprodol; Codeine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Aspirin, ASA; Oxycodone: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Atazanavir: (Moderate) Atazanavir inhibits the CYP3A4 isoenzyme at clinically relevant concentrations, which may lead to increased serum concentrations of local anesthetics and an increased potential for QT prolongation or other adverse effects.
Atazanavir; Cobicistat: (Moderate) Atazanavir inhibits the CYP3A4 isoenzyme at clinically relevant concentrations, which may lead to increased serum concentrations of local anesthetics and an increased potential for QT prolongation or other adverse effects. (Minor) Plasma concentrations of bupivacaine may be elevated when administered concurrently with cobicistat. Clinical monitoring for adverse effects, such as cardiotoxic effects, hypotension, or CNS toxicity, is recommended during coadministration. Cobicistat is a CYP3A4 inhibitor, while bupivacaine is a CYP3A4 substrate.
Atenolol: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. Use extreme caution with the concomitant use of bupivacaine and antihypertensive agents. Peripheral vasodilation may occur after use of bupivacaine. Thus, patients receiving antihypertensive agents may experience additive hypotensive effects. Blood concentrations of local anesthetics achieved after therapeutic doses are associated with minimal change in peripheral vascular resistance. Higher blood concentrations of local anesthetics may occur due to inadvertent intravascular administration or repeated doses.
Atenolol; Chlorthalidone: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. Use extreme caution with the concomitant use of bupivacaine and antihypertensive agents. Peripheral vasodilation may occur after use of bupivacaine. Thus, patients receiving antihypertensive agents may experience additive hypotensive effects. Blood concentrations of local anesthetics achieved after therapeutic doses are associated with minimal change in peripheral vascular resistance. Higher blood concentrations of local anesthetics may occur due to inadvertent intravascular administration or repeated doses.
Atracurium: (Moderate) Concomitant use of neuromuscular blockers and local anesthetics may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
Barbiturates: (Minor) Bupivacaine is metabolized by CYP3A4. Barbiturates induce these isoenzymes and if given concurrently with bupivacaine may decrease the efficacy of bupivacaine.
Belladonna; Opium: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Benzalkonium Chloride; Benzocaine: (Major) Avoid use of other local anesthetics for 96 hours after liposomal bupivacaine administration. Use benzocaine and other formulations of bupivacaine together with caution. Monitor cardiovascular and respiratory vital signs, as well as the patient's state of consciousness if used concurrently due to potential for additive CNS and/or cardiovascular toxic effects. Manifestations of toxicity may include CNS excitation and/or depression, cardiac conduction depression, or peripheral vasodilation. Additionally, coadministration may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue local anesthetic use. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Benzhydrocodone; Acetaminophen: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Benzocaine: (Major) Avoid use of other local anesthetics for 96 hours after liposomal bupivacaine administration. Use benzocaine and other formulations of bupivacaine together with caution. Monitor cardiovascular and respiratory vital signs, as well as the patient's state of consciousness if used concurrently due to potential for additive CNS and/or cardiovascular toxic effects. Manifestations of toxicity may include CNS excitation and/or depression, cardiac conduction depression, or peripheral vasodilation. Additionally, coadministration may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue local anesthetic use. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Benzocaine; Butamben; Tetracaine: (Major) Avoid use of other local anesthetics for 96 hours after liposomal bupivacaine administration. Use benzocaine and other formulations of bupivacaine together with caution. Monitor cardiovascular and respiratory vital signs, as well as the patient's state of consciousness if used concurrently due to potential for additive CNS and/or cardiovascular toxic effects. Manifestations of toxicity may include CNS excitation and/or depression, cardiac conduction depression, or peripheral vasodilation. Additionally, coadministration may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue local anesthetic use. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Betaxolol: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. Use extreme caution with the concomitant use of bupivacaine and antihypertensive agents. Peripheral vasodilation may occur after use of bupivacaine. Thus, patients receiving antihypertensive agents may experience additive hypotensive effects. Blood concentrations of local anesthetics achieved after therapeutic doses are associated with minimal change in peripheral vascular resistance. Higher blood concentrations of local anesthetics may occur due to inadvertent intravascular administration or repeated doses.
Bisoprolol: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. Use extreme caution with the concomitant use of bupivacaine and antihypertensive agents. Peripheral vasodilation may occur after use of bupivacaine. Thus, patients receiving antihypertensive agents may experience additive hypotensive effects. Blood concentrations of local anesthetics achieved after therapeutic doses are associated with minimal change in peripheral vascular resistance. Higher blood concentrations of local anesthetics may occur due to inadvertent intravascular administration or repeated doses.
Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. Use extreme caution with the concomitant use of bupivacaine and antihypertensive agents. Peripheral vasodilation may occur after use of bupivacaine. Thus, patients receiving antihypertensive agents may experience additive hypotensive effects. Blood concentrations of local anesthetics achieved after therapeutic doses are associated with minimal change in peripheral vascular resistance. Higher blood concentrations of local anesthetics may occur due to inadvertent intravascular administration or repeated doses.
Brimonidine; Timolol: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. Use extreme caution with the concomitant use of bupivacaine and antihypertensive agents. Peripheral vasodilation may occur after use of bupivacaine. Thus, patients receiving antihypertensive agents may experience additive hypotensive effects. Blood concentrations of local anesthetics achieved after therapeutic doses are associated with minimal change in peripheral vascular resistance. Higher blood concentrations of local anesthetics may occur due to inadvertent intravascular administration or repeated doses.
Bupivacaine; Lidocaine: (Major) Avoid use of other local anesthetics for 96 hours after liposomal bupivacaine administration. Liposomal bupivacaine administration may follow lidocaine administration after a delay of 20 minutes or more. Use lidocaine and other formulations of bupivacaine together with caution. Monitor cardiovascular and respiratory vital signs, as well as the patient's state of consciousness if used concurrently due to potential for additive CNS and/or cardiovascular toxic effects. Manifestations of toxicity may include CNS excitation and/or depression, cardiac conduction depression, or peripheral vasodilation. Additionally, coadministration may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue local anesthetic use. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Butabarbital: (Minor) Bupivacaine is metabolized by CYP3A4. Barbiturates induce these isoenzymes and if given concurrently with bupivacaine may decrease the efficacy of bupivacaine.
Butalbital; Acetaminophen: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Minor) Bupivacaine is metabolized by CYP3A4. Barbiturates induce these isoenzymes and if given concurrently with bupivacaine may decrease the efficacy of bupivacaine.
Butalbital; Acetaminophen; Caffeine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Minor) Bupivacaine is metabolized by CYP3A4. Barbiturates induce these isoenzymes and if given concurrently with bupivacaine may decrease the efficacy of bupivacaine.
Butalbital; Acetaminophen; Caffeine; Codeine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. (Minor) Bupivacaine is metabolized by CYP3A4. Barbiturates induce these isoenzymes and if given concurrently with bupivacaine may decrease the efficacy of bupivacaine.
Butalbital; Aspirin; Caffeine; Codeine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. (Minor) Bupivacaine is metabolized by CYP3A4. Barbiturates induce these isoenzymes and if given concurrently with bupivacaine may decrease the efficacy of bupivacaine.
Carbamazepine: (Minor) Bupivacaine is metabolized by CYP3A4. Carbamazepine induces these isoenzymes and if given concurrently with bupivacaine may decrease the efficacy of bupivacaine.
Carteolol: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. Use extreme caution with the concomitant use of bupivacaine and antihypertensive agents. Peripheral vasodilation may occur after use of bupivacaine. Thus, patients receiving antihypertensive agents may experience additive hypotensive effects. Blood concentrations of local anesthetics achieved after therapeutic doses are associated with minimal change in peripheral vascular resistance. Higher blood concentrations of local anesthetics may occur due to inadvertent intravascular administration or repeated doses.
Carvedilol: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. Use extreme caution with the concomitant use of bupivacaine and antihypertensive agents. Peripheral vasodilation may occur after use of bupivacaine. Thus, patients receiving antihypertensive agents may experience additive hypotensive effects. Blood concentrations of local anesthetics achieved after therapeutic doses are associated with minimal change in peripheral vascular resistance. Higher blood concentrations of local anesthetics may occur due to inadvertent intravascular administration or repeated doses.
Chlordiazepoxide; Amitriptyline: (Major) Coadminister bupivacaine and tricyclic antidepressants together with caution. If epinephrine is added to bupivacaine, severe and prolonged hypertension may occur in a patient taking a TCA. Tricyclic antidepressants can increase the sensitivity to epinephrine by inhibiting epinephrine reuptake or metabolism. If concurrent therapy is necessary, carefully monitor the patient.
Chloroprocaine: (Major) Avoid use of other local anesthetics for 96 hours after liposomal bupivacaine administration. Use chloroprocaine and other formulations of bupivacaine together with caution. Monitor cardiovascular and respiratory vital signs, as well as the patient's state of consciousness if used concurrently due to potential for additive CNS and/or cardiovascular toxic effects. Manifestations of toxicity may include CNS excitation and/or depression, cardiac conduction depression, or peripheral vasodilation. Additionally, coadministration may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue local anesthetic use. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Chloroquine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as chloroquine, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Chlorpheniramine; Codeine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Chlorpheniramine; Hydrocodone: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Cholinesterase inhibitors: (Moderate) Local anesthetics can antagonize the effects of cholinesterase inhibitors by inhibiting neuronal transmission in skeletal muscle, especially if large doses of local anesthetics are used. Also, local anesthetics interfere with the release of acetylcholine. Dosage adjustment of the cholinesterase inhibitor may be necessary.
Ciprofloxacin: (Moderate) Clinical monitoring for adverse effects, such as cardiotoxic effects, hypotension, or CNS toxicity, is recommended during coadministration as plasma concentrations of bupivacaine may be elevated when administered concurrently with ciprofloxacin. Ciprofloxacin is a CYP3A4 inhibitor, while bupivacaine is a CYP3A4 substrate.
Cisatracurium: (Moderate) Concomitant use of neuromuscular blockers and local anesthetics may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
Clomipramine: (Major) Coadminister bupivacaine and tricyclic antidepressants together with caution. If epinephrine is added to bupivacaine, severe and prolonged hypertension may occur in a patient taking a TCA. Tricyclic antidepressants can increase the sensitivity to epinephrine by inhibiting epinephrine reuptake or metabolism. If concurrent therapy is necessary, carefully monitor the patient.
Cobicistat: (Minor) Plasma concentrations of bupivacaine may be elevated when administered concurrently with cobicistat. Clinical monitoring for adverse effects, such as cardiotoxic effects, hypotension, or CNS toxicity, is recommended during coadministration. Cobicistat is a CYP3A4 inhibitor, while bupivacaine is a CYP3A4 substrate.
Codeine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Codeine; Guaifenesin: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Codeine; Guaifenesin; Pseudoephedrine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Codeine; Phenylephrine; Promethazine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Codeine; Promethazine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Conivaptan: (Major) According to the manufacturer, concomitant use of conivaptan, a strong CYP3A4 inhibitor, and CYP3A substrates, such as bupivacaine, should be avoided. Coadministration of conivaptan with other CYP3A substrates has resulted in increased mean AUC values (2 to 3 times). Theoretically, similar pharmacokinetic effects could be seen with bupivacaine. Treatment with bupivacaine may be initiated no sooner than 1 week after completion of conivaptan therapy.
Cyclophosphamide: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as cyclophosphamide, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Dapsone: (Moderate) Coadministration of dapsone with bupivacaine may increase the risk of developing methemoglobinemia. Advise patients to discontinue treatment and seek immediate medical attention with any signs or symptoms of methemoglobinemia.
Daratumumab; Hyaluronidase: (Moderate) Hyaluronidase, when used in combination with local anesthetics, hastens the onset of analgesia and reduces the swelling caused by local infiltration; this interaction is beneficial and is the reason hyaluronidase is used adjunctively in local infiltrative anesthesia techniques. However, the wider spread of the local anesthetic solution may increase the systemic absorption of the local anesthetic, which shortens the duration of anesthetic action and tends to increase the potential risk for systemic side effects.
Darunavir: (Minor) Bupivacaine is metabolized by cytochrome P450 (CYP) 3A4 isoenzymes. Known inhibitors of CYP 3A4, such as anti-retroviral protease inhibitors, may result in increased systemic levels of bupivacaine when given concurrently, with potential for toxicity. Although not studied, dosage adjustments of bupivacaine may be needed.
Darunavir; Cobicistat: (Minor) Bupivacaine is metabolized by cytochrome P450 (CYP) 3A4 isoenzymes. Known inhibitors of CYP 3A4, such as anti-retroviral protease inhibitors, may result in increased systemic levels of bupivacaine when given concurrently, with potential for toxicity. Although not studied, dosage adjustments of bupivacaine may be needed. (Minor) Plasma concentrations of bupivacaine may be elevated when administered concurrently with cobicistat. Clinical monitoring for adverse effects, such as cardiotoxic effects, hypotension, or CNS toxicity, is recommended during coadministration. Cobicistat is a CYP3A4 inhibitor, while bupivacaine is a CYP3A4 substrate.
Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Minor) Bupivacaine is metabolized by cytochrome P450 (CYP) 3A4 isoenzymes. Known inhibitors of CYP 3A4, such as anti-retroviral protease inhibitors, may result in increased systemic levels of bupivacaine when given concurrently, with potential for toxicity. Although not studied, dosage adjustments of bupivacaine may be needed. (Minor) Plasma concentrations of bupivacaine may be elevated when administered concurrently with cobicistat. Clinical monitoring for adverse effects, such as cardiotoxic effects, hypotension, or CNS toxicity, is recommended during coadministration. Cobicistat is a CYP3A4 inhibitor, while bupivacaine is a CYP3A4 substrate.
Delavirdine: (Minor) Bupivacaine is metabolized by CYP3A4 isoenzymes. Known inhibitors of CYP3A4, such as delavirdine, may result in increased systemic levels of bupivacaine when given concurrently, with potential for toxicity.
Desipramine: (Major) Coadminister bupivacaine and tricyclic antidepressants together with caution. If epinephrine is added to bupivacaine, severe and prolonged hypertension may occur in a patient taking a TCA. Tricyclic antidepressants can increase the sensitivity to epinephrine by inhibiting epinephrine reuptake or metabolism. If concurrent therapy is necessary, carefully monitor the patient.
Diltiazem: (Moderate) Diltiazem may inhibit the CYP3A4-mediated metabolism of bupivacaine. Use caution when administering these drugs concomitantly.
Donepezil: (Moderate) Local anesthetics can antagonize the effects of cholinesterase inhibitors by inhibiting neuronal transmission in skeletal muscle, especially if large doses of local anesthetics are used. Also, local anesthetics interfere with the release of acetylcholine. Dosage adjustment of the cholinesterase inhibitor may be necessary.
Donepezil; Memantine: (Moderate) Local anesthetics can antagonize the effects of cholinesterase inhibitors by inhibiting neuronal transmission in skeletal muscle, especially if large doses of local anesthetics are used. Also, local anesthetics interfere with the release of acetylcholine. Dosage adjustment of the cholinesterase inhibitor may be necessary.
Dorzolamide; Timolol: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. Use extreme caution with the concomitant use of bupivacaine and antihypertensive agents. Peripheral vasodilation may occur after use of bupivacaine. Thus, patients receiving antihypertensive agents may experience additive hypotensive effects. Blood concentrations of local anesthetics achieved after therapeutic doses are associated with minimal change in peripheral vascular resistance. Higher blood concentrations of local anesthetics may occur due to inadvertent intravascular administration or repeated doses.
Doxepin: (Major) Coadminister bupivacaine and tricyclic antidepressants together with caution. If epinephrine is added to bupivacaine, severe and prolonged hypertension may occur in a patient taking a TCA. Tricyclic antidepressants can increase the sensitivity to epinephrine by inhibiting epinephrine reuptake or metabolism. If concurrent therapy is necessary, carefully monitor the patient.
Efgartigimod Alfa; Hyaluronidase: (Moderate) Hyaluronidase, when used in combination with local anesthetics, hastens the onset of analgesia and reduces the swelling caused by local infiltration; this interaction is beneficial and is the reason hyaluronidase is used adjunctively in local infiltrative anesthesia techniques. However, the wider spread of the local anesthetic solution may increase the systemic absorption of the local anesthetic, which shortens the duration of anesthetic action and tends to increase the potential risk for systemic side effects.
Elbasvir; Grazoprevir: (Moderate) Administering bupivacaine with elbasvir; grazoprevir may result in elevated bupivacaine plasma concentrations. Bupivacaine is a substrate of CYP3A; grazoprevir is a weak CYP3A inhibitor. If these drugs are used together, closely monitor for signs of adverse events.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Alafenamide: (Minor) Plasma concentrations of bupivacaine may be elevated when administered concurrently with cobicistat. Clinical monitoring for adverse effects, such as cardiotoxic effects, hypotension, or CNS toxicity, is recommended during coadministration. Cobicistat is a CYP3A4 inhibitor, while bupivacaine is a CYP3A4 substrate.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Minor) Plasma concentrations of bupivacaine may be elevated when administered concurrently

with cobicistat. Clinical monitoring for adverse effects, such as cardiotoxic effects, hypotension, or CNS toxicity, is recommended during coadministration. Cobicistat is a CYP3A4 inhibitor, while bupivacaine is a CYP3A4 substrate.
Esmolol: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. Use extreme caution with the concomitant use of bupivacaine and antihypertensive agents. Peripheral vasodilation may occur after use of bupivacaine. Thus, patients receiving antihypertensive agents may experience additive hypotensive effects. Blood concentrations of local anesthetics achieved after therapeutic doses are associated with minimal change in peripheral vascular resistance. Higher blood concentrations of local anesthetics may occur due to inadvertent intravascular administration or repeated doses.
Etomidate: (Major) If epinephrine is added to bupivacaine, do not use the mixture in a patient during or following treatment with general anesthetics. Concurrent use has been associated with the development of cardiac arrhythmias, and should be avoided, if possible.
Fentanyl: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for epidural analgesia or additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Fluconazole: (Minor) Bupivacaine is metabolized by CYP3A4 isoenzymes. Known inhibitors of CYP3A4, such as fluconazole, may result in increased systemic levels of bupivacaine when given concurrently, with potential for toxicity.
Fluoxetine: (Minor) Bupivacaine is metabolized by CYP3A4 isoenzymes. Known inhibitors of CYP3A4, such as fluoxetine, may result in increased systemic levels of bupivacaine when given concurrently, with potential for toxicity.
Flutamide: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as flutamide, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Fluvoxamine: (Minor) Bupivacaine is metabolized by CYP3A4 isoenzymes. Known inhibitors of CYP3A4, such as fluvoxamine, may result in increased systemic levels of bupivacaine when given concurrently, with potential for toxicity.
Fosamprenavir: (Minor) Bupivacaine is metabolized by cytochrome P450 (CYP) 3A4 isoenzymes. Known inhibitors of CYP 3A4, such as anti-retroviral protease inhibitors, may result in increased systemic levels of bupivacaine when given concurrently, with potential for toxicity. Although not studied, dosage adjustments of bupivacaine may be needed.
Galantamine: (Moderate) Local anesthetics can antagonize the effects of cholinesterase inhibitors by inhibiting neuronal transmission in skeletal muscle, especially if large doses of local anesthetics are used. Also, local anesthetics interfere with the release of acetylcholine. Dosage adjustment of the cholinesterase inhibitor may be necessary.
General anesthetics: (Major) If epinephrine is added to bupivacaine, do not use the mixture in a patient during or following treatment with general anesthetics. Concurrent use has been associated with the development of cardiac arrhythmias, and should be avoided, if possible.
Guaifenesin; Hydrocodone: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Homatropine; Hydrocodone: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Hyaluronidase, Recombinant; Immune Globulin: (Moderate) Hyaluronidase, when used in combination with local anesthetics, hastens the onset of analgesia and reduces the swelling caused by local infiltration; this interaction is beneficial and is the reason hyaluronidase is used adjunctively in local infiltrative anesthesia techniques. However, the wider spread of the local anesthetic solution may increase the systemic absorption of the local anesthetic, which shortens the duration of anesthetic action and tends to increase the potential risk for systemic side effects.
Hyaluronidase: (Moderate) Hyaluronidase, when used in combination with local anesthetics, hastens the onset of analgesia and reduces the swelling caused by local infiltration; this interaction is beneficial and is the reason hyaluronidase is used adjunctively in local infiltrative anesthesia techniques. However, the wider spread of the local anesthetic solution may increase the systemic absorption of the local anesthetic, which shortens the duration of anesthetic action and tends to increase the potential risk for systemic side effects.
Hydantoins: (Minor) Bupivacaine is metabolized by CYP3A4. Hydantoins induce these isoenzymes and if given concurrently with bupivacaine may decrease the efficacy of bupivacaine.
Hydralazine; Isosorbide Dinitrate, ISDN: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as nitrates, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Hydrocodone: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Hydrocodone; Ibuprofen: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Hydrocodone; Pseudoephedrine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Hydromorphone: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Hydroxyurea: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as hydroxyurea, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Ibuprofen; Oxycodone: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Idelalisib: (Major) Avoid concomitant use of idelalisib, a strong CYP3A inhibitor, with bupivacaine, a CYP3A substrate, as bupivacaine toxicities may be significantly increased. The AUC of a sensitive CYP3A substrate was increased 5.4-fold when coadministered with idelalisib.
Ifosfamide: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as ifosfamide, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Imatinib: (Minor) Bupivacaine is metabolized by CYP3A4 isoenzymes. Known inhibitors of CYP3A4, such as imatinib, may result in increased systemic levels of bupivacaine when given concurrently, with potential for toxicity.
Imipramine: (Major) Coadminister bupivacaine and tricyclic antidepressants together with caution. If epinephrine is added to bupivacaine, severe and prolonged hypertension may occur in a patient taking a TCA. Tricyclic antidepressants can increase the sensitivity to epinephrine by inhibiting epinephrine reuptake or metabolism. If concurrent therapy is necessary, carefully monitor the patient.
Indinavir: (Minor) Bupivacaine is metabolized by cytochrome P450 (CYP) 3A4 isoenzymes. Known inhibitors of CYP 3A4, such as anti-retroviral protease inhibitors, may result in increased systemic levels of bupivacaine when given concurrently, with potential for toxicity. Although not studied, dosage adjustments of bupivacaine may be needed.
Isavuconazonium: (Moderate) Concomitant use of isavuconazonium with bupivacaine may result in increased serum concentrations of bupivacaine. Bupivacaine is a substrate of the hepatic isoenzyme CYP3A4; isavuconazole, the active moiety of isavuconazonium, is a moderate inhibitor of this enzyme. Caution and close monitoring are advised if these drugs are used together.
Isocarboxazid: (Major) Patients receiving local anesthetics may have an increased risk of hypotension. Combined hypotensive effects are possible with use of MAOIs and spinal anesthetics. When local anesthetics containing sympathomimetic vasoconstrictors (e.g., epinephrine) are coadministered with MAOIs, severe and prolonged hypertension may occur. MAOIs can increase the sensitivity to epinephrine by inhibiting epinephrine reuptake or metabolism. If concurrent therapy is necessary, carefully monitor the patient. Phenelzine and tranylcypromine are contraindicated for use for at least 10 days prior to elective surgery.
Isoflurane: (Major) If epinephrine is added to bupivacaine, do not use the mixture in a patient during or following treatment with general anesthetics. Concurrent use has been associated with the development of cardiac arrhythmias, and should be avoided, if possible.
Isosorbide Dinitrate, ISDN: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as nitrates, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Isosorbide Mononitrate: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as nitrates, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Itraconazole: (Moderate) Itraconazole causes a modest increase in bupivacaine serum concentrations. It is unclear if this increase is due to CYP3A4 inhibition by itraconazole or if other mechanisms are involved.
Ketamine: (Major) If epinephrine is added to bupivacaine, do not use the mixture in a patient during or following treatment with general anesthetics. Concurrent use has been associated with the development of cardiac arrhythmias, and should be avoided, if possible.
Ketoconazole: (Minor) Bupivacaine is metabolized by CYP3A4 isoenzymes. Known inhibitors of CYP3A4, such as ketoconazole, may result in increased systemic levels of bupivacaine when given concurrently, with potential for toxicity.
Labetalol: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. Use extreme caution with the concomitant use of bupivacaine and antihypertensive agents. Peripheral vasodilation may occur after use of bupivacaine. Thus, patients receiving antihypertensive agents may experience additive hypotensive effects. Blood concentrations of local anesthetics achieved after therapeutic doses are associated with minimal change in peripheral vascular resistance. Higher blood concentrations of local anesthetics may occur due to inadvertent intravascular administration or repeated doses.
Lamotrigine: (Moderate) Consider ECG monitoring before and during concomitant use of lamotrigine with other sodium channel blockers known to impair atrioventricular and/or intraventricular cardiac conduction, such as bupivacaine. Concomitant use of bupivacaine with lamotrigine may increase the risk of proarrhythmia, especially in patients with clinically important structural or functional heart disease. In vitro testing showed that lamotrigine exhibits class IB antiarrhythmic activity at therapeutically relevant concentrations.
Lesinurad: (Moderate) Lesinurad may decrease the systemic exposure and therapeutic efficacy of bupivacaine; monitor for potential reduction in efficacy. Bupivacaine is a CYP3A substrate, and lesinurad is a weak CYP3A inducer.
Lesinurad; Allopurinol: (Moderate) Lesinurad may decrease the systemic exposure and therapeutic efficacy of bupivacaine; monitor for potential reduction in efficacy. Bupivacaine is a CYP3A substrate, and lesinurad is a weak CYP3A inducer.
Levoketoconazole: (Minor) Bupivacaine is metabolized by CYP3A4 isoenzymes. Known inhibitors of CYP3A4, such as ketoconazole, may result in increased systemic levels of bupivacaine when given concurrently, with potential for toxicity.
Levorphanol: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Lidocaine: (Major) Avoid use of other local anesthetics for 96 hours after liposomal bupivacaine administration. Liposomal bupivacaine administration may follow lidocaine administration after a delay of 20 minutes or more. Use lidocaine and other formulations of bupivacaine together with caution. Monitor cardiovascular and respiratory vital signs, as well as the patient's state of consciousness if used concurrently due to potential for additive CNS and/or cardiovascular toxic effects. Manifestations of toxicity may include CNS excitation and/or depression, cardiac conduction depression, or peripheral vasodilation. Additionally, coadministration may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue local anesthetic use. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Lidocaine; Epinephrine: (Major) Avoid use of other local anesthetics for 96 hours after liposomal bupivacaine administration. Liposomal bupivacaine administration may follow lidocaine administration after a delay of 20 minutes or more. Use lidocaine and other formulations of bupivacaine together with caution. Monitor cardiovascular and respiratory vital signs, as well as the patient's state of consciousness if used concurrently due to potential for additive CNS and/or cardiovascular toxic effects. Manifestations of toxicity may include CNS excitation and/or depression, cardiac conduction depression, or peripheral vasodilation. Additionally, coadministration may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue local anesthetic use. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Lidocaine; Prilocaine: (Major) Avoid use of other local anesthetics for 96 hours after liposomal bupivacaine administration. Liposomal bupivacaine administration may follow lidocaine administration after a delay of 20 minutes or more. Use lidocaine and other formulations of bupivacaine together with caution. Monitor cardiovascular and respiratory vital signs, as well as the patient's state of consciousness if used concurrently due to potential for additive CNS and/or cardiovascular toxic effects. Manifestations of toxicity may include CNS excitation and/or depression, cardiac conduction depression, or peripheral vasodilation. Additionally, coadministration may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue local anesthetic use. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Major) Avoid use of other local anesthetics for 96 hours after liposomal bupivacaine administration. Use prilocaine and other formulations of bupivacaine together with caution. Monitor cardiovascular and respiratory vital signs, as well as the patient's state of consciousness if used concurrently due to potential for additive CNS and/or cardiovascular toxic effects. Manifestations of toxicity may include CNS excitation and/or depression, cardiac conduction depression, or peripheral vasodilation. Additionally, coadministration may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue local anesthetic use. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Lopinavir; Ritonavir: (Minor) Bupivacaine is metabolized by cytochrome P450 (CYP) 3A4 isoenzymes. Known inhibitors of CYP 3A4, such as anti-retroviral protease inhibitors, may result in increased systemic levels of bupivacaine when given concurrently, with potential for toxicity. Although not studied, dosage adjustments of bupivacaine may be needed.
Mafenide: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as sulfonamides, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Meperidine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Mepivacaine: (Major) Avoid use of other local anesthetics for 96 hours after liposomal bupivacaine administration. Use mepivacaine and other formulations of bupivacaine together with caution. Monitor cardiovascular and respiratory vital signs, as well as the patient's state of consciousness if used concurrently due to potential for additive CNS and/or cardiovascular toxic effects. Manifestations of toxicity may include CNS excitation and/or depression, cardiac conduction depression, or peripheral vasodilation. Additionally, coadministration may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue local anesthetic use. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Methadone: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Methohexital: (Minor) Bupivacaine is metabolized by CYP3A4. Barbiturates induce these isoenzymes and if given concurrently with bupivacaine may decrease the efficacy of bupivacaine.
Metoclopramide: (Moderate) Coadministration of bupivacaine with metoclopramide may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other agents associated with methemoglobinemia. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Metoprolol: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. Use extreme caution with the concomitant use of bupivacaine and antihypertensive agents. Peripheral vasodilation may occur after use of bupivacaine. Thus, patients receiving antihypertensive agents may experience additive hypotensive effects. Blood concentrations of local anesthetics achieved after therapeutic doses are associated with minimal change in peripheral vascular resistance. Higher blood concentrations of local anesthetics may occur due to inadvertent intravascular administration or repeated doses.
Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. Use extreme caution with the concomitant use of bupivacaine and antihypertensive agents. Peripheral vasodilation may occur after use of bupivacaine. Thus, patients receiving antihypertensive agents may experience additive hypotensive effects. Blood concentrations of local anesthetics achieved after therapeutic doses are associated with minimal change in peripheral vascular resistance. Higher blood concentrations of local anesthetics may occur due to inadvertent intravascular administration or repeated doses.
Minocycline: (Moderate) Injectable minocycline contains magnesium sulfate heptahydrate. Because of the CNS-depressant effects of magnesium sulfate, additive central-depressant effects can occur following concurrent administration with CNS depressants such as local anesthetics. Caution should be exercised when using these agents concurrently.
Mitotane: (Moderate) Use caution if mitotane and bupivacaine are used concomitantly, and monitor for decreased efficacy of bupivacaine and a possible change in dosage requirements. Mitotane is a strong CYP3A4 inducer and bupivacaine is a CYP3A4 substrate in vitro; coadministration may result in decreased plasma concentrations of bupivacaine.
Mivacurium: (Moderate) Concomitant use of neuromuscular blockers and local anesthetics may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
Monoamine oxidase inhibitors: (Major) Patients receiving local anesthetics may have an increased risk of hypotension. Combined hypotensive effects are possible with use of MAOIs and spinal anesthetics. When local anesthetics containing sympathomimetic vasoconstrictors (e.g., epinephrine) are coadministered with MAOIs, severe and prolonged hypertension may occur. MAOIs can increase the sensitivity to epinephrine by inhibiting epinephrine reuptake or metabolism. If concurrent therapy is necessary, carefully monitor the patient. Phenelzine and tranylcypromine are contraindicated for use for at least 10 days prior to elective surgery.
Morphine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Morphine; Naltrexone: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Nadolol: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. Use extreme caution with the concomitant use of bupivacaine and antihypertensive agents. Peripheral vasodilation may occur after use of bupivacaine. Thus, patients receiving antihypertensive agents may experience additive hypotensive effects. Blood concentrations of local anesthetics achieved after therapeutic doses are associated with minimal change in peripheral vascular resistance. Higher blood concentrations of local anesthetics may occur due to inadvertent intravascular administration or repeated doses.
Nebivolol: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. Use extreme caution with the concomitant use of bupivacaine and antihypertensive agents. Peripheral vasodilation may occur after use of bupivacaine. Thus, patients receiving antihypertensive agents may experience additive hypotensive effects. Blood concentrations of local anesthetics achieved after therapeutic doses are associated with minimal change in peripheral vascular resistance. Higher blood concentrations of local anesthetics may occur due to inadvertent intravascular administration or repeated doses.
Nebivolol; Valsartan: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. Use extreme caution with the concomitant use of bupivacaine and antihypertensive agents. Peripheral vasodilation may occur after use of bupivacaine. Thus, patients receiving antihypertensive agents may experience additive hypotensive effects. Blood concentrations of local anesthetics achieved after therapeutic doses are associated with minimal change in peripheral vascular resistance. Higher blood concentrations of local anesthetics may occur due to inadvertent intravascular administration or repeated doses.
Nefazodone: (Minor) Bupivacaine is metabolized by CYP3A4 isoenzymes. Known inhibitors of CYP3A4, such as nefazodone, may result in increased systemic levels of bupivacaine when given concurrently, with potential for toxicity.
Nelfinavir: (Minor) Bupivacaine is metabolized by cytochrome P450 (CYP) 3A4 isoenzymes. Known inhibitors of CYP 3A4, such as anti-retroviral protease inhibitors, may result in increased systemic levels of bupivacaine when given concurrently, with potential for toxicity. Although not studied, dosage adjustments of bupivacaine may be needed.
Neostigmine: (Moderate) Local anesthetics can antagonize the effects of cholinesterase inhibitors by inhibiting neuronal transmission in skeletal muscle, especially if large doses of local anesthetics are used. Also, local anesthetics interfere with the release of acetylcholine. Dosage adjustment of the cholinesterase inhibitor may be necessary.
Neostigmine; Glycopyrrolate: (Moderate) Local anesthetics can antagonize the effects of cholinesterase inhibitors by inhibiting neuronal transmission in skeletal muscle, especially if large doses of local anesthetics are used. Also, local anesthetics interfere with the release of acetylcholine. Dosage adjustment of the cholinesterase inhibitor may be necessary.
Neuromuscular blockers: (Moderate) Concomitant use of neuromuscular blockers and local anesthetics may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
Nirmatrelvir; Ritonavir: (Minor) Bupivacaine is metabolized by cytochrome P450 (CYP) 3A4 isoenzymes. Known inhibitors of CYP 3A4, such as anti-retroviral protease inhibitors, may result in increased systemic levels of bupivacaine when given concurrently, with potential for toxicity. Although not studied, dosage adjustments of bupivacaine may be needed.
Nitrates: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as nitrates, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Nitrofurantoin: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as nitrofurantoin, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Nitroglycerin: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as nitrates, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Nortriptyline: (Major) Coadminister bupivacaine and tricyclic antidepressants together with caution. If epinephrine is added to bupivacaine, severe and prolonged hypertension may occur in a patient taking a TCA. Tricyclic antidepressants can increase the sensitivity to epinephrine by inhibiting epinephrine reuptake or metabolism. If concurrent therapy is necessary, carefully monitor the patient.
Olanzapine; Fluoxetine: (Minor) Bupivacaine is metabolized by CYP3A4 isoenzymes. Known inhibitors of CYP3A4, such as fluoxetine, may result in increased systemic levels of bupivacaine when given concurrently, with potential for toxicity.
Oritavancin: (Minor) Bupivacaine is metabolized by CYP3A4; oritavancin is a weak CYP3A4 inducer. Plasma concentrations and efficacy of bupivacaine may be reduced if these drugs are administered concurrently.
Oxycodone: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Oxymorphone: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Pancuronium: (Moderate) Concomitant use of neuromuscular blockers and local anesthetics may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
Pazopanib: (Moderate) Pazopanib is a weak inhibitor of CYP3A4. Coadministration of pazopanib and bupivacaine, a CYP3A4 substrate, may cause an increase in systemic concentrations of bupivacaine. Use caution when administering these drugs concomitantly.
Penicillin G Benzathine; Penicillin G Procaine: (Moderate) Coadministration of penicillin G procaine with other local anesthetics, such as bupivacaine, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue penicillin G procaine and any other local anesthetic. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Penicillin G Procaine: (Moderate) Coadministration of penicillin G procaine with other local anesthetics, such as bupivacaine, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue penicillin G procaine and any other local anesthetic. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Pentobarbital: (Minor) Bupivacaine is metabolized by CYP3A4. Barbiturates induce these isoenzymes and if given concurrently with bupivacaine may decrease the efficacy of bupivacaine.
Perphenazine; Amitriptyline: (Major) Coadminister bupivacaine and tricyclic antidepressants together with caution. If epinephrine is added to bupivacaine, severe and prolonged hypertension may occur in a patient taking a TCA. Tricyclic antidepressants can increase the sensitivity to epinephrine by inhibiting epinephrine reuptake or metabolism. If concurrent therapy is necessary, carefully monitor the patient.
Pertuzumab; Trastuzumab; Hyaluronidase: (Moderate) Hyaluronidase, when used in combination with local anesthetics, hastens the onset of analgesia and reduces the swelling caused by local infiltration; this interaction is beneficial and is the reason hyaluronidase is used adjunctively in local infiltrative anesthesia techniques. However, the wider spread of the local anesthetic solution may increase the systemic absorption of the local anesthetic, which shortens the duration of anesthetic action and tends to increase the potential risk for systemic side effects.
Phenelzine: (Major) Patients receiving local anesthetics may have an increased risk of hypotension. Combined hypotensive effects are possible with use of MAOIs and spinal anesthetics. When local anesthetics containing sympathomimetic vasoconstrictors (e.g., epinephrine) are coadministered with MAOIs, severe and prolonged hypertension may occur. MAOIs can increase the sensitivity to epinephrine by inhibiting epinephrine reuptake or metabolism. If concurrent therapy is necessary, carefully monitor the patient. Phenelzine and tranylcypromine are contraindicated for use for at least 10 days prior to elective surgery.
Phenobarbital: (Minor) Bupivacaine is metabolized by CYP3A4. Barbiturates induce these isoenzymes and if given concurrently with bupivacaine may decrease the efficacy of bupivacaine.
Phenobarbital; Hyoscyamine; Atropine; Scopolamine: (Minor) Bupivacaine is metabolized by CYP3A4. Barbiturates induce these isoenzymes and if given concurrently with bupivacaine may decrease the efficacy of bupivacaine.
Physostigmine: (Moderate) Local anesthetics can antagonize the effects of cholinesterase inhibitors by inhibiting neuronal transmission in skeletal muscle, especially if large doses of local anesthetics are used. Also, local anesthetics interfere with the release of acetylcholine. Dosage adjustment of the cholinesterase inhibitor may be necessary.
Pindolol: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. Use extreme caution with the concomitant use of bupivacaine and antihypertensive agents. Peripheral vasodilation may occur after use of bupivacaine. Thus, patients receiving antihypertensive agents may experience additive hypotensive effects. Blood concentrations of local anesthetics achieved after therapeutic doses are associated with minimal change in peripheral vascular resistance. Higher blood concentrations of local anesthetics may occur due to inadvertent intravascular administration or repeated doses.
Posaconazole: (Moderate) Posaconazole and bupivacaine should be coadministered with caution due to an increased potential for bupivacaine-related adverse events. Posaconazole is a potent inhibitor of CYP3A4, an isoenzyme responsible for the metabolism of bupivacaine. These drugs used in combination may result in elevated bupivacaine plasma concentrations, causing an increased risk for bupivacaine related adverse events.
Povidone-Iodine: (Moderate) Bupivacaine liposomal should not come into contact with topical antiseptics (e.g., povidone-iodine). If a topical antiseptic is applied to the surgical site, allow the site to dry completely before administering bupivacaine liposomal.
Prilocaine: (Major) Avoid use of other local anesthetics for 96 hours after liposomal bupivacaine administration. Use prilocaine and other formulations of bupivacaine together with caution. Monitor cardiovascular and respiratory vital signs, as well as the patient's state of consciousness if used concurrently due to potential for additive CNS and/or cardiovascular toxic effects. Manifestations of toxicity may include CNS excitation and/or depression, cardiac conduction depression, or peripheral vasodilation. Additionally, coadministration may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue local anesthetic use. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Prilocaine; Epinephrine: (Major) Avoid use of other local anesthetics for 96 hours after liposomal bupivacaine administration. Use prilocaine and other formulations of bupivacaine together with caution. Monitor cardiovascular and respiratory vital signs, as well as the patient's state of consciousness if used concurrently due to potential for additive CNS and/or cardiovascular toxic effects. Manifestations of toxicity may include CNS excitation and/or depression, cardiac conduction depression, or peripheral vasodilation. Additionally, coadministration may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue local anesthetic use. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Primaquine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as primaquine, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Primidone: (Minor) Bupivacaine is metabolized by CYP3A4. Barbiturates induce these isoenzymes and if given concurrently with bupivacaine may decrease the efficacy of bupivacaine.
Procarbazine: (Major) Patients taking procarbazine should not be given local anesthetics containing sympathomimetic vasoconstrictors; coadministration may invoke a severe hypertensive reaction. Procarbazine should be discontinued for at least 10 days prior to elective surgery.
Propofol: (Major) If epinephrine is added to bupivacaine, do not use the mixture in a patient during or following treatment with general anesthetics. Concurrent use has been associated with the development of cardiac arrhythmias, and should be avoided, if possible.
Propranolol: (Major) Propranolol has been shown to significantly decrease the clearance of the amide local anesthetics (e.g., lidocaine, bupivacaine, and mepivacaine). Lidocaine and bupivacaine toxicity have been reported after coadministration with propranolol. The mechanism of the interaction between propranolol and lidocaine is thought to be due to propranolol-induced decreased hepatic blood flow causing decreased elimination of lidocaine. Local anesthetics may also cause additive hypotension in combination with antihypertensive agents. Use extreme caution with the concomitant use of bupivacaine and antihypertensive agents or rapid-onset vasodilators, such as nitrates. Peripheral vasodilation may occur after use of bupivacaine. Thus, patients receiving antihypertensive agents may experience additive hypotensive effects. Blood concentrations of local anesthetics achieved after therapeutic doses are associated with minimal change in peripheral vascular resistance. Higher blood concentrations of local anesthetics may occur due to inadvertent intravascular administration or repeated doses.
Propranolol; Hydrochlorothiazide, HCTZ: (Major) Propranolol has been shown to significantly decrease the clearance of the amide local anesthetics (e.g., lidocaine, bupivacaine, and mepivacaine). Lidocaine and bupivacaine toxicity have been reported after coadministration with propranolol. The mechanism of the interaction between propranolol and lidocaine is thought to be due to propranolol-induced decreased hepatic blood flow causing decreased elimination of lidocaine. Local anesthetics may also cause additive hypotension in combination with antihypertensive agents. Use extreme caution with the concomitant use of bupivacaine and antihypertensive agents or rapid-onset vasodilators, such as nitrates. Peripheral vasodilation may occur after use of bupivacaine. Thus, patients receiving antihypertensive agents may experience additive hypotensive effects. Blood concentrations of local anesthetics achieved after therapeutic doses are associated with minimal change in peripheral vascular resistance. Higher blood concentrations of local anesthetics may occur due to inadvertent intravascular administration or repeated doses.
Protriptyline: (Major) Coadminister bupivacaine and tricyclic antidepressants together with caution. If epinephrine is added to bupivacaine, severe and prolonged hypertension may occur in a patient taking a TCA. Tricyclic antidepressants can increase the sensitivity to epinephrine by inhibiting epinephrine reuptake or metabolism. If concurrent therapy is necessary, carefully monitor the patient.
Pyridostigmine: (Moderate) Local anesthetics can antagonize the effects of cholinesterase inhibitors by inhibiting neuronal transmission in skeletal muscle, especially if large doses of local anesthetics are used. Also, local anesthetics interfere with the release of acetylcholine. Dosage adjustment of the cholinesterase inhibitor may be necessary.
Quinine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as quinine, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Rasburicase: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as rasburicase, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Remifentanil: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Ritonavir: (Minor) Bupivacaine is metabolized by cytochrome P450 (CYP) 3A4 isoenzymes. Known inhibitors of CYP 3A4, such as anti-retroviral protease inhibitors, may result in increased systemic levels of bupivacaine when given concurrently, with potential for toxicity. Although not studied, dosage adjustments of bupivacaine may be needed.
Rituximab; Hyaluronidase: (Moderate) Hyaluronidase, when used in combination with local anesthetics, hastens the onset of analgesia and reduces the swelling caused by local infiltration; this interaction is beneficial and is the reason hyaluronidase is used adjunctively in local infiltrative anesthesia techniques. However, the wider spread of the local anesthetic solution may increase the systemic absorption of the local anesthetic, which shortens the duration of anesthetic action and tends to increase the potential risk for systemic side effects.
Rivastigmine: (Moderate) Local anesthetics can antagonize the effects of cholinesterase inhibitors by inhibiting neuronal transmission in skeletal muscle, especially if large doses of local anesthetics are used. Also, local anesthetics interfere with the release of acetylcholine. Dosage adjustment of the cholinesterase inhibitor may be necessary.
Rocuronium: (Moderate) Concomitant use of neuromuscular blockers and local anesthetics may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
Ropivacaine: (Major) Avoid use of other local anesthetics for 96 hours after liposomal bupivacaine administration. Use other formulations of bupivacaine and ropivacaine together with caution. Monitor cardiovascular and respiratory vital signs, as well as the patient's state of consciousness if used concurrently due to potential for additive CNS and/or cardiovascular toxic effects. Manifestations of toxicity may include CNS excitation and/or depression, cardiac conduction depression, or peripheral vasodilation. Additionally, coadministration may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue local anesthetic use. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Secobarbital: (Minor) Bupivacaine is metabolized by CYP3A4. Barbiturates induce these isoenzymes and if given concurrently with bupivacaine may decrease the efficacy of bupivacaine.
Sevoflurane: (Major) If epinephrine is added to bupivacaine, do not use the mixture in a patient during or following treatment with general anesthetics. Concurrent use has been associated with the development of cardiac arrhythmias, and should be avoided, if possible.
Succinylcholine: (Moderate) Concomitant use of neuromuscular blockers and local anesthetics may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
Sufentanil: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Sulfadiazine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as sulfonamides, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Sulfamethoxazole; Trimethoprim, SMX-TMP, Cotrimoxazole: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as sulfonamides, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Sulfasalazine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as sulfonamides, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Sulfonamides: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as sulfonamides, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and s ymptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Tacrine: (Moderate) Local anesthetics can antagonize the effects of cholinesterase inhibitors by inhibiting neuronal transmission in skeletal muscle, especially if large doses of local anesthetics are used. Also, local anesthetics interfere with the release of acetylcholine. Dosage adjustment of the cholinesterase inhibitor may be necessary.
Tetracaine: (Major) Avoid use of other local anesthetics for 96 hours after liposomal bupivacaine administration. Use tetracaine and other formulations of bupivacaine together with caution. Monitor cardiovascular and respiratory vital signs, as well as the patient's state of consciousness if used concurrently due to potential for additive CNS and/or cardiovascular toxic effects. Manifestations of toxicity may include CNS excitation and/or depression, cardiac conduction depression, or peripheral vasodilation. Additionally, coadministration may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue local anesthetic use. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Timolol: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. Use extreme caution with the concomitant use of bupivacaine and antihypertensive agents. Peripheral vasodilation may occur after use of bupivacaine. Thus, patients receiving antihypertensive agents may experience additive hypotensive effects. Blood concentrations of local anesthetics achieved after therapeutic doses are associated with minimal change in peripheral vascular resistance. Higher blood concentrations of local anesthetics may occur due to inadvertent intravascular administration or repeated doses.
Tipranavir: (Minor) Bupivacaine is metabolized by cytochrome P450 (CYP) 3A4 isoenzymes. Known inhibitors of CYP 3A4, such as anti-retroviral protease inhibitors, may result in increased systemic levels of bupivacaine when given concurrently, with potential for toxicity. Although not studied, dosage adjustments of bupivacaine may be needed.
Tramadol; Acetaminophen: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Trandolapril; Verapamil: (Moderate) Verapamil may inhibit the CYP3A4-mediated metabolism of and bupivacaine. Use caution when administering these drugs concomitantly.
Tranylcypromine: (Major) Patients receiving local anesthetics may have an increased risk of hypotension. Combined hypotensive effects are possible with use of MAOIs and spinal anesthetics. When local anesthetics containing sympathomimetic vasoconstrictors (e.g., epinephrine) are coadministered with MAOIs, severe and prolonged hypertension may occur. MAOIs can increase the sensitivity to epinephrine by inhibiting epinephrine reuptake or metabolism. If concurrent therapy is necessary, carefully monitor the patient. Phenelzine and tranylcypromine are contraindicated for use for at least 10 days prior to elective surgery.
Trastuzumab; Hyaluronidase: (Moderate) Hyaluronidase, when used in combination with local anesthetics, hastens the onset of analgesia and reduces the swelling caused by local infiltration; this interaction is beneficial and is the reason hyaluronidase is used adjunctively in local infiltrative anesthesia techniques. However, the wider spread of the local anesthetic solution may increase the systemic absorption of the local anesthetic, which shortens the duration of anesthetic action and tends to increase the potential risk for systemic side effects.
Tricyclic antidepressants: (Major) Coadminister bupivacaine and tricyclic antidepressants together with caution. If epinephrine is added to bupivacaine, severe and prolonged hypertension may occur in a patient taking a TCA. Tricyclic antidepressants can increase the sensitivity to epinephrine by inhibiting epinephrine reuptake or metabolism. If concurrent therapy is necessary, carefully monitor the patient.
Trimipramine: (Major) Coadminister bupivacaine and tricyclic antidepressants together with caution. If epinephrine is added to bupivacaine, severe and prolonged hypertension may occur in a patient taking a TCA. Tricyclic antidepressants can increase the sensitivity to epinephrine by inhibiting epinephrine reuptake or metabolism. If concurrent therapy is necessary, carefully monitor the patient.
Valproic Acid, Divalproex Sodium: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as valproic acid, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Vecuronium: (Moderate) Concomitant use of neuromuscular blockers and local anesthetics may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
Verapamil: (Moderate) Verapamil may inhibit the CYP3A4-mediated metabolism of and bupivacaine. Use caution when administering these drugs concomitantly.
Voriconazole: (Minor) Bupivacaine is metabolized by CYP3A4 isoenzymes. Known inhibitors of CYP3A4, such as voriconazole, may result in increased systemic levels of bupivacaine when given concurrently, with potential for toxicity.

How Supplied

Bupivacaine Hydrochloride, Dextrose/Bupivacaine, Dextrose/Marcaine Spinal Intraspinal Inj Sol: 0.75-8.25%
Bupivacaine Hydrochloride, Dextrose/Bupivacaine, Dextrose/Marcaine/Marcaine Spinal/Sensorcaine MPF Intrathecal Inj Sol: 0.75-8.25%
Bupivacaine/Bupivacaine Hydrochloride/Marcaine/POSIMIR/Sensorcaine/Sensorcaine MPF Infiltration Inj Sol: 0.25%, 0.5%, 0.75%, 1mL, 132mg
Bupivacaine/Bupivacaine Hydrochloride/Marcaine/Sensorcaine MPF Retrobulbar Inj Sol: 0.75%
Bupivacaine/Bupivacaine Hydrochloride/Marcaine/Sensorcaine/Sensorcaine MPF Epidural Inj Sol: 0.25%, 0.5%, 0.75%
Bupivacaine/Bupivacaine Hydrochloride/Marcaine/Sensorcaine/Sensorcaine MPF Intracaudal Inj Sol: 0.25%, 0.5%
Bupivacaine/Bupivacaine Hydrochloride/Marcaine/Sensorcaine/Sensorcaine MPF Intramuscular Inj Sol: 0.25%, 0.5%
Bupivacaine/Bupivacaine Hydrochloride/Marcaine/Sensorcaine/Sensorcaine MPF Perineural Inj Sol: 0.25%, 0.5%
Marcaine Epidural Sol: 0.25%
Marcaine Infiltration Sol: 0.25%
Sensorcaine MPF Subarachnoid Inj Sol: 0.75-8.25%
Xaracoll Subcutaneous Imp: 100mg

Maximum Dosage

The bupivacaine dose varies with the procedure, area to be anesthetized, tissue vascularity, number of neuronal segments to be blocked, required depth of anesthesia and degree of muscle relaxation, desired duration of anesthesia, as well as patient tolerance and physical condition.

Adults

175 mg/dose and 400 mg/24 hours for all parenteral routes; 300 mg/procedure for implant; 660 mg/procedure for subacromial space infiltration.

Geriatric

175 mg/dose and 400 mg/24 hours for all parenteral routes; 300 mg/procedure for implant; 660 mg/procedure for subacromial space infiltration.

Adolescents

175 mg/dose and 400 mg/24 hours for all parenteral routes. Safety and efficacy have not been established for implant or subacromial space infiltration.

Children

12 years: 175 mg/dose and 400 mg/24 hours for all parenteral routes. Safety and efficacy have not been established for implant or subacromial space infiltration.
1 to 11 years: 2.5 mg/kg/dose (Max: 175 mg/dose) and 400 mg/24 hours for all parenteral routes. Safety and efficacy have not been established for implant or subacromial space infiltration.

Infants

6 to 11 months: 2.5 mg/kg/dose for all parenteral routes. Safety and efficacy have not been established for implant or subacromial space infiltration.
1 to 5 months: 1.75 mg/kg/dose for all parenteral routes. Safety and efficacy have not been established for implant or subacromial space infiltration.

Neonates

Safety and efficacy have not been established.

Mechanism Of Action

Like all local anesthetics, bupivacaine causes a reversible nerve-conduction blockade by decreasing nerve membrane permeability to sodium. This decreases the rate of membrane depolarization, thereby increasing the threshold for electrical excitability.[52331] [54589] Clinically, loss of nerve function occurs in the order of 1) pain, 2) temperature, 3) touch, 4) proprioception, and 5) skeletal muscle tone. Complete sensory block occurs at recommended doses, but the effect on motor function varies with concentration. Specifically, when used for epidural, caudal, or peripheral nerve block, the 0.25% concentration produces incomplete motor block, the 0.5% concentration produces motor blockade with moderate muscle relaxation, and the 0.75% concentration produces complete muscle relaxation.[52331]
 
Systemic absorption of local anesthetics can produce cardiovascular and central nervous system (CNS) effects. At blood concentrations achieved with therapeutic doses, changes in cardiac conduction, excitability, refractoriness, contractility, and peripheral vascular resistance are minimal. Toxic blood concentrations depress cardiac conduction and excitability, which may lead to AV block, ventricular arrhythmia, cardiac arrest, and death. In addition, myocardial contractility is depressed and peripheral vasodilation occurs, leading to decreased cardiac output and arterial blood pressure. Systemic absorption of local anesthetics can produce CNS stimulation, depression, or both. CNS stimulation typically manifests as restlessness, tremors, and shivering progressing to seizures and followed by CNS depression, coma, and, ultimately, respiratory arrest. However, local anesthetics have a primary depressant effect on the medulla and higher centers; CNS depression may occur without the initial excitatory stage.[52331]

Pharmacokinetics

Bupivacaine is administered parenterally. Bupivacaine is distributed to some extent to all tissues, with a high concentration in well-perfused organs such as the liver, lung, heart, and brain.[52331] Bupivacaine is highly protein-bound (95% in adults), particularly to alpha1-acid glycoprotein.[52331] [54601] [65897] Bupivacaine is metabolized primarily in the liver via conjugation with glucuronic acid.[52331] Additionally, bupivacaine is N-dealkylated by the CYP3A subfamily, CYP2C19, and CYP2D6 to form pipecolylxylidine, the major metabolite of bupivacaine. Pipecolylxylidine is hydroxylated to form glucuronide conjugates.[34340] Approximately 6% of the dose is excreted in the urine unchanged; urinary excretion is affected by urinary perfusion and pH.[52331] Clearance is 7 to 9 mL/kg/minute, and elimination half-life is 1.2 to 2.9 hours in adults.[52331] [65897]
 
Affected cytochrome P450 isoenzymes and drug transporters: CYP3A4, CYP2C19, CYP2D6
Formation of pipecolylxylidine, the primary metabolite of bupivacaine, appears to be primarily mediated by CYP3A4. The isoenzymes CYP2C19 and CYP2D6 may play minor roles in degradation. Pipecolylxylidine constitutes 5% of the dose, and thus N-dealkylation does not appear to account for a large percentage of the drug's metabolism. Drug interactions related to CYP3A4 inhibition are unlikely.[34340] [54674]

Other Route(s)

Absorption depends on the dose, concentration, route of administration, tissue vascularity, and degree of vasodilation surrounding the area of injection.
 
Epidural and Regional Routes
Bupivacaine's onset of action is rapid (2 to 10 minutes), and it is significantly longer lasting than other commonly used local anesthetics. Analgesia persists beyond the return of sensation. After caudal, epidural, or peripheral nerve block, peak blood concentrations are achieved in 30 to 45 minutes and decline to insignificant concentrations during the next 3 to 6 hours.[52331]
 
Infiltration Route
Duration of action of ranges from 180 to 600 minutes.[64934] [65030] Local administration of bupivacaine solution for infiltration (Posimir) into the surgical wound after arthroscopic subacromial decompression results in plasma concentrations of bupivacaine that can persist for 168 hours. After infiltration into the surgical site, mean Cmax ranged from 593 +/- 299 ng/mL to 1,006 +/- 454 ng/mL, median Tmax ranged from 5.9 (1 to 24) hours to 8 (2.1 to 26.9) hours, mean AUC (0 to last sampling time) ranged from 19,395 +/- 12,056 hours x ng/mL to 47,015 +/- 20,040 hours x ng/mL, and mean half-life ranged from 16.4 +/- 5.1 hours to 26.1 +/- 8.2 hours. Systemic plasma concentrations of bupivacaine after administration of bupivacaine solution for infiltration into the subacromial space do not correlate with local efficacy.
 
Implantation Route
Local placement of the bupivacaine implant within the surgical site during open inguinal hernia repair resulted in detectable plasma concentrations of bupivacaine at the first measured time point (0.5 hours) and throughout the 96-hour observation period. After placement in the surgical site, Cmax was 663 ng/mL (range 274 to 1,230), Tmax was 3 hours (range 1.5 to 24), AUC 0-last was 19,493 hour x ng/mL, AUC 0-infinity was 20,368 hour x ng/mL, and half-life was 19 hours. Systemic plasma concentrations of bupivacaine after application of the implant do not correlate with local efficacy. The highest individual bupivacaine plasma concentration observed with the implant was 1,230 ng/mL, which occurred 2 hours after placement of the 3 bupivacaine 100 mg implants (total bupivacaine dose 300 mg) in the surgical site of a single patient.[65881]

Pregnancy And Lactation
Pregnancy

Bupivacaine is contraindicated in patients undergoing obstetrical paracervical nerve block anesthesia; the use of bupivacaine in this technique has resulted in fetal bradycardia and death.[52331] Bupivacaine spinal products (bupivacaine hydrochloride in dextrose injection) should only be used for spinal anesthesia in obstetrical patients. Unintended fetal intracranial injection of local anesthetics after intended paracervical or pudendal nerve block for obstetrical anesthesia may cause neonatal depression and seizures. Supportive measures and forced urinary excretion of the local anesthetic have been used successfully to manage this complication.[43383] Only bupivacaine 0.25% and 0.5% are indicated for obstetrical anesthesia. Bupivacaine 0.75% is not recommended for obstetrical anesthesia. Experience with nonobstetric surgical procedures in pregnant patients is not sufficient to recommend use of bupivacaine 0.75% in these patients. Cardiac arrest with difficult resuscitation or death has occurred during use of bupivacaine for epidural anesthesia; in most cases, this has followed use of bupivacaine 0.75%. Resuscitation has been difficult or impossible despite adequate preparation and appropriate management. Cardiac arrest has occurred after convulsions resulting from systemic toxicity, presumably after unintentional intravascular injection. Reserve bupivacaine 0.75% for surgical procedures where a high degree of muscle relaxation and prolonged effect are necessary. Local anesthetics rapidly cross the placenta, and when used for epidural, caudal, or pudendal block anesthesia, can cause varying degrees of maternal, fetal, and neonatal toxicity. The incidence and degree of toxicity depend upon the procedure performed, the type and amount of drug used, and the technique of drug administration. Adverse reactions in the pregnant woman, fetus, and neonate involve alterations of the central nervous system, peripheral vascular tone, and cardiac function. There are no available data on the use of bupivacaine in human pregnancy to inform a drug-associated risk of adverse developmental outcomes. If bupivacaine is used during pregnancy, or if the patient becomes pregnant while taking this drug, inform the patient of the potential hazard to the fetus. It is extremely important to avoid aortocaval compression by the gravid uterus during administration of regional block to a pregnant patient. To do this, maintain the patient in the left lateral decubitus position, or a blanket roll or sandbag may be placed beneath the right hip and gravid uterus displaced to the left. Maternal hypotension has resulted from regional anesthesia. Local anesthetics produce vasodilation by blocking sympathetic nerves. During treatment of systemic toxicity, maternal hypotension, or fetal bradycardia after regional block, maintain the pregnant patient in the left lateral decubitus position if possible, or manually displace the uterus off the great vessels. Elevating the patient's legs will also help prevent decreases in blood pressure. Monitor the fetal heart rate continuously, and electronic fetal monitoring is highly advisable. Epidural, spinal, or pudendal nerve block may alter the forces of parturition through changes in uterine contractility or maternal expulsive efforts. Epidural anesthesia may prolong the second stage of labor by removing the reflex urge to bear down or interfering with motor function. The use of obstetrical anesthesia may increase the need for forceps assistance. The use of some local anesthetic drug products during labor and obstetric delivery may be followed by diminished muscle strength and tone in a neonate for the first day or 2 of life; however, this has not been reported with bupivacaine. Placental transfer of local anesthetics is dependent upon the degree of plasma protein binding, ionization, and lipid solubility of each agent. Fetal to maternal ratios of local anesthetics appear to be inversely related to the degree of plasma protein binding since only free, unbound drug is available for placental transfer. Bupivacaine is about 95% bound to plasma proteins, resulting in a low fetal to maternal ratio (0.2 to 0.4). Subcutaneous administration of bupivacaine to pregnant rabbits during organogenesis resulted in embryofetal lethality at clinically relevant doses. Decreased pup survival occurred at a dose comparable to the daily maximum recommended human dose on a body surface area basis in a rat pre- and post-natal developmental study.[52331] [65881]