Synalgos-DC

Browse PDR's full list of drug information

Synalgos-DC

Classes

Opioid Agonists and Other Drug Combinations

Administration
Oral Administration

Administer with a full glass of water. May be taken without regard to meals.
Take as soon as headache occurs or at first sign of a migraine attack (prodromal stage).
Careful titration in opioid-naive patients is required until tolerance develops to some of the side effects (i.e., drowsiness, respiratory depression).

Adverse Reactions
Severe

coma / Early / Incidence not known
cerebral edema / Early / Incidence not known
respiratory arrest / Rapid / Incidence not known
neonatal opioid withdrawal syndrome / Delayed / Incidence not known
hepatic necrosis / Delayed / Incidence not known
hepatic encephalopathy / Delayed / Incidence not known
interstitial nephritis / Delayed / Incidence not known
renal tubular necrosis / Delayed / Incidence not known
renal papillary necrosis / Delayed / Incidence not known
renal failure (unspecified) / Delayed / Incidence not known
proteinuria / Delayed / Incidence not known
azotemia / Delayed / Incidence not known
pancytopenia / Delayed / Incidence not known
agranulocytosis / Delayed / Incidence not known
aplastic anemia / Delayed / Incidence not known
disseminated intravascular coagulation (DIC) / Delayed / Incidence not known
hemolytic anemia / Delayed / Incidence not known
GI perforation / Delayed / Incidence not known
esophageal ulceration / Delayed / Incidence not known
esophageal stricture / Delayed / Incidence not known
GI bleeding / Delayed / Incidence not known
odynophagia / Delayed / Incidence not known
hearing loss / Delayed / Incidence not known
Reye's syndrome / Delayed / Incidence not known
SIADH / Delayed / Incidence not known
angioedema / Rapid / Incidence not known
Stevens-Johnson syndrome / Delayed / Incidence not known
erythema nodosum / Delayed / Incidence not known
acute generalized exanthematous pustulosis (AGEP) / Delayed / Incidence not known
laryngeal edema / Rapid / Incidence not known
anaphylactoid reactions / Rapid / Incidence not known
bronchospasm / Rapid / Incidence not known
toxic epidermal necrolysis / Delayed / Incidence not known
seizures / Delayed / Incidence not known
pulmonary edema / Early / Incidence not known
visual impairment / Early / Incidence not known
serotonin syndrome / Delayed / Incidence not known

Moderate

confusion / Early / Incidence not known
respiratory depression / Rapid / Incidence not known
elevated hepatic enzymes / Delayed / Incidence not known
jaundice / Delayed / Incidence not known
hyperbilirubinemia / Delayed / Incidence not known
hypercalciuria / Delayed / Incidence not known
hematoma / Early / Incidence not known
platelet dysfunction / Delayed / Incidence not known
prolonged bleeding time / Delayed / Incidence not known
thrombocytopenia / Delayed / Incidence not known
leukopenia / Delayed / Incidence not known
hemolysis / Early / Incidence not known
gastritis / Delayed / Incidence not known
constipation / Delayed / Incidence not known
dysphagia / Delayed / Incidence not known
esophagitis / Delayed / Incidence not known
impotence (erectile dysfunction) / Delayed / Incidence not known
infertility / Delayed / Incidence not known
hyponatremia / Delayed / Incidence not known
adrenocortical insufficiency / Delayed / Incidence not known
hyperuricemia / Delayed / Incidence not known
tolerance / Delayed / Incidence not known
wheezing / Rapid / Incidence not known
hallucinations / Early / Incidence not known
withdrawal / Early / Incidence not known
delirium / Early / Incidence not known
excitability / Early / Incidence not known
physiological dependence / Delayed / Incidence not known
psychological dependence / Delayed / Incidence not known
hyperglycemia / Delayed / Incidence not known
dehydration / Delayed / Incidence not known
hypoglycemia / Early / Incidence not known
hypokalemia / Delayed / Incidence not known
metabolic acidosis / Delayed / Incidence not known
hypernatremia / Delayed / Incidence not known
orthostatic hypotension / Delayed / Incidence not known
sinus tachycardia / Rapid / Incidence not known
palpitations / Early / Incidence not known

Mild

abdominal pain / Early / 2.0-10.0
dyspepsia / Early / 2.0-10.0
pyrosis (heartburn) / Early / 2.0-10.0
nausea / Early / 2.0-10.0
vomiting / Early / 2.0-10.0
epistaxis / Delayed / 0-3.0
rhinitis / Early / 0-2.0
tinnitus / Delayed / 0-1.0
diaphoresis / Early / Incidence not known
drowsiness / Early / Incidence not known
fatigue / Early / Incidence not known
agitation / Early / Incidence not known
dizziness / Early / Incidence not known
miosis / Early / Incidence not known
polyuria / Early / Incidence not known
leukocytosis / Delayed / Incidence not known
diarrhea / Early / Incidence not known
libido decrease / Delayed / Incidence not known
amenorrhea / Delayed / Incidence not known
gonadal suppression / Delayed / Incidence not known
urticaria / Rapid / Incidence not known
acneiform rash / Delayed / Incidence not known
pruritus / Rapid / Incidence not known
maculopapular rash / Early / Incidence not known
purpura / Delayed / Incidence not known
lethargy / Early / Incidence not known
headache / Early / Incidence not known
irritability / Delayed / Incidence not known
insomnia / Early / Incidence not known
tremor / Early / Incidence not known
anxiety / Delayed / Incidence not known
hyperventilation / Early / Incidence not known

Boxed Warning
Chronic obstructive pulmonary disease (COPD), coadministration with other CNS depressants, cor pulmonale, hypoxemia, obesity, respiratory depression, respiratory infection, sleep apnea, status asthmaticus

As with other opioid agonists, products containing dihydrocodeine should be avoided in patients with severe pulmonary disease. Additionally, avoid coadministration with other CNS depressants unless no other alternatives are available, as this significantly increases the risk for respiratory depression, low blood pressure, and death. Dihydrocodeine can cause dose-dependent respiratory depression. Patients with pulmonary disease states causing respiratory depression, dyspnea, hypoxemia, severe pulmonary insufficiency, sleep apnea, chronic obstructive pulmonary disease (COPD), airway obstruction, or decreased pulmonary reserve (e.g., cor pulmonale, severe obesity, and kyphoscoliosis) should only use aspirin, ASA; caffeine; dihydrocodeine with close medical supervision and at the lowest effective dose. Opiates should be avoided in patients with acute bronchospasm, bronchopneumonia or respiratory infection. Avoid dihydrocodeine use in patients with uncontrolled asthma or status asthmaticus.

Adenoidectomy, children, infants, influenza, neonates, neuromuscular disease, pulmonary disease, tonsillectomy, varicella, viral infection

Aspirin, ASA; caffeine; dihydrocodeine is contraindicated in neonates, infants, and children younger than 12 years and for postoperative pain management in pediatric patients younger than 18 years after a tonsillectomy and/or adenoidectomy. Avoid use in patients 12 to 18 years of age who have other risk factors for respiratory depression unless the benefits outweigh the risks. Risk factors include conditions associated with hypoventilation such as postoperative status, obstructive sleep apnea, obesity, respiratory infection, asthma, severe pulmonary disease, neuromuscular disease, and concomitant use of other respiratory depressants. When prescribing dihydrocodeine for adolescents, choose the lowest effective dose for the shortest period of time and inform patients and caregivers of the risks and the signs of opioid overdose. Ultra-rapid metabolizers have a specific CYP2D6 genotype that allows for more rapid and complete conversion of dihydrocodeine into dihydromorphine. These individuals achieve higher than normal dihydromorphine blood concentrations, which increases the risk for overdose and fatal respiratory depression. Because some children who are normal metabolizers can covert opioids at similar rates to ultra-rapid metabolizers, this concern extends to all pediatric patients. In addition, aspirin containing products have been associated with the occurrence of Reye's syndrome when given to children and adolescents with varicella (i.e., chickenpox) or influenza. Although a causal relationship has not been confirmed, most authorities advise against the use of aspirin in children with varicella, influenza, or other viral infection.

Neonatal opioid withdrawal syndrome, pregnancy

Aspirin, caffeine, and dihydrocodeine cross the placenta. Avoid use of aspirin, ASA; caffeine; dihydrocodeine during pregnancy starting at 30 weeks of gestation (third trimester). Use of aspirin during this time period increases the risk of premature closure of the fetal ductus arteriosus resulting in pulmonary hypertension and increased fetal mortality. Aspirin use during pregnancy can also alter maternal and neonatal hemostasis mechanisms; therapeutic doses in women close to term may cause bleeding in the mother, fetus, or neonate. Use during the late stages of pregnancy may cause low birth weight, increased incidence of intracranial hemorrhage in premature infants, stillbirths, and neonatal death. Prolonged maternal use of opioids, such as dihydrocodeine, during pregnancy may result in neonatal opioid withdrawal syndrome (NOWS). This syndrome can be life-threatening. Severe symptoms may require pharmacologic therapy managed by clinicians familiar with neonatal opioid withdrawal. Monitor the newborn for withdrawal symptoms including irritability, hyperactivity, abnormal sleep pattern, high-pitched crying, tremor, vomiting, diarrhea, and failure to gain weight. Neonatal arrhythmias (e.g., tachycardia, premature atrial contractions) and tachypnea have been reported when caffeine was consumed during pregnancy in amounts more than 500 mg/day. Caffeine withdrawal in the neonate after birth may account for these symptoms. Fatal arrhythmias in neonates with caffeine use by the mother have also been reported. Caffeine containing medications should be limited to use only when absolutely necessary.

Abrupt discontinuation, substance abuse

Aspirin; ASA; caffeine; dihydrocodeine combinations should be prescribed with caution to patients with known substance abuse because of the potential for psychological and/or physical dependence to dihydrocodeine; prolonged therapy is not recommended. Patients with a previous history of substance abuse may be at increased risk. Caffeine usage on a regular basis may lead to tolerance and habituation. Sudden cessation of caffeine after prolonged intake may cause headaches, irritation, anxiety, and dizziness. Patients receiving opiate substitution therapy for substance abuse will have increased tolerance to the analgesic effects of opiate agonists used for acute pain and will require higher and more frequent dosing to control their pain. Opiate substitution therapy alone does not adequately treat pain. After prolonged use, a slow taper of medication is preferable to abrupt discontinuation to limit the risk of drug withdrawal.

Accidental exposure, potential for overdose or poisoning

Accidental exposure of even one dose of aspirin, ASA; caffeine; dihydrocodeine, especially by children, can result in respiratory depression and death due to potential for overdose or poisoning with dihydrocodeine. Keep out of the reach of children. Instruct patients to store their medication securely and properly dispose of unused drug in accordance with local state guidelines and/or regulations.

Common Brand Names

Synalgos-DC

Dea Class

Rx, schedule III

Description

Combination of aspirin, ASA; caffeine; dihydrocodeine; for moderate to moderately severe pain; produces a greater analgesic effect than aspirin or opiates alone; may cause fewer adverse reactions than equianalgesic doses of individual agents.

Dosage And Indications
For the treatment of moderate pain to severe pain (i.e. headache, myalgia, back pain, bone pain, dental pain, dysmenorrhea, or arthralgia). Oral dosage (aspirin 356.4 mg, caffeine 30 mg, and dihydrocodeine 16 mg per capsule) Adults

2 capsules PO every 4 hours as needed. Do not exceed 8 capsules in a 24-hour period. Adjust treatment according to the severity of pain and the patient response.

Dosing Considerations
Hepatic Impairment

Based upon the extensive hepatic clearance of these agents, dosage modification should be considered depending on clinical response and degree of hepatic impairment. However, no quantitative recommendations are available.

Renal Impairment

Dosage modification should be considered depending on clinical response and degree of renal impairment; however, no quantitative recommendations are available.

Drug Interactions

Abciximab: (Moderate) Unless contraindicated, aspirin is used in combination with abciximab. However, both drugs are associated with bleeding. Monitor for bleeding during concomitant therapy.
Abiraterone: (Moderate) Concomitant use of dihydrocodeine with abiraterone may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of abiraterone could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If abiraterone is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Abiraterone is a moderate inhibitor of CYP2D6.
Acetaminophen: (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. High-dose, chronic administration of the combined analgesics significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy.
Acetaminophen; Aspirin, ASA; Caffeine: (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. High-dose, chronic administration of the combined analgesics significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy.
Acetaminophen; Butalbital: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. High-dose, chronic administration of the combined analgesics significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy. (Minor) The metabolism of caffeine can be increased by concurrent use with barbiturates. The hypnotic effects of barbiturates can be reduced by caffeine administration.
Acetaminophen; Butalbital; Caffeine: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. High-dose, chronic administration of the combined analgesics significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy. (Minor) The metabolism of caffeine can be increased by concurrent use with barbiturates. The hypnotic effects of barbiturates can be reduced by caffeine administration.
Acetaminophen; Butalbital; Caffeine; Codeine: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. High-dose, chronic administration of the combined analgesics significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy. (Minor) The metabolism of caffeine can be increased by concurrent use with barbiturates. The hypnotic effects of barbiturates can be reduced by caffeine administration.
Acetaminophen; Caffeine: (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. High-dose, chronic administration of the combined analgesics significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy.
Acetaminophen; Caffeine; Dihydrocodeine: (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. High-dose, chronic administration of the combined analgesics significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy.
Acetaminophen; Caffeine; Magnesium Salicylate; Phenyltoloxamine: (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. High-dose, chronic administration of the combined analgesics significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy.
Acetaminophen; Caffeine; Phenyltoloxamine; Salicylamide: (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. High-dose, chronic administration of the combined analgesics significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. High-dose, chronic administration of the combined analgesics significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. High-dose, chronic administration of the combined analgesics significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy.
Acetaminophen; Chlorpheniramine; Phenylephrine; Phenyltoloxamine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. High-dose, chronic administration of the combined analgesics significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy.
Acetaminophen; Codeine: (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. High-dose, chronic administration of the combined analgesics significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy.
Acetaminophen; Dextromethorphan: (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. High-dose, chronic administration of the combined analgesics significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy.
Acetaminophen; Dextromethorphan; Doxylamine: (Moderate) Concomitant use of opioid agonists with doxylamine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with doxylamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. High-dose, chronic administration of the combined analgesics significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy.
Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. High-dose, chronic administration of the combined analgesics significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy.
Acetaminophen; Dextromethorphan; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. High-dose, chronic administration of the combined analgesics significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy.
Acetaminophen; Dextromethorphan; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. High-dose, chronic administration of the combined analgesics significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy.
Acetaminophen; Dichloralphenazone; Isometheptene: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. High-dose, chronic administration of the combined analgesics significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy.
Acetaminophen; Diphenhydramine: (Moderate) Concomitant use of opioid agonists with diphenhydramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with diphenhydramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. High-dose, chronic administration of the combined analgesics significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy.
Acetaminophen; Guaifenesin; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. High-dose, chronic administration of the combined analgesics significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy.
Acetaminophen; Hydrocodone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. High-dose, chronic administration of the combined analgesics significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy.
Acetaminophen; Oxycodone: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression. (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. High-dose, chronic administration of the combined analgesics significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy.
Acetaminophen; Pentazocine: (Major) Avoid the concomitant use of pentazocine and opiate agonists, such as dihydrocodeine. Pentazocine is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce the analgesic effects of dihydrocodeine. Pentazocine may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of pentazocine with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist. (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. High-dose, chronic administration of the combined analgesics significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy.
Acetaminophen; Propoxyphene: (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. High-dose, chronic administration of the combined analgesics significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy.
Acetaminophen; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. High-dose, chronic administration of the combined analgesics significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy.
Acetaminophen; Tramadol: (Major) Concomitant use of tramadol increases the seizure risk in patients taking opiate agonists. Also, tramadol can cause additive CNS depression and respiratory depression when used with opiate agonists; avoid concurrent use whenever possible. If used together, extreme caution is needed, and a reduced tramadol dose is recommended. (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. High-dose, chronic administration of the combined analgesics significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy.
Acetazolamide: (Major) Avoid the coadministration of high-dose salicylates and carbonic anhydrase inhibitors whenever possible. There were reports of anorexia, tachypnea, lethargy, metabolic acidosis, coma, and death with high-dose aspirin and acetazolamide. Two mechanisms could cause increased acetazolamide concentrations, resulting in CNS depression and metabolic acidosis: first, competition with aspirin for renal tubular secretion and, second, displacement by salicylates from plasma protein binding sites. Additionally, carbonic anhydrase inhibitors alkalinize urine and increase the excretion of normal doses of salicylates; decreased plasma salicylate concentrations may or may not be clinically significant.
Acetohexamide: (Moderate) If salicylates and sulfonylureas are to be administered together, patients should be monitored for changes in glycemic control. Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar and may potentiate the effects of other antidiabetic agents. This mechanism may explain how salicylates can potentiate the clinical effects of sulfonylureas; however, displacement of sulfonylureas from protein binding sites has also been reported. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria.
Acidifying Agents: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic.
Aclidinium; Formoterol: (Moderate) Sensitive patients may wish to limit or avoid excessive caffeine intake from foods, beverages, dietary supplements and medications during therapy with beta-agonists. Additive side effects may occur between caffeine and beta-agonists. Caffeine is a CNS-stimulant and beta-agonists are sympathomimetic agents. Sensitive patients might experience tremor, sleep difficulties, or mild increases in heart rate.
Acrivastine; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with acrivastine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with acrivastine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Adenosine: (Major) Methylxanthines, such as theophylline, aminophylline, or caffeine, competitively block the effects of adenosine. If possible, stop use of methylxanthines at least 5 half-lives prior to administering adenosine. Patients receiving theophylline, aminophylline and adenosine should be monitored for adenosine efficacy; larger doses of adenosine may be required to achieve antiarrhythmic goals in some patients. In addition, larger doses of adenosine may be required for therapeutic effect if administered to patients with high daily caffeine intake (including caffeine from foods and beverages such as coffee, green tea, other teas, colas, and chocolate). Theophylline, aminophylline may increase the risk of seizures associated with adenosine; avoid methylxanthine use in patients who have experienced an adenosine-associated seizure. Methylxanthines, such as caffeine, theophylline, and theobromine, are also found in guarana.
Ado-Trastuzumab emtansine: (Moderate) Use caution if coadministration of aspirin with ado-trastuzumab emtansine is necessary due to reports of severe and sometimes fatal hemorrhage, including intracranial bleeding, with ado-trastuzumab emtansine therapy. Consider additional monitoring when concomitant use is medically necessary. While some patients who experienced bleeding during ado-trastuzumab therapy were also receiving anticoagulation therapy, others had no known additional risk factors
Albuterol: (Moderate) Sensitive patients may wish to limit or avoid excessive caffeine intake from foods, beverages, dietary supplements and medications during therapy with beta-agonists. Additive side effects may occur between caffeine and beta-agonists. Caffeine is a CNS-stimulant and beta-agonists are sympathomimetic agents. Sensitive patients might experience tremor, sleep difficulties, or mild increases in heart rate.
Albuterol; Ipratropium: (Moderate) Sensitive patients may wish to limit or avoid excessive caffeine intake from foods, beverages, dietary supplements and medications during therapy with beta-agonists. Additive side effects may occur between caffeine and beta-agonists. Caffeine is a CNS-stimulant and beta-agonists are sympathomimetic agents. Sensitive patients might experience tremor, sleep difficulties, or mild increases in heart rate.
Aldesleukin, IL-2: (Moderate) Aldesleukin, IL-2 may affect CNS function significantly. Therefore, psychotropic pharmacodynamic interactions could occur following concomitant administration of drugs with significant CNS or psychotropic activity such as opiate agonists. In addition, aldesleukin, IL-2, is a CYP3A4 inhibitor and may increase oxycodone plasma concentrations and related toxicities including potentially fatal respiratory depression. If therapy with both agents is necessary, monitor patients for an extended period and adjust oxycodone dosage as necessary.
Aliskiren; Amlodipine: (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Aliskiren; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Alkalinizing Agents: (Moderate) Concurrent administration of high doses of alkalinizing agents may increase urine pH and decrease serum salicylate levels by decreasing renal tubular reabsorption of salicylic acid.
Alogliptin: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Alogliptin; Metformin: (Moderate) Large doses of salicylates may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis. If these agents are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Alogliptin; Pioglitazone: (Moderate) Salicylates can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates can cause hyperglycemia and glycosuria. (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Alosetron: (Major) Patients taking medications that decrease GI motility may be at greater risk for serious complications from alosetron, like constipation, via a pharmacodynamic interaction. Constipation is the most frequently reported adverse effect with alosetron. Alosetron, if used with drugs such as opiate agonists, may seriously worsen constipation, leading to events such as GI obstruction/impaction or paralytic ileus.
Alpha-glucosidase Inhibitors: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Alprazolam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Alvimopan: (Moderate) Patients should not take alvimopan if they have received therapeutic doses of opiate agonists for more than seven consecutive days immediately before initiation of alvimopan therapy. Patients recently exposed to opioids are expected to be more sensitive to the effects of mu-opioid receptor antagonists and may experience adverse effects localized to the gastrointestinal tract such as abdominal pain, nausea, vomiting, and diarrhea.
Amantadine: (Major) Amantadine used concomitantly with psychostimulants, such as caffeine, can result in increased stimulant effects, such as nervousness, irritability, or insomnia, and can lead to seizures or cardiac arrhythmias. Close monitoring of the patient is recommended.
Amide local anesthetics: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Amifampridine: (Moderate) Carefully consider the need for concomitant treatment with opioid agonists and amifampridine, as coadministration may increase the risk of seizures. If coadministration occurs, closely monitor patients for seizure activity. Seizures have been observed in patients without a history of seizures taking amifampridine at recommended doses. Opioid agonists may increase the risk of seizures.
Amiloride: (Moderate) Salicylates can increase the risk of renal insufficiency in patients receiving diuretics, secondary to effects on renal blood flow. Salicylates inhibit renal prostaglandin production, which causes salt and water retention and decreased renal blood flow. Coadministration may cause hyperkalemia.
Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal insufficiency in patients receiving diuretics, secondary to effects on renal blood flow. Salicylates inhibit renal prostaglandin production, which causes salt and water retention and decreased renal blood flow. Coadministration may cause hyperkalemia. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Aminoglycosides: (Minor) Due to the inhibition of renal prostaglandins by salicylates, concurrent use of salicylates and other nephrotoxic agents like the aminoglycosides may lead to additive nephrotoxicity.
Amiodarone: (Moderate) Concomitant use of dihydrocodeine with amiodarone may alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of dihydrocodeine until stable drug effects are achieved. Discontinuation of amiodarone could alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amiodarone is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Amiodarone is a moderate inhibitor of CYP3A4 and a weak inhibitor of CYP2D6. CYP3A4 inhibitors may increase dihydrocodeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy. (Minor) Amiodarone is an inhibitor of CYP1A2 isoenzymes, and could theoretically reduce CYP1A2-mediated caffeine metabolism. The clinical significance of this potential interaction is not known.
Amitriptyline: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation, somnolence, and increased risk of serotonin syndrome. The anticholinergic properties of tricyclic antidepressants may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Avoid prescribing opioid cough medications in patients taking tricyclic antidepressants. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and serotonin syndrome.
Amitriptyline; Chlordiazepoxide: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines. (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation, somnolence, and increased risk of serotonin syndrome. The anticholinergic properties of tricyclic antidepressants may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Avoid prescribing opioid cough medications in patients taking tricyclic antidepressants. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and serotonin syndrome.
Amlodipine: (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Amlodipine; Atorvastatin: (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Amlodipine; Benazepril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Amlodipine; Hydrochlorothiazide, HCTZ; Olmesartan: (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Amlodipine; Hydrochlorothiazide, HCTZ; Valsartan: (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Amlodipine; Olmesartan: (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Amlodipine; Telmisartan: (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Amlodipine; Valsartan: (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Amobarbital: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) The metabolism of caffeine can be increased by concurrent use with barbiturates. The hypnotic effects of barbiturates can be reduced by caffeine administration.
Amoxapine: (Major) Concomitant use of opioid agonists with amoxapine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking amoxapine. Limit the use of opioid pain medications with amoxapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Amoxicillin: (Minor) Due to the high protein binding of aspirin, it could displace or be displaced from binding sites by other highly protein-bound drugs, such as penicillins. Also, aspirin may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. Overall, this combination should be used with caution and patients monitored for increased side effects.
Amoxicillin; Clarithromycin; Lansoprazole: (Moderate) Concomitant use of dihydrocodeine with clarithromycin may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of clarithromycin could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If clarithromycin is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Clarithromycin is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) Due to the high protein binding of aspirin, it could displace or be displaced from binding sites by other highly protein-bound drugs, such as penicillins. Also, aspirin may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. Overall, this combination should be used with caution and patients monitored for increased side effects.
Amoxicillin; Clarithromycin; Omeprazole: (Moderate) Concomitant use of dihydrocodeine with clarithromycin may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of clarithromycin could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If clarithromycin is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Clarithromycin is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) Due to the high protein binding of aspirin, it could displace or be displaced from binding sites by other highly protein-bound drugs, such as penicillins. Also, aspirin may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. Overall, this combination should be used with caution and patients monitored for increased side effects.
Amoxicillin; Clavulanic Acid: (Minor) Due to the high protein binding of aspirin, it could displace or be displaced from binding sites by other highly protein-bound drugs, such as penicillins. Also, aspirin may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. Overall, this combination should be used with caution and patients monitored for increased side effects.
Amphetamine: (Moderate) Avoid excessive caffeine intake during use of the amphetamine salts. Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. Excessive caffeine ingestion (via medicines, foods like chocolate, dietary supplements, or beverages including coffee, green tea, other teas, colas) may contribute to side effects like nervousness, irritability, nausea, insomnia, or tremor. Patients should avoid medications and dietary supplements which contain high amounts of caffeine.
Amphetamine; Dextroamphetamine Salts: (Moderate) Avoid excessive caffeine intake during use of the amphetamine salts. Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. Excessive caffeine ingestion (via medicines, foods like chocolate, dietary supplements, or beverages including coffee, green tea, other teas, colas) may contribute to side effects like nervousness, irritability, nausea, insomnia, or tremor. Patients should avoid medications and dietary supplements which contain high amounts of caffeine.
Amphetamine; Dextroamphetamine: (Moderate) Avoid excessive caffeine intake during use of the amphetamine salts. Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. Excessive caffeine ingestion (via medicines, foods like chocolate, dietary supplements, or beverages including coffee, green tea, other teas, colas) may contribute to side effects like nervousness, irritability, nausea, insomnia, or tremor. Patients should avoid medications and dietary supplements which contain high amounts of caffeine.
Amphotericin B cholesteryl sulfate complex (ABCD): (Minor) Concurrent use of amphotericin B and other potentially nephrotoxic medications, like the salicylates, may enhance the potential for drug-induced renal toxicity.
Amphotericin B lipid complex (ABLC): (Minor) Concurrent use of amphotericin B and other potentially nephrotoxic medications, like the salicylates, may enhance the potential for drug-induced renal toxicity.
Amphotericin B liposomal (LAmB): (Minor) Concurrent use of amphotericin B and other potentially nephrotoxic medications, like the salicylates, may enhance the potential for drug-induced renal toxicity.
Amphotericin B: (Minor) Concurrent use of amphotericin B and other potentially nephrotoxic medications, like the salicylates, may enhance the potential for drug-induced renal toxicity.
Ampicillin: (Minor) Due to the high protein binding of aspirin, it could displace or be displaced from binding sites by other highly protein-bound drugs, such as penicillins. Also, aspirin may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. Overall, this combination should be used with caution and patients monitored for increased side effects.
Ampicillin; Sulbactam: (Minor) Due to the high protein binding of aspirin, it could displace or be displaced from binding sites by other highly protein-bound drugs, such as penicillins. Also, aspirin may compete

with penicillin for renal tubular secretion, increasing penicillin serum concentrations. Overall, this combination should be used with caution and patients monitored for increased side effects.
Anagrelide: (Moderate) Anagrelide has been shown to inhibit CYP1A2. In theory, coadministration of anagrelide with substrates of CYP1A2, including caffeine, could lead to increases in the serum concentrations of caffeine and, thus, adverse effects. (Moderate) Use caution with the coadministration of aspirin and anagrelide. The coadministration of single or repeated doses of anagrelide and aspirin resulted in greater ex vivo anti-platelet aggregation effects than administration of aspirin alone. In an observational study, the concomitant use of anagrelide and aspirin increased the rate of major hemorrhagic events compared to patients receiving other cytoreductive therapy. Assess the risks and benefits of concomitant aspirin and anagrelide use, particularly in patients at high risk for hemorrhage. Monitor for bleeding during concomitant therapy.
Angiotensin-converting enzyme inhibitors: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Anticholinergics: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Antithrombin III: (Moderate) Large doses of salicylates (more than 3 to 4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Patients taking large doses of salicylates and antithrombin III should be monitored closely for bleeding.
Antithymocyte Globulin: (Moderate) An increased risk of bleeding may occur when salicylates are used with agents that cause clinically significant thrombocytopenia due to decreases in platelet aggregation, such as anti-thymocyte immune globulin.
Apalutamide: (Moderate) Concomitant use of dihydrocodeine with apalutamide can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If apalutamide is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Apalutamide is a strong inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Apixaban: (Major) Large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Patients taking large doses of salicylates and apixaban should be monitored closely for bleeding.
Apomorphine: (Major) Concomitant use of opioid agonists with apomorphine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking apomorphine. Limit the use of opioid pain medications with apomorphine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Dopaminergic agents like apomorphine have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment.
Apraclonidine: (Minor) Theoretically, apraclonidine might potentiate the effects of CNS depressant drugs such as opiate agonists. Although no specific drug interactions were identified with systemic agents and apraclonidine during clinical trials, apraclonidine can cause dizziness and somnolence.
Aprepitant, Fosaprepitant: (Moderate) Concomitant use of dihydrocodeine with oral, multi-day regimens of aprepitant, fosaprepitant may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased hydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of aprepitant, fosaprepitant could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If aprepitant, fosaprepitant is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Aprepitant, fosaprepitant, when administered as an oral, 3-day regimen, is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Ardeparin: (Moderate) An additive risk of bleeding may be seen in patients receiving a low molecular weight heparin in combination with other agents known to increase the risk of bleeding such as salicylates. Monitor clinical and laboratory response closely during concurrent use.
Arformoterol: (Moderate) Sensitive patients may wish to limit or avoid excessive caffeine intake from foods, beverages, dietary supplements and medications during therapy with beta-agonists. Additive side effects may occur between caffeine and beta-agonists. Caffeine is a CNS-stimulant and beta-agonists are sympathomimetic agents. Sensitive patients might experience tremor, sleep difficulties, or mild increases in heart rate.
Aripiprazole: (Moderate) Concomitant use of opioid agonists with aripiprazole may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking aripiprazole. Limit the use of opioid pain medications with aripiprazole to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Armodafinil: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with armodafinil. Caffeine should be used cautiously with armodafinil. Intake of caffeine should be limited. Excessive intake may cause nervousness, irritability, insomnia, or other side effects. (Moderate) Concomitant use of dihydrocodeine with armodafinil can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If armodafinil is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Armodafinil is a weak inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Artemether; Lumefantrine: (Moderate) Artemether; lumefantrine is an inhibitor and dihydrocodeine is a substrate of the CYP2D6 isoenzyme; therefore, coadministration with acetaminophen; caffeine; dihydrocodeine may lead to increased dihydrocodeine concentrations. Concomitant use warrants caution due to the potential for increased side effects. (Moderate) Concomitant use of dihydrocodeine with lumefantrine may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of lumefantrine could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If lumefantrine is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Lumefantrine is a moderate inhibitor of CYP2D6.
Articaine; Epinephrine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Ascorbic Acid, Vitamin C: (Minor) Agents that acidify the urine should be avoided in patients receiving high-dose salicylates. Urinary pH changes can decrease salicylate excretion. However, if the urine is acidic prior to administration of an acidifying agent, the increase in salicylic acid concentrations should be minimal.
Asenapine: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking asenapine. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Aspirin, ASA; Butalbital; Caffeine: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) The metabolism of caffeine can be increased by concurrent use with barbiturates. The hypnotic effects of barbiturates can be reduced by caffeine administration.
Aspirin, ASA; Butalbital; Caffeine; Codeine: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) The metabolism of caffeine can be increased by concurrent use with barbiturates. The hypnotic effects of barbiturates can be reduced by caffeine administration.
Aspirin, ASA; Caffeine; Orphenadrine: (Major) Concomitant use of dihydrocodeine with a skeletal muscle relaxant may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients taking a skeletal muscle relaxant. Limit the use of opioid pain medications with a skeletal muscle relaxant to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Aspirin, ASA; Carisoprodol: (Major) Concomitant use of dihydrocodeine with a skeletal muscle relaxant may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients taking a skeletal muscle relaxant. Limit the use of opioid pain medications with a skeletal muscle relaxant to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Aspirin, ASA; Carisoprodol; Codeine: (Major) Concomitant use of dihydrocodeine with a skeletal muscle relaxant may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients taking a skeletal muscle relaxant. Limit the use of opioid pain medications with a skeletal muscle relaxant to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Aspirin, ASA; Citric Acid; Sodium Bicarbonate: (Moderate) Concurrent administration of high doses of alkalinizing agents may increase urine pH and decrease serum salicylate levels by decreasing renal tubular reabsorption of salicylic acid.
Aspirin, ASA; Dipyridamole: (Major) Methylxanthines, through antagonism of adenosine and thus pharmacologic-induced coronary vasodilation, have been associated with false-negative results during dipyridamole-thallium 201 stress testing. It is recommended that methylxanthines (caffeine, caffeinated beverages and foods, theophylline, etc.) be discontinued for at least 24 hours prior to stress testing. An interaction is not expected when methylxanthines are used concomitantly with chronic dipyridamole therapy. (Moderate) Although aspirin may be used in combination with dipyridamole, both drugs are associated with bleeding. Monitor for bleeding during concomitant therapy.
Aspirin, ASA; Oxycodone: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
Atazanavir: (Moderate) Concomitant use of dihydrocodeine with atazanavir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of atazanavir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If atazanavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Atazanavir is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Atazanavir; Cobicistat: (Moderate) Concomitant use of dihydrocodeine with atazanavir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of atazanavir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If atazanavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Atazanavir is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Concomitant use of dihydrocodeine with cobicistat may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of cobicistat could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If cobicistat is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Cobicistat is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Atenolol; Chlorthalidone: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Atracurium: (Moderate) Additive CNS depression may occur if dihydrocodeine is used concomitantly with other CNS depressants, including neuromuscular blockers.
Atropine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Atropine; Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Severe) Dihydrocodeine use is contraindicated in patients who are receiving or who have received monoamine oxidase inhibitors (MAOIs) within the previous 14 days. Methylene blue is a reversible inhibitor of MAO. Concomitant use of dihydrocodeine with other serotonergic drugs such as MAOIs may result in serious adverse effects including serotonin syndrome. MAOIs may cause additive CNS depression, respiratory depression, drowsiness, dizziness, or hypotension when used with opiate agonists such as dihydrocodeine. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Atropine; Difenoxin: (Moderate) Concurrent administration of diphenoxylate/difenoxin with other opiate agonists can potentiate the CNS-depressant effects of diphenoxylate/difenoxin. Use caution during coadministration. In addition, diphenoxylate/difenoxin use may cause constipation; cases of severe GI reactions including toxic megacolon and adynamic ileus have been reported. Reduced GI motility when combined with opiate agonists may increase the risk of serious GI related adverse events. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Atropine; Diphenoxylate: (Moderate) Concurrent administration of diphenoxylate/difenoxin with other opiate agonists can potentiate the CNS-depressant effects of diphenoxylate/difenoxin. Use caution during coadministration. In addition, diphenoxylate/difenoxin use may cause constipation; cases of severe GI reactions including toxic megacolon and adynamic ileus have been reported. Reduced GI motility when combined with opiate agonists may increase the risk of serious GI related adverse events. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Atropine; Edrophonium: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Atropine; Hyoscyamine; Phenobarbital; Scopolamine: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. (Minor) The metabolism of caffeine can be increased by concurrent use with barbiturates. The hypnotic effects of barbiturates can be reduced by caffeine administration.
Azelastine: (Major) Concomitant use of opioid agonists with azelastine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with azelastine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Azelastine; Fluticasone: (Major) Concomitant use of opioid agonists with azelastine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with azelastine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Azilsartan; Chlorthalidone: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Bacitracin: (Minor) Additive nephrotoxicity may occur with concurrent use of systemic bacitracin and other nephrotoxic agents, including salicylates. Topical administration of any preparation containing bacitracin, especially when applied to large surface areas, also should not be given with other drugs that have a nephrotoxic potential.
Baclofen: (Major) Concomitant use of dihydrocodeine with a skeletal muscle relaxant may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients taking a skeletal muscle relaxant. Limit the use of opioid pain medications with a skeletal muscle relaxant to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Barbiturates: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Due to high protein binding, salicylates could be displaced from binding sites, or could displace other highly protein-bound drugs such as barbiturates. An enhanced effect of the displaced drug may occur. (Minor) The metabolism of caffeine can be increased by concurrent use with barbiturates. The hypnotic effects of barbiturates can be reduced by caffeine administration.
Belladonna Alkaloids; Ergotamine; Phenobarbital: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. (Minor) The metabolism of caffeine can be increased by concurrent use with barbiturates. The hypnotic effects of barbiturates can be reduced by caffeine administration.
Belladonna; Opium: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Benazepril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Bendroflumethiazide; Nadolol: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Benzhydrocodone; Acetaminophen: (Major) Concomitant use of opioid agonists with benzhydrocodone may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of benzhydrocodone with opioid agonists to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If benzhydrocodone is initiated in a patient taking dihydrocodeine, reduce initial dosage and titrate to clinical response. If dihydrocodeine is prescribed in a patient taking benzhydrocodone, use a lower initial dose of dihydrocodeine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opioid cough medications in patients taking other opioid agonists. Careful monitoring, particularly during treatment initiation and dose adjustment, is recommended during coadministration of benzhydrocodone and dihydrocodeine because of the potential risk of serotonin syndrome. Discontinue benzhydrocodone if serotonin syndrome is suspected. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. High-dose, chronic administration of the combined analgesics significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy.
Benzodiazepines: (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Severe) Dihydrocodeine use is contraindicated in patients who are receiving or who have received monoamine oxidase inhibitors (MAOIs) within the previous 14 days. Methylene blue is a reversible inhibitor of MAO. Concomitant use of dihydrocodeine with other serotonergic drugs such as MAOIs may result in serious adverse effects including serotonin syndrome. MAOIs may cause additive CNS depression, respiratory depression, drowsiness, dizziness, or hypotension when used with opiate agonists such as dihydrocodeine. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Benzphetamine: (Moderate) Avoid excessive caffeine intake during use of benzphetamine. Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. Excessive caffeine ingestion (via medicines, foods like chocolate, dietary supplements, or beverages including coffee, green tea, other teas, colas) may contribute to side effects like nervousness, irritability, nausea, insomnia, or tremor. Patients should avoid medications and dietary supplements which contain high amounts of caffeine.
Benztropine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Beta-agonists: (Moderate) Sensitive patients may wish to limit or avoid excessive caffeine intake from foods, beverages, dietary supplements and medications during therapy with beta-agonists. Additive side effects may occur between caffeine and beta-agonists. Caffeine is a CNS-stimulant and beta-agonists are sympathomimetic agents. Sensitive patients might experience tremor, sleep difficulties, or mild increases in heart rate.
Beta-blockers: (Moderate) Concurrent use of beta-blockers with aspirin and other salicylates may result in loss of antihypertensive activity due to inhibition of renal prostaglandins and thus, salt and water retention and decreased renal blood flow.
Bethanechol: (Moderate) Bethanechol facilitates intestinal and bladder function via parasympathomimetic actions. Opiate agonists impair the peristaltic activity of the intestine. Thus, these drugs can antagonize the beneficial actions of bethanechol on GI motility.
Betrixaban: (Major) Monitor patients closely and promptly evaluate any signs or symptoms of bleeding if betrixaban and aspirin are used concomitantly. Coadministration of betrixaban and aspirin may increase the risk of bleeding.
Bexarotene: (Moderate) Concomitant use of dihydrocodeine with bexarotene can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If bexarotene is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Bexarotene is a moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Bicalutamide: (Moderate) Concomitant use of dihydrocodeine with bicalutamide may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of bicalutamide could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If bicalutamide is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Bicalutamide is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Bismuth Subcitrate Potassium; Metronidazole; Tetracycline: (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Bismuth Subsalicylate: (Major) Concomitant use of aspirin with repeated or maximum doses of bismuth subsalicylate-containing preparations may contribute to elevated serum salicylate levels and should be avoided. Consider replacing aspirin therapy with an alternative non-steroidal anti-inflammatory agent that is not salicylate based where appropriate. (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Bismuth Subsalicylate; Metronidazole; Tetracycline: (Major) Concomitant use of aspirin with repeated or maximum doses of bismuth subsalicylate-containing preparations may contribute to elevated serum salicylate levels and should be avoided. Consider replacing aspirin therapy with an alternative non-steroidal anti-inflammatory agent that is not salicylate based where appropriate. (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Bisphosphonates: (Moderate) Aspirin, ASA use is associated with esophageal and/or gastric irritation, and GI ulceration. Bisphosphonates may cause GI adverse events and occasionally, renal dysfunction. In clinical trials, aspirin use along with bisphosphonates increased the risk of GI events in some patients; however, some clinical trials of bisphosphonates have not reported increased rates of GI adverse events with aspirin co-use. Exercise caution when administering aspirin with a bisphosphonate. Though patients receiving intravenously administered bisphosphonates have a decreased incidence of GI adverse effects as compared to those taking orally administered bisphosphonates, nephrotoxicity is possible, and GI events are rarely reported. Monitor for the presence of GI complaints, including potential GI ulceration and bleeding, and monitor renal function during combined use.
Bosentan: (Moderate) Concomitant use of dihydrocodeine with bosentan can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If bosentan is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Bosentan is a moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Brexpiprazole: (Major) Concomitant use of opioid agonists with brexpiprazole may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking brexpiprazole. Limit the use of opioid pain medications with brexpiprazole to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Brigatinib: (Moderate) Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal if coadministration with brigatinib is necessary; consider increasing the dose of dihydrocodeine as needed. If brigatinib is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Dihydrocodeine is partially metabolized by CYP3A4. At clinically relevant concentrations, brigatinib induced CYP3A via activation of the pregnane X receptor (PXR); this may decrease concentrations of sensitive CYP3A substrates. Concomitant use of dihydrocodeine with brigatinib can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Brimonidine: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of opiate agonists.
Brimonidine; Brinzolamide: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of opiate agonists.
Brimonidine; Timolol: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of opiate agonists.
Bromocriptine: (Minor) Bromocriptine is highly bound (more than 90%) to serum proteins. Therefore, it may increase the unbound fraction of other highly protein-bound medications (e.g., aspirin and other salicylates), which may alter their effectiveness and risk for side effects.
Brompheniramine: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Brompheniramine; Carbetapentane; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
Brompheniramine; Dextromethorphan; Guaifenesin: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Brompheniramine; Guaifenesin; Hydrocodone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Brompheniramine; Hydrocodone; Pseudoephedrine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Brompheniramine; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Budesonide; Formoterol: (Moderate) Sensitive patients may wish to limit or avoid excessive caffeine intake from foods, beverages, dietary supplements and medications during therapy with beta-agonists. Additive side effects may occur between caffeine and beta-agonists. Caffeine is a CNS-stimulant and beta-agonists are sympathomimetic agents. Sensitive patients might experience tremor, sleep difficulties, or mild increases in heart rate.
Bumetanide: (Moderate) Salicylates may decrease the diuretic, natriuretic, and antihypertensive actions of diuretics, possibly through inhibition of renal prostaglandin synthesis. Patients receiving loop diuretics and salicylates should be monitored for changes in the effectiveness of their diuretic therapy.
Bupivacaine Liposomal: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Bupivacaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Bupivacaine; Lidocaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Buprenorphine: (Major) Buprenorphine is a mixed opiate agonist/antagonist with strong affinity for the mu-receptor that may partially block the effects of full mu-receptor opiate agonists and reduce analgesic effects. In some cases of acute pain, trauma, or during surgical management, opiate-dependent patients receiving buprenorphine maintenance therapy may require concurrent treatment with opiate agonists, such as dihydrocodeine. Dihydrocodeine is found in several combination cough products. In these cases, health care professionals must exercise caution in opiate agonist dose selection, as higher doses of an opiate agonist may be required to compete with buprenorphine at the mu-receptor. Management strategies may include adding a short-acting opiate agonist to achieve analgesia in the presence of buprenorphine, discontinuation of buprenorphine and use of an opiate agonist to avoid withdrawal and achieve analgesia, or conversion of buprenorphine to methadone while using additional opiate agonists if needed. Closely monitor patients for CNS or respiratory depression if buprenorphine is used with dihydrocodeine. When buprenorphine is used for analgesia, avoid co-use with opiate agonists. Buprenorphine may cause withdrawal symptoms in patients receiving chronic opiate agonists as well as possibly potentiate CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
Buprenorphine; Naloxone: (Major) Buprenorphine is a mixed opiate agonist/antagonist with strong affinity for the mu-receptor that may partially block the effects of full mu-receptor opiate agonists and reduce analgesic effects. In some cases of acute pain, trauma, or during surgical management, opiate-dependent patients receiving buprenorphine maintenance therapy may require concurrent treatment with opiate agonists, such as dihydrocodeine. Dihydrocodeine is found in several combination cough products. In these cases, health care professionals must exercise caution in opiate agonist dose selection, as higher doses of an opiate agonist may be required to compete with buprenorphine at the mu-receptor. Management strategies may include adding a short-acting opiate agonist to achieve analgesia in the presence of buprenorphine, discontinuation of buprenorphine and use of an opiate agonist to avoid withdrawal and achieve analgesia, or conversion of buprenorphine to methadone while using additional opiate agonists if needed. Closely monitor patients for CNS or respiratory depression if buprenorphine is used with dihydrocodeine. When buprenorphine is used for analgesia, avoid co-use with opiate agonists. Buprenorphine may cause withdrawal symptoms in patients receiving chronic opiate agonists as well as possibly potentiate CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist. (Major) Naloxone can antagonize the therapeutic efficacy of dihydrocodeine in addition to precipitating withdrawal symptoms in patients who are physically dependent on opiate drugs including dihydrocodeine.
Bupropion: (Moderate) Bupropion is associated with a dose-related risk of seizures. Excessive use of psychostimulants, including caffeine, is associated with an increased seizure risk and may increase this risk during the concurrent use of bupropion. Carefully consider a patient's caffeine intake from all sources, including medicines. Monitor for irritability, tremor, increased blood pressure, insomnia and seizures. Many non-prescription medicines and weight loss aids may contain caffeine and patients should read labels carefully. Examples of foods and beverages containing caffeine include coffee, teas, colas, energy drinks, chocolate, and some herbal or dietary supplements. Patients should be advised to limit excessive caffeine intake during bupropion therapy. (Moderate) Concomitant use of dihydrocodeine with bupropion may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of bupropion could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If bupropion is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Bupropion is a strong inhibitor of CYP2D6.
Bupropion; Naltrexone: (Major) When naltrexone is used as adjuvant treatment of opiate or alcohol dependence, use is contraindicated in patients currently receiving opiate agonists. Naltrexone will antagonize the therapeutic benefits of opiate agonists and will induce a withdrawal reaction in patients with physical dependence to opioids. Also, patients should be opiate-free for at least 7-10 days prior to initiating naltrexone therapy. If there is any question of opioid use in the past 7-10 days and the patient is not experiencing opioid withdrawal symptoms and/or the urine is negative for opioids, a naloxone challenge test needs to be performed. If a patient receives naltrexone, and an opiate agonist is needed for an emergency situation, large doses of opiate agonists may ultimately overwhelm naltrexone antagonism of opiate receptors. Immediately following administration of exogenous opiate agonists, the opiate plasma concentration may be sufficient to overcome naltrexone competitive blockade, but the patient may experience deeper and more prolonged respiratory depression and thus, may be in danger of respiratory arrest and circulatory collapse. Non-receptor mediated actions like facial swelling, itching, generalized erythema, or bronchoconstriction may occur presumably due to histamine release. A rapidly acting opiate agonist is preferred as the duration of respiratory depression will be shorter. Patients receiving naltrexone may also experience opiate side effects with low doses of opiate agonists. If the opiate agonist is taken in such a way that high concentrations remain in the body beyond the time naltrexone exerts its therapeutic effects, serious side effects may occur. (Moderate) Bupropion is associated with a dose-related risk of seizures. Excessive use of psychostimulants, including caffeine, is associated with an increased seizure risk and may increase this risk during the concurrent use of bupropion. Carefully consider a patient's caffeine intake from all sources, including medicines. Monitor for irritability, tremor, increased blood pressure, insomnia and seizures. Many non-prescription medicines and weight loss aids may contain caffeine and patients should read labels carefully. Examples of foods and beverages containing caffeine include coffee, teas, colas, energy drinks, chocolate, and some herbal or dietary supplements. Patients should be advised to limit excessive caffeine intake during bupropion therapy. (Moderate) Concomitant use of dihydrocodeine with bupropion may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of bupropion could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If bupropion is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Bupropion is a strong inhibitor of CYP2D6.
Buspirone: (Moderate) Concomitant use of CNS depressants, such as buspirone, can potentiate the effects of dihydrocodeine, which may potentially lead to respiratory depression, CNS depression, sedation, or hypotensive responses. If concurrent use of codeine and buspirone is imperative, reduce the dose of one or both drugs. (Minor) In vitro studies showed that therapeutic levels of aspirin, ASA increased the plasma concentrations of free buspirone by 23% through plasma protein binding displacement. In vivo interaction studies with these drugs have not been performed.
Butabarbital: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) The metabolism of caffeine can be increased by concurrent use with barbiturates. The hypnotic effects of barbiturates can be reduced by caffeine administration.
Butorphanol: (Major) Avoid the concomitant use of butorphanol and opiate agonists, such as dihydrocodeine. Butorphanol is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce the analgesic effects of dihydrocodeine. Butorphanol may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of butorphanol with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
Caffeine: (Moderate) Certain foods that contain high amounts of caffeine or theobromine should be limited during the therapeutic use of caffeine in order to limit additive methylxanthine effects. While taking Caffeine-containing medicines, limit the use of foods, beverages (examples: coffee, tea, colas), herbs (examples: guarana, green tea) and other products that contain additional caffeine, such as chocolate and some non-prescription medications or dietary supplements for headache, insomnia, or weight loss. Too much Caffeine can cause effects like nausea, nervousness, or sleeplessness. Some drug products for adults that contain caffeine have about as much caffeine as a cup of coffee.
Calcium Carbonate: (Minor) By increasing urinary pH, calcium carbonate can increase the urinary excretion of salicylates.
Calcium Carbonate; Magnesium Hydroxide: (Minor) By increasing urinary pH, calcium carbonate can increase the urinary excretion of salicylates.
Calcium Carbonate; Risedronate: (Minor) By increasing urinary pH, calcium carbonate can increase the urinary excretion of salicylates.
Calcium Carbonate; Simethicone: (Minor) By increasing urinary pH, calcium carbonate can increase the urinary excretion of salicylates.
Canagliflozin: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Canagliflozin; Metformin: (Moderate) Large doses of salicylates may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis. If these agents are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Cannabidiol: (Moderate) Concomitant use of opioid agonists with cannabidiol may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking cannabidiol. Limit the use of opioid pain medications with cannabidiol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Consider a dose adjustment of caffeine when coadministered with cannabidiol. Coadministration may alter plasma concentrations of caffeine resulting in an increased risk of adverse reactions and/or decreased efficacy. Caffeine is a sensitive CYP1A2 substrate. In vitro data predicts inhibition or induction of CYP1A2 by cannabidiol potentially resulting in clinically significant interactions.
Capreomycin: (Major) Since capreomycin is eliminated by the kidney, coadministration with other potentially nephrotoxic drugs, including salicylates, may increase serum concentrations of either drug. Theoretically, the chronic coadministration of these drugs may increase the risk of developing nephrotoxicity, even in patients who have normal renal function. Monitor patients for changes in renal function if these drugs are coadministered.
Capsaicin; Metaxalone: (Major) Concomitant use of dihydrocodeine with a skeletal muscle relaxant may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients taking a skeletal muscle relaxant. Limit the use of opioid pain medications with a skeletal muscle relaxant to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Captopril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Captopril; Hydrochlorothiazide, HCTZ: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Carbamazepine: (Moderate) Concomitant use of dihydrocodeine with carbamazepine can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If carbamazepine is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Carbamazepine is a strong inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) Carbamazepine may induce caffeine metabolism via induction of the hepatic CYP1A2 isoenzyme.
Carbenicillin: (Minor) Due to the high protein binding of aspirin, it could displace or be displaced from binding sites by other highly protein-bound drugs, such as penicillins. Also, aspirin may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. Overall, this combination should be used with caution and patients monitored for increased side effects.
Carbetapentane; Chlorpheniramine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
Carbetapentane; Chlorpheniramine; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
Carbetapentane; Diphenhydramine; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with diphenhydramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with diphenhydramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
Carbetapentane; Guaifenesin: (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
Carbetapentane; Guaifenesin; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
Carbetapentane; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
Carbetapentane; Phenylephrine; Pyrilamine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with pyrilamine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with pyrilamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
Carbetapentane; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
Carbetapentane; Pyrilamine: (Moderate) Concomitant use of opioid agonists with pyrilamine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with pyrilamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
Carbinoxamine: (Moderate) Concomitant use of opioid agonists with carbinoxamine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with carbinoxamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Carbinoxamine; Dextromethorphan; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with carbinoxamine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with carbinoxamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Carbinoxamine; Hydrocodone; Phenylephrine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with carbinoxamine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with carbinoxamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Carbinoxamine; Hydrocodone; Pseudoephedrine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with carbinoxamine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with carbinoxamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Carbinoxamine; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with carbinoxamine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with carbinoxamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Carbinoxamine; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with carbinoxamine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with carbinoxamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Cariprazine: (Moderate) Due to the CNS effects of cariprazine, caution is advisable when cariprazine is given in combination with other centrally-acting medications including opiate agonists.
Carisoprodol: (Major) Concomitant use of dihydrocodeine with a skeletal muscle relaxant may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients taking a skeletal muscle relaxant. Limit the use of opioid pain medications with a skeletal muscle relaxant to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Cefixime: (Minor) In vitro, salicylates have displaced cefixime from its protein-binding sites, resulting in a 50% increase in free cefixime levels. The clinical significance of this effect is unclear at this time.
Cefotetan: (Minor) Cefotetan has been associated with hypoprothrombinemia and may cause additive effects when given concurrently with salicylates.
Celecoxib: (Major) Concomitant use of analgesic doses of aspirin and celecoxib is generally not recommended due to the increased risks of bleeding and nephrotoxicity. Concurrent use of aspirin with NSAIDs does not produce a greater analgesic effect compared to the use of NSAIDs alone. Celecoxib (200 to 400 mg daily) did not interfere with the cardioprotective antiplatelet effect of aspirin (100 to 325 mg) in 2 studies in healthy volunteers and in patients with osteoarthritis and established heart disease. Concurrent use does not produce greater therapeutic effect. (Moderate) Concomitant use of dihydrocodeine with celecoxib may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of celecoxib could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If celecoxib is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Celecoxib is an inhibitor of CYP2D6.
Ceritinib: (Moderate) Concomitant use of dihydrocodeine with ceritinib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of ceritinib could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If ceritinib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Dihydrocodeine is a CYP3A4 substrate and ceritinib is a strong CYP3A4 inhibitor.
Cetirizine: (Moderate) Concomitant use of opioid agonists with cetirizine/levocetirizine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with cetirizine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Cetirizine; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with cetirizine/levocetirizine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with cetirizine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Chlophedianol; Dexbrompheniramine: (Moderate) Concomitant use of opioid agonists with dexbrompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with dexbrompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with dexchlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with dexchlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Chlophedianol; Guaifenesin; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Chloral Hydrate: (Major) Concomitant use of opioid agonists with chloral hydrate may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking chloral hydrate. Limit the use of opioid pain medications with chloral hydrate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Chloramphenicol: (Moderate) Concomitant use of dihydrocodeine with chloramphenicol may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of chloramphenicol could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If chloramphenicol is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Chloramphenicol is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Chlorcyclizine: (Moderate) Concomitant use of opioid agonists with chlorcyclizine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with chlorcyclizine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Chlordiazepoxide: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Chlordiazepoxide; Clidinium: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Chloroprocaine: (Minor) Due to the CNS depression potential of all local anesthetics, they should be used with caution with other agents that can cause respiratory depression, such as opiate agonists.
Chlorothiazide: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Chlorpheniramine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Chlorpheniramine; Codeine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Chlorpheniramine; Dextromethorphan: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Chlorpheniramine; Dihydrocodeine; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Chlorpheniramine; Guaifenesin; Hydrocodone; Pseudoephedrine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Chlorpheniramine; Hydrocodone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Chlorpheniramine; Hydrocodone; Phenylephrine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Chlorpheniramine; Hydrocodone; Pseudoephedrine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Chlorpheniramine; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Chlorpheniramine; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Chlorpromazine: (Major) Concomitant use of opioid agonists with chlorpromazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking chlorpromazine. Limit the use of opioid pain medications with chlorpromazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Chlorpropamide: (Moderate) If salicylates and sulfonylureas are to be administered together, patients should be monitored for changes in glycemic control. Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar and may potentiate the effects of other antidiabetic agents. This mechanism may explain how salicylates can potentiate the clinical effects of sulfonylureas; however, displacement of sulfonylureas from protein binding sites has also been reported. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria.
Chlorthalidone: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Chlorthalidone; Clonidine: (Moderate) Clonidine has CNS depressive effects and can potentiate the actions of other CNS depressants including opiate agonists. (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Chlorzoxazone: (Major) Concomitant use of dihydrocodeine with a skeletal muscle relaxant may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients taking a skeletal muscle relaxant. Limit the use of opioid pain medications with a skeletal muscle relaxant to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Cidofovir: (Severe) The concomitant administration of cidofovir and NSAIDs, such as aspirin, is contraindicated due to the potential for increased nephrotoxicity. Aspirin should be discontinued 7 days prior to beginning cidofovir.
Cilostazol: (Moderate) Use caution with the coadministration of aspirin and cilostazol. Although the short-term (<= 4 days) coadministration of aspirin and cilostazol increased the inhibition of ADP-induced platelet aggregation by 22% to 37% compared to aspirin or cilostazol use alone, no clinically significant effect on PT, aPTT, or bleeding time was observed compared to aspirin alone. In clinical trials, there was no apparent increase in hemorrhagic adverse effects in patients taking cilostazol and aspirin compared to aspirin alone. The effects of long-term coadministration are unknown. Monitor for bleeding during concomitant therapy.
Cimetidine: (Moderate) Concomitant use of dihydrocodeine with cimetidine may alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of dihydrocodeine until stable drug effects are achieved. Discontinuation of cimetidine could alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If cimetidine is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Cimetidine is a weak inhibitor of CYP3A4 and CYP2D6. CYP3A4 inhibitors may increase dihydrocodeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy. (Minor) Inhibitors of CYP1A2, such as cimetidine, may inhibit the hepatic oxidative metabolism of caffeine. In patients who complain of caffeine-related side effects caffeine dosage or intake may need to be reduced.
Cinacalcet: (Moderate) Concomitant use of dihydrocodeine with cinacalcet may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of cinacalcet could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If cinacalcet is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Cinacalcet is a strong inhibitor of CYP2D6.
Ciprofloxacin: (Moderate) Concomitant use of dihydrocodeine with ciprofloxacin may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of ciprofloxacin could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If ciprofloxacin is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Ciprofloxacin is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Reduction or limitation of the caffeine dosage in medications and limitation of caffeine in beverages and food may be necessary during concurrent ciprofloxacin therapy. Ciprofloxacin can decrease the clearance of caffeine. Caffeine toxicity may occur and can manifest as nausea, vomiting, anxiety, tachycardia, or seizures. Ciprofloxacin is a CYP1A2 inhibitor and caffeine is a CYP1A2 substrate.
Cisatracurium: (Moderate) Additive CNS depression may occur if dihydrocodeine is used concomitantly with other CNS depressants, including neuromuscular blockers.
Cisplatin: (Moderate) Use aspirin cautiously in patients receiving cisplatin as there is an increased risk for nephrotoxicity. Salicylates (e.g., aspirin) inhibit renal prostaglandins, adding to the cumulative nephrotoxicity caused by cisplatin.
Citalopram: (Moderate) Serotonin syndrome can occur during concomitant use of opiate agonists like dihydrocodeine with serotonergic drugs, such as citalopram. Symptoms may occur hours to days after concomitant use, particularly after dose increases. Serotonin syndrome may occur within recommended dose ranges. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) The combined use of selective serotonin reuptake inhibitors and aspirin, ASA may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. Additionally, aspirin impairs the gastric mucosa defenses by inhibiting prostaglandin formation.
Citric Acid; Potassium Citrate: (Moderate) Concurrent administration of high doses of alkalinizing agents may increase urine pH and decrease serum salicylate levels by decreasing renal tubular reabsorption of salicylic acid. (Moderate) Urinary alkalinizing agents, like potassium citrate, increase the excretion of salicylates by increasing renal clearance.
Citric Acid; Potassium Citrate; Sodium Citrate: (Moderate) Concurrent administration of high doses of alkalinizing agents may increase urine pH and decrease serum salicylate levels by decreasing renal tubular reabsorption of salicylic acid. (Moderate) Urinary alkalinizing agents, like potassium citrate, increase the excretion of salicylates by increasing renal clearance.
Citric Acid; Sodium Citrate: (Moderate) Concurrent administration of high doses of alkalinizing agents may increase urine pH and decrease serum salicylate levels by decreasing renal tubular reabsorption of salicylic acid.
Clarithromycin: (Moderate) Concomitant use of dihydrocodeine with clarithromycin may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of clarithromycin could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If clarithromycin is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Clarithromycin is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. > Clemastine: (Moderate) Concomitant use of opioid agonists with clemastine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with clemastine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Clobazam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Clomipramine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation, somnolence, and increased risk of serotonin syndrome. The anticholinergic properties of tricyclic antidepressants may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Avoid prescribing opioid cough medications in patients taking tricyclic antidepressants. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and serotonin syndrome. (Moderate) Clomipramine may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. This may increase the risk for an upper GI bleed.
Clonazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Clonidine: (Moderate) Clonidine has CNS depressive effects and can potentiate the actions of other CNS depressants including opiate agonists.
Clopidogrel: (Moderate) Although aspirin may be used in combination with clopidogrel, both drugs are associated with bleeding. In clinical trials, bleeding rates with concomitant use of aspirin and clopidogrel vs. placebo vary from similar to increased bleeding with coadministration. Monitor for bleeding during concomitant therapy. (Moderate) Coadministration of opioid agonists, such as dihydrocodeine, delay and reduce the absorption of clopidogrel resulting in reduced exposure to active metabolites and diminished inhibition of platelet aggregation. Consider the use of a parenteral antiplatelet agent in acute coronary syndrome patients requiring an opioid agonist. Coadministration of intravenous morphine decreased the Cmax and AUC of clopidogrel's active metabolites by 34%. Time required for maximal inhibition of platelet aggregation (median 3 hours vs. 1.25 hours) was significantly delayed; times up to 5 hours were reported. Inhibition of platelet plug formation was delayed and residual platelet aggregation was significantly greater 1 to 4 hours after morphine administration.
Clorazepate: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Clozapine: (Major) Caffeine may inhibit clozapine metabolism via CYP1A2. Clozapine clearance has been decreased by roughly 14 percent during coadministration of caffeine, and a documented increase in clozapine serum concentrations has occurred in selected patients. In addition, a single case report associates the appearance of psychiatric symptoms with caffeine ingestion in one patient taking clozapine. Until more data are available, caffeine consumption should be minimized during clozapine treatment. (Moderate) Pain medications such as dihydrocodeine, should be combined cautiously with clozapine due to the potential for additive depressant effects and possible respiratory depression or hypotension. Concurrent use of clozapine and opiates may also lead to reduced intestinal motility or bladder function.
Cobicistat: (Moderate) Concomitant use of dihydrocodeine with cobicistat may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of cobicistat could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If cobicistat is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Cobicistat is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Codeine; Phenylephrine; Promethazine: (Major) Concomitant use of opioid agonists with promethazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking promethazine. Limit the use of opioid pain medications with promethazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce the opioid dose by one-quarter to one-half; use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Codeine; Promethazine: (Major) Concomitant use of opioid agonists with promethazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking promethazine. Limit the use of opioid pain medications with promethazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce the opioid dose by one-quarter to one-half; use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Colchicine; Probenecid: (Severe) Concurrent use of probenecid and salicylates is contraindicated. The uricosuric actions of probenecid are inhibited by salicylates. When probenecid is used to treat hyperuricemia or gout, do not administer with salicylates.
Colistimethate, Colistin, Polymyxin E: (Major) Theoretically, the chronic coadministration of these drugs may increase the risk of developing nephrotoxicity, even in patients who have normal renal function. Monitor patients for changes in renal function if these drugs are coadministered. Since colistimethate sodium is eliminated by the kidney, coadministration with other potentially nephrotoxic drugs, including salicylates, may increase serum concentrations of either drug.
Collagenase: (Moderate) Cautious use of injectable collagenase by patients taking more than 150 mg/day of aspirin is advised. The efficacy and safety of administering injectable collagenase to a patient taking more than 150 mg/day of aspirin within 7 days before the injection are unknown. Receipt of injectable collagenase may cause an ecchymosis or bleeding at the injection site.
COMT inhibitors: (Major) Concomitant use of opioid agonists with COMT inhibitors may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking COMT inhibitors. Limit the use of opioid pain medications with COMT inhibitors to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Dopaminergic agents like entacapone and tolcapone have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment.
Conivaptan: (Moderate) Concomitant use of dihydrocodeine with conivaptan may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of conivaptan could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If conivaptan is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Conivaptan is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Corticosteroids: (Moderate) Salicylates or NSAIDs should be used cautiously in patients receiving corticosteroids. While there is controversy regarding the ulcerogenic potential of corticosteroids alone, concomitant administration of corticosteroids with aspirin may increase the GI toxicity of aspirin and other non-acetylated salicylates. Withdrawal of corticosteroids can result in increased plasma concentrations of salicylate and possible toxicity. Concomitant use of corticosteroids may increase the risk of adverse GI events due to NSAIDs. Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged coadministration should be avoided.
Crizotinib: (Moderate) Concomitant use of dihydrocodeine with crizotinib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of crizotinib could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If crizotinib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Crizotinib is a moderate inhibitor of CYP3A, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Crofelemer: (Moderate) Pharmacodynamic interactions between crofelemer and opiate agonists are theoretically possible. Crofelemer does not affect GI motility mechanisms, but does have antidiarrheal effects. Patients taking medications that decrease GI motility, such as opiate agonists, may be at greater risk for serious complications from crofelemer, such as constipation with chronic use. Use caution and monitor GI symptoms during coadministration.
Cyclizine: (Moderate) Concomitant use of opioid agonists with cyclizine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with cyclizine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Cyclobenzaprine: (Major) Concomitant use of dihydrocodeine with a skeletal muscle relaxant may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients taking a skeletal muscle relaxant. Limit the use of opioid pain medications with a skeletal muscle relaxant to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Cyclosporine: (Moderate) Concomitant use of dihydrocodeine with cyclosporine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of cyclosporine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If cyclosporine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Cyclosporine is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) Due to the inhibition of renal prostaglandins by salicylates, concurrent use of salicylates and other nephrotoxic agents like cyclosporine may lead to additive nephrotoxicity.
Cyproheptadine: (Moderate) Concomitant use of opioid agonists with cyproheptadine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with cyproheptadine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Dabigatran: (Major) Educate patients about the signs of increased bleeding and the need to report these signs to a healthcare provider immediately if coadministration of dabigatran and aspirin or another salicylate is necessary. Dabigatran can cause significant and, sometimes, fatal bleeding. This risk may be increased by concurrent use of chronic salicylate therapy.
Dabrafenib: (Moderate) Concomitant use of dihydrocodeine with dabrafenib can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If dabrafenib is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Dabrafenib is a moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Dacomitinib: (Moderate) Concomitant use of dihydrocodeine with dacomitinib may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of dacomitinib could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If dacomitinib is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Dacomitinib is a strong inhibitor of CYP2D6.
Dalfopristin; Quinupristin: (Moderate) Concomitant use of dihydrocodeine with dalfopristin; quinupristin may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of dalfopristin; quinupristin could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If dalfopristin; quinupristin is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Dalfopristin; quinupristin is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Dalteparin: (Moderate) An additive risk of bleeding may be seen in patients receiving a low molecular weight heparin in combination with other agents known to increase the risk of bleeding such as salicylates. Monitor clinical and laboratory response closely during concurrent use.
Danazol: (Moderate) Concomitant use of dihydrocodeine with danazol may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of danazol could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If danazol is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Danazol is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Danazol can decrease hepatic synthesis of procoagulant factors, increasing the possibility of bleeding when used concurrently with platelet inhibitors.
Dantrolene: (Major) Concomitant use of dihydrocodeine with a skeletal muscle relaxant may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients taking a skeletal muscle relaxant. Limit the use of opioid pain medications with a skeletal muscle relaxant to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Dapagliflozin: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Dapagliflozin; Metformin: (Moderate) Large doses of salicylates may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis. If these agents are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Dapagliflozin; Saxagliptin: (Moderate) Salicylates can indirectly increase insulin secretion, decreasing blood glucose concentrations. In large doses, salicylates may cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving saxagliptin. (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Darifenacin: (Moderate) Concomitant use of dihydrocodeine with darifenacin may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. Consider alternative therapy to dihydrocodeine when the opioid is used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of darifenacin could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If darifenacin is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine has similar pharmacokinetics to codeine and is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Darifenacin is a moderate inhibitor of CYP2D6. In addition, the concomitant use of these drugs together may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Darifenacin has anticholinergic actions that may produce additive effects. Both agents may also cause drowsiness or blurred vision, and patients should use care in driving or performing other hazardous tasks until the effects of the drugs are known. (Minor) Consuming > 400 mg/day caffeine has been associated with the development of urinary incontinence. Caffeine may aggravate bladder symptoms, increase urination, and counteract the effectiveness of darifenacin to some degree. Patients may wish to limit their intake of caffeinated drugs, dietary supplements (e.g., guarana), or beverages (e.g., green tea, other teas, coffee, colas).
Darunavir: (Moderate) Concomitant use of dihydrocodeine with darunavir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of darunavir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If darunavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Darunavir is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Darunavir; Cobicistat: (Moderate) Concomitant use of dihydrocodeine with cobicistat may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of cobicistat could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If cobicistat is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Cobicistat is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Concomitant use of dihydrocodeine with darunavir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of darunavir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If darunavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Darunavir is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Moderate) Concomitant use of dihydrocodeine with cobicistat may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of cobicistat could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If cobicistat is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Cobicistat is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Concomitant use of dihydrocodeine with darunavir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of darunavir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If darunavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Darunavir is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Dasabuvir; Ombitasvir; Paritaprevir; Ritonavir: (Moderate) Concomitant use of dihydrocodeine with ritonavir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of ritonavir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If ritonavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Ritonavir is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Deferasirox: (Moderate) Because gastric ulceration and GI bleeding have been reported in patients taking deferasirox, use caution when coadministering with other drugs known to increase the risk of peptic ulcers or gastric hemorrhage including salicylates. (Moderate) Concomitant use of dihydrocodeine with deferasirox can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If deferasirox is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Deferasirox is a weak inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Defibrotide: (Severe) Coadministration of defibrotide with antithrombotic agents like aspirin is contraindicated. The pharmacodynamic activity and risk of hemorrhage with antithrombotic agents are increased if coadministered with defibrotide. If therapy with defibrotide is necessary, discontinue antithrombotic agents prior to initiation of defibrotide therapy. Consider delaying the onset of defibrotide treatment until the effects of the antithrombotic agent have abated.
Delavirdine: (Moderate) Concomitant use of dihydrocodeine with delavirdine may alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of dihydrocodeine until stable drug effects are achieved. Discontinuation of delavirdine could alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If delavirdine is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Delavirdine is a strong inhibitor of CYP3A4 and a moderate inhibitor of CYP2D6. CYP3A4 inhibitors may increase dihydrocodeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Desflurane: (Moderate) Concurrent use with opiate agonists can decrease the minimum alveolar concentration (MAC) of desflurane needed to produce anesthesia.
Desipramine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation, somnolence, and increased risk of serotonin syndrome. The anticholinergic properties of tricyclic antidepressants may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Avoid prescribing opioid cough medications in patients taking tricyclic antidepressants. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and serotonin syndrome.
Desloratadine; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Desmopressin: (Major) Additive hyponatremic effects may be seen in patients treated with desmopressin and drugs associated with water intoxication, hyponatremia, or SIADH including opiate agonists. Use combination with caution, and monitor patients for signs and symptoms of hyponatremia.
Desvenlafaxine: (Major) Careful monitoring, particularly during treatment initiation and dose adjustment, is recommended during coadministration of dihydrocodeine and desvenlafaxine because of the potential risk of serotonin syndrome. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. Discontinue dihydrocodeine if serotonin syndrome is suspected. Additionally, concomitant use of dihydrocodeine with desvenlafaxine may decrease dihydrocodeine plasma concentrations resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of desvenlafaxine could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If desvenlafaxine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Desvenlafaxine is a weak inhibitor of CYP2D6.
Deutetrabenazine: (Major) Concomitant use of opiate agonists with deutetrabenazine may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with deutetrabenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking deutetrabenazine, use a lower initial dose of the opiate and titrate to clinical response. If deutetrabenazine is prescribed for a patient taking an opiate agonist, use a lower initial dose of deutetrabenazine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking deutetrabenazine.
Dexamethasone: (Moderate) Concomitant use of dihydrocodeine with dexamethasone can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If dexamethasone is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Dexamethasone is a moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Dexchlorpheniramine: (Moderate) Concomitant use of opioid agonists with dexchlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with dexchlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with dexchlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with dexchlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Dexmedetomidine: (Moderate) Co-administration of dexmedetomidine with opiate agonists likely to lead to an enhancement of CNS depression.
Dexmethylphenidate: (Moderate) Caffeine is a CNS stimulant and such actions are expected to be additive when coadministered with psychostimulants such as dexmethylphenidate. Avoid excessive caffeine intake during use of dexmethylphenidate. Excessive caffeine ingestion (via medicines, foods like chocolate, dietary supplements, or beverages including coffee, green tea, other teas, colas) may contribute to side effects like nervousness, irritability, nausea, insomnia, tachycardia, or tremor. Patients should avoid medications and dietary supplements which contain high amounts of caffeine.
Dexpanthenol: (Moderate) Use caution when using dexpanthenol with drugs that decrease gastrointestinal motility, such as opiate agonists, as it may decrease the effectiveness of dexpanthenol.
Dextroamphetamine: (Moderate) Avoid excessive caffeine intake during use of the amphetamine salts. Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. Excessive caffeine ingestion (via medicines, foods like chocolate, dietary supplements, or beverages including coffee, green tea, other teas, colas) may contribute to side effects like nervousness, irritability, nausea, insomnia, or tremor. Patients should avoid medications and dietary supplements which contain high amounts of caffeine.
Dextromethorphan; Diphenhydramine; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with diphenhydramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with diphenhydramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Dextromethorphan; Promethazine: (Major) Concomitant use of opioid agonists with promethazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking promethazine. Limit the use of opioid pain medications with promethazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce the opioid dose by one-quarter to one-half; use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Dextromethorphan; Quinidine: (Moderate) Concomitant use of dihydrocodeine with quinidine may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of quinidine could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If quinidine is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Quinidine is a strong inhibitor of CYP2D6.
Diazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If parental diazepam is used with an opiate agonist, reduce the opiate agonist dosage by at least 1/3. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Dichlorphenamide: (Major) Dichlorphenamide is contraindicated with the concomitant use of high dose aspirin, ASA and should be used cautiously in patients receiving low dose aspirin. Dichlorphenamide may cause an elevation in salicylate concentrations in patients receiving aspirin. Adverse reactions including anorexia, tachypnea, lethargy, and coma have been reported with the concomitant use of dichlorphenamide and high dose aspirin.
Diclofenac: (Major) Increased adverse gastrointestinal effects, including gastric ulceration or blood loss, are possible if diclofenac is used with salicylates. The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function.
Diclofenac; Misoprostol: (Major) Increased adverse gastrointestinal effects, including gastric ulceration or blood loss, are possible if diclofenac is used with salicylates. The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function.
Dicloxacillin: (Minor) Due to the high protein binding of aspirin, it could displace or be displaced from binding sites by other highly protein-bound drugs, such as penicillins. Also, aspirin may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. Overall, this combination should be used with caution and patients monitored for increased side effects.
Dicyclomine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Diethylpropion: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants.
Diflunisal: (Major) The concurrent use of diflunisal and salicylates is not recommended due to the increased risk of gastrointestinal toxicity with little or no increase in anti-inflammatory efficacy.
Dihydrocodeine; Guaifenesin; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Diltiazem: (Moderate) Concomitant use of dihydrocodeine with diltiazem may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of diltiazem could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If diltiazem is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Diltiazem is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Dimenhydrinate: (Moderate) Concomitant use of opioid agonists with dimenhydrinate may cause excessive sedation and somnolence. Limit the use of opioid pain medications with dimenhydrinate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Diphenhydramine: (Moderate) Concomitant use of opioid agonists with diphenhydramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with diphenhydramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Diphenhydramine; Hydrocodone; Phenylephrine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with diphenhydramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with diphenhydramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Diphenhydramine; Ibuprofen: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure. (Moderate) Concomitant use of opioid agonists with diphenhydramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with diphenhydramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Diphenhydramine; Naproxen: (Major) Concomitant use of analgesic doses of aspirin with naproxen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of naproxen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of naproxen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to naproxen interference with the antiplatelet effect of aspirin during the washout period. A decrease in antiplatelet activity was observed at 24 hours after 10 days of naproxen 220 mg/day with immediate-release aspirin 81 mg/day vs. aspirin alone [(93.1% (naproxen and aspirin) vs. 98.7% (aspirin alone)]. The interaction was observed even after discontinuation of naproxen on day 11 while aspirin therapy continued but normalized by day 13. The interaction was greater when naproxen was given 30 minutes before aspirin (87.7% vs. 98.7%) and minimal when aspirin was administered 30 minutes before naproxen (95.4% vs. 98.7%). The interaction was minimal at 24 hours after day 10 when naproxen 220 mg twice daily was given 30 minutes before low-dose immediate-release aspirin (95.7% vs. 98.7%); however, the interaction was greater on day 11 after naproxen discontinuation (84.3% vs. 98.7%) and did not normalize by day 13 (90.7% vs. 98.5%). The interaction may also be present with the use of prescription doses of naproxen or with enteric-coated, low-dose aspirin; however, peak interference with aspirin function may occur later due to a longer washout period. (Moderate) Concomitant use of opioid agonists with diphenhydramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with diphenhydramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Diphenhydramine; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with diphenhydramine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with diphenhydramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Dipyridamole: (Major) Methylxanthines, through antagonism of adenosine and thus pharmacologic-induced coronary vasodilation, have been associated with false-negative results during dipyridamole-thallium 201 stress testing. It is recommended that methylxanthines (caffeine, caffeinated beverages and foods, theophylline, etc.) be discontinued for at least 24 hours prior to stress testing. An interaction is not expected when methylxanthines are used concomitantly with chronic dipyridamole therapy. (Moderate) Although aspirin may be used in combination with dipyridamole, both drugs are associated with bleeding. Monitor for bleeding during concomitant therapy.
Disulfiram: (Moderate) Disulfiram has been shown to inhibit caffeine elimination. Caffeine elimination decreased by 30 percent in those patients that were not recovering alcoholics and by 24 percent in those patients that were recovering alcoholics. During disulfiram therapy, patients may need to limit their caffeine intake if nausea, nervousness, tremor, restlessness, palpitations, or insomnia complaints occur. Adverse events were not noted during this pharmacokinetic study, however, the decrease in caffeine clearance could be significant in some patients, including some patients with cardiovascular disease.
Dobutamine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants.
Dopamine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants.
Doravirine; Lamivudine; Tenofovir disoproxil fumarate: (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus.
Doxacurium: (Moderate) Additive CNS depression may occur if dihydrocodeine is used concomitantly with other CNS depressants, including neuromuscular blockers.
Doxepin: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation, somnolence, and increased risk of serotonin syndrome. The anticholinergic properties of tricyclic antidepressants may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Avoid prescribing opioid cough medications in patients taking tricyclic antidepressants. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and serotonin syndrome.
Doxylamine: (Moderate) Concomitant use of opioid agonists with doxylamine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with doxylamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Doxylamine; Pyridoxine: (Moderate) Concomitant use of opioid agonists with doxylamine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with doxylamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Dronabinol: (Mode rate) Concomitant use of opiate agonists and other CNS depressants such as dronabinol, THC may result in respiratory depression, CNS depression, and/or hypotension. Prior to concurrent use of opiate agonists in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. When concomitant treatment is necessary, reduce the dose of 1 or both drugs. When levorphanol is used with dronabinol, reduce the initial levorphanol dose by approximately 50% or more.
Dronedarone: (Moderate) Concomitant use of dihydrocodeine with dronedarone may alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of dihydrocodeine until stable drug effects are achieved. Discontinuation of dronedarone could alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If dronedarone is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Dronedarone is a moderate inhibitor of CYP3A4 and CYP2D6. CYP3A4 inhibitors may increase dihydrocodeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Droperidol: (Major) Concomitant use of opioid agonists with droperidol may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking droperidol. Limit the use of opioid pain medications with droperidol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Drospirenone; Ethinyl Estradiol: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Drospirenone; Ethinyl Estradiol; Levomefolate: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Drotrecogin Alfa: (Major) Treatment with drotrecogin alfa should be carefully considered in patients who are receiving or have received salicylates within 7 days. These patients are at increased risk of bleeding during drotrecogin alfa therapy. Caution should be used when drotrecogin alfa is used with any other drugs that affect hemostasis.
Duloxetine: (Major) Careful monitoring, particularly during treatment initiation and dose adjustment, is recommended during coadministration of dihydrocodeine and duloxetine because of the potential risk of serotonin syndrome, reduced dihydrocodeine efficacy, and potential for opioid withdrawal symptoms. Discontinue dihydrocodeine if serotonin syndrome is suspected. Concomitant use may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. Monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of duloxetine could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If duloxetine is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Duloxetine is a moderate inhibitor of CYP2D6. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome.
Duvelisib: (Moderate) Concomitant use of dihydrocodeine with duvelisib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of duvelisib could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If duvelisib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Duvelisib is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Dyphylline: (Major) Due to the risk for additive adverse effects, avoid the concurrent administration of caffeine and dyphylline-containing products when possible. Concurrent administration can produce excessive xanthine-related adverse events such as nausea, irritability, nervousness, and insomnia. More severe adverse effects such as tremors, seizures, or cardiac arrhythmias are also possible with excessive dosages and in sensitive patients. In addition, counsel patients to limit dietary caffeine intake while taking dyphylline.
Dyphylline; Guaifenesin: (Major) Due to the risk for additive adverse effects, avoid the concurrent administration of caffeine and dyphylline-containing products when possible. Concurrent administration can produce excessive xanthine-related adverse events such as nausea, irritability, nervousness, and insomnia. More severe adverse effects such as tremors, seizures, or cardiac arrhythmias are also possible with excessive dosages and in sensitive patients. In addition, counsel patients to limit dietary caffeine intake while taking dyphylline.
Echinacea: (Moderate) Echinacea may inhibit the metabolism of caffeine. Echinacea reduces the oral clearance of caffeine by 27 percent and increases the mean AUC by 129 percent. Monitor patients for signs of increased caffeine serum concentrations if these drugs are coadministered until more data are available.
Edoxaban: (Major) Monitor for bleeding in patients who require chronic treatment with aspirin. Concomitant use of edoxaban with drugs that affect hemostasis, such as aspirin, may increase the risk of bleeding. The coadministration of aspirin (100 mg or 325 mg) and edoxaban increased bleeding time relative to that seen with either drug alone.
Efalizumab: (Minor) Due to aspirin's effect on platelet aggregation and GI mucosa, aspirin should be used cautiously in patients with thrombocytopenia following treatment with antineoplastic agents due to an increased risk of bleeding.
Efavirenz: (Moderate) Concomitant use of dihydrocodeine with efavirenz can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If efavirenz is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Efavirenz is a moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Efavirenz; Emtricitabine; Tenofovir: (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus. (Moderate) Concomitant use of dihydrocodeine with efavirenz can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If efavirenz is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Efavirenz is a moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Efavirenz; Lamivudine; Tenofovir Disoproxil Fumarate: (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus. (Moderate) Concomitant use of dihydrocodeine with efavirenz can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If efavirenz is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Efavirenz is a moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Elagolix: (Moderate) Concomitant use of dihydrocodeine with elagolix can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If elagolix is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Elagolix is a weak to moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Elbasvir; Grazoprevir: (Moderate) Concomitant use of dihydrocodeine with grazoprevir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of grazoprevir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If grazoprevir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Grazoprevir is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Elexacaftor; tezacaftor; ivacaftor: (Moderate) Concomitant use of dihydrocodeine with ivacaftor may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of ivacaftor could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If ivacaftor is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Ivacaftor is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Eliglustat: (Moderate) Concomitant use of dihydrocodeine with eliglustat may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of eliglustat could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If eliglustat is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Eliglustat is a moderate inhibitor of CYP2D6.
Eltrombopag: (Moderate) Eltrombopag is a UDP-glucuronyltransferase inhibitor. Opiate agonists are a substrate of UDP-glucuronyltransferases. The significance or effect of this interaction is not known; however, elevated concentrations of the opiate agonist is possible. Monitor patients for adverse reactions if eltrombopag is administered with an opiate agonist.
Eluxadoline: (Major) Avoid use of eluxadoline with medications that may cause constipation, such as dihydrocodeine. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle within the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. Closely monitor for increased side effects if these drugs are administered together. Additionally, concomitant use of dihydrocodeine with eluxadoline may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of eluxadoline could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If eluxadoline is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Eluxadoline is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Alafenamide: (Moderate) Concomitant use of dihydrocodeine with cobicistat may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of cobicistat could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If cobicistat is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Cobicistat is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus. (Moderate) Concomitant use of dihydrocodeine with cobicistat may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of cobicistat could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If cobicistat is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Cobicistat is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Empagliflozin: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Empagliflozin; Linagliptin: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents, such as linagliptin. (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Empagliflozin; Metformin: (Moderate) Large doses of salicylates may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis. If these agents are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Emtricitabine; Rilpivirine; Tenofovir disoproxil fumarate: (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus.
Emtricitabine; Tenofovir disoproxil fumarate: (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus.
Enalapril, Enalaprilat: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Enalapril; Felodipine: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Encorafenib: (Moderate) Concomitant use of dihydrocodeine with encorafenib may alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of dihydrocodeine until stable drug effects are achieved. Discontinuation of encorafenib could alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If encorafenib is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Encorafenib is a weak inhibitor and inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. CYP3A4 inhibitors may increase dihydrocodeine-related adverse effects while CYP3A4 inducers may reduce efficacy.
Enflurane: (Major) Concomitant use of dihydrocodeine with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients receiving a general anesthetic. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Enoxaparin: (Moderate) An additive risk of bleeding may be seen in patients receiving a low molecular weight heparin in combination with other agents known to increase the risk of bleeding such as salicylates. Monitor clinical and laboratory response closely during concurrent use.
Enzalutamide: (Moderate) Concomitant use of dihydrocodeine with enzalutamide can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If enzalutamide is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Enzalutamide is a strong inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Ephedrine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants like ephedrine. Adverse effects such as nervousness, irritability, insomnia, and/or cardiac arrhythmias are also possible when excessive dosages of caffeine are taken concurrently with ephedrine. Patients may also need to limit their intake of caffeine-containing beverages or foods (e.g., coffee, green tea, other teas, guarana, colas, or chocolate) to avoid caffeine-like side effects.
Epinephrine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants.
Epoprostenol: (Moderate) When used concurrently with platelet inhibitors, epoprostenol may increase the risk of bleeding.
Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Eptifibatide: (Moderate) Unless contraindicated, aspirin is used in combination with eptifibatide. However, both drugs are associated with bleeding. Monitor for bleeding during concomitant therapy.
Ertugliflozin; Metformin: (Moderate) Large doses of salicylates may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis. If these agents are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control.
Ertugliflozin; Sitagliptin: (Moderate) Salicylates can indirectly increase insulin secretion, decreasing blood glucose concentrations. In large doses, salicylates may cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Erythromycin: (Moderate) Concomitant use of dihydrocodeine with erythromycin may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of erythromycin could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If erythromycin is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Erythromycin is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Inhibitors of the hepatic CYP4501A2, such as erythromycin, may inhibit the hepatic oxidative metabolism of caffeine. No specific management is recommended except in patients who complain of caffeine related side effects. In such patients, the dosage of caffeine containing medications or the ingestion of caffeine containing products may need to be reduced.
Erythromycin; Sulfisoxazole: (Moderate) Concomitant use of dihydrocodeine with erythromycin may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of erythromycin could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If erythromycin is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Erythromycin is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Inhibitors of the hepatic CYP4501A2, such as erythromycin, may inhibit the hepatic oxidative metabolism of caffeine. No specific management is recommended except in patients who complain of caffeine related side effects. In such patients, the dosage of caffeine containing medications or the ingestion of caffeine containing products may need to be reduced.
Escitalopram: (Moderate) Careful monitoring, particularly during treatment initiation and dose adjustment, is recommended during coadministration of dihydrocodeine and escitalopram because of the potential risk of serotonin syndrome. Discontinue dihydrocodeine if serotonin syndrome is suspected. Additionally, concomitant use of dihydrocodeine with escitalopram may decrease dihydrocodeine plasma concentrations resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of escitalopram could decrease dihydrocodeine plasma concentrations and increase diydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If escitalopram is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to diydromorphine, and by CYP3A4. Escitalopram is a weak inhibitor of CYP2D6. (Moderate) The combined use of selective serotonin reuptake inhibitors and aspirin, ASA may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. Additionally, aspirin impairs the gastric mucosa defenses by inhibiting prostaglandin formation.
Esketamine: (Major) Closely monitor blood pressure during concomitant use of esketamine and caffeine. Coadministration of psychostimulants, such as caffeine, with esketamine may increase blood pressure. (Major) Concomitant use of opioid agonists with esketamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with esketamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Patients who have received a dose of esketamine should be instructed not to drive or engage in other activities requiring complete mental alertness until the next day after a restful sleep. Educate patients about the risks and symptoms of excessive CNS depression.
Eslicarbazepine: (Moderate) Concomitant use of dihydrocodeine with eslicarbazepine can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If eslicarbazepine is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Eslicarbazepine is a moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Esomeprazole; Naproxen: (Major) Concomitant use of analgesic doses of aspirin with naproxen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of naproxen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of naproxen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to naproxen interference with the antiplatelet effect of aspirin during the washout period. A decrease in antiplatelet activity was observed at 24 hours after 10 days of naproxen 220 mg/day with immediate-release aspirin 81 mg/day vs. aspirin alone [(93.1% (naproxen and aspirin) vs. 98.7% (aspirin alone)]. The interaction was observed even after discontinuation of naproxen on day 11 while aspirin therapy continued but normalized by day 13. The interaction was greater when naproxen was given 30 minutes before aspirin (87.7% vs. 98.7%) and minimal when aspirin was administered 30 minutes before naproxen (95.4% vs. 98.7%). The interaction was minimal at 24 hours after day 10 when naproxen 220 mg twice daily was given 30 minutes before low-dose immediate-release aspirin (95.7% vs. 98.7%); however, the interaction was greater on day 11 after naproxen discontinuation (84.3% vs. 98.7%) and did not normalize by day 13 (90.7% vs. 98.5%). The interaction may also be present with the use of prescription doses of naproxen or with enteric-coated, low-dose aspirin; however, peak interference with aspirin function may occur later due to a longer washout period.
Estazolam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Eszopiclone: (Major) Concomitant use of opioid agonists with eszopiclone may cause excessive sedation, somnolence, and complex sleep-related behaviors (e.g., driving, talking, eating, or performing other activities while not fully awake). Avoid prescribing opioid cough medications in patients taking eszopiclone. Limit the use of opioid pain medications with eszopiclone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Instruct patients to contact their provider immediately if sleep-related symptoms or behaviors occur. Educate patients about the risks and symptoms of excessive CNS depression. (Minor) Patients taking eszopiclone for sleep should avoid caffeine-containing medications, dietary supplements, foods, and beverages close to bedtime, as well as excessive total daily caffeine intake, as part of proper sleep hygiene, since caffeine intake can interfere with proper sleep. Limit use of caffeine-containing products including medications, dietary supplements (e.g., guarana), and beverages (e.g., coffee, green tea, other teas, or colas).
Ethacrynic Acid: (Moderate) Salicylates may decrease the diuretic, natriuretic, and antihypertensive actions of diuretics, possibly through inhibition of renal prostaglandin synthesis. Patients receiving loop diuretics and salicylates should be monitored for changes in the effectiveness of their diuretic therapy.
Ethanol: (Major) Alcohol is associated with CNS depression. The combined use of alcohol and CNS depressants can lead to additive CNS depression, which could be dangerous in tasks requiring mental alertness and fatal in overdose. Alcohol taken with other CNS depressants can lead to additive respiratory depression, hypotension, profound sedation, or coma. Consider the patient's use of alcohol or illicit drugs when prescribing CNS depressant medications. In many cases, the patient should receive a lower dose of the CNS depressant initially if the patient is not likely to be compliant with avoiding alcohol. (Major) Concomitant ingestion of ethanol with salicylates, especially aspirin, ASA, increases the risk of developing gastric irritation and GI mucosal bleeding. Ethanol and salicylates are mucosal irritants and aspirin decreases platelet aggregation. Routine ingestion of ethanol and aspirin can cause significant GI bleeding, which may or may not be overt. Even occasional concomitant use of salicylates and ethanol should be avoided. Chronic alcoholism is often associated with hypoprothrombinemia and this condition increases the risk of salicylate-induced bleeding. Patients should be warned regarding the potential for increased risk of GI bleeding if alcohol-containing beverages are taken concurrently with salicylates.
Ethinyl Estradiol: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Ethinyl Estradiol; Desogestrel: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Ethinyl Estradiol; Ethynodiol Diacetate: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Ethinyl Estradiol; Etonogestrel: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Ethinyl Estradiol; Levonorgestrel: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Ethinyl Estradiol; Levonorgestrel; Ferrous bisglycinate: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Ethinyl Estradiol; Levonorgestrel; Folic Acid; Levomefolate: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Ethinyl Estradiol; Norelgestromin: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Ethinyl Estradiol; Norethindrone Acetate: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Ethinyl Estradiol; Norethindrone Acetate; Ferrous fumarate: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Ethinyl Estradiol; Norethindrone: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Ethinyl Estradiol; Norethindrone; Ferrous fumarate: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Ethinyl Estradiol; Norgestimate: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Ethinyl Estradiol; Norgestrel: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Ethotoin: (Minor) Large doses of salicylates can displace hydantoins from plasma protein-binding sites. Although increased serum concentrations of unbound phenytoin may lead to phenytoin toxicity, the liver may also more rapidly clear unbound drug.
Etodolac: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
Etomidate: (Major) Concomitant use of dihydrocodeine with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients receiving a general anesthetic. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Etoposide, VP-16: (Major) Monitor for an increase in etoposide-related adverse effects if etoposide, VP-16 is coadministered with aspirin, ASA. Etoposide is highly protein bound (97% to albumin); aspirin displaced protein-bound etoposide at concentrations achieved in vivo in a study evaluating the effect of other drugs on the binding of carbon-14 labeled etoposide to human serum proteins.
Etravirine: (Moderate) Concomitant use of dihydrocodeine with etravirine can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If etravirine is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Etravirine is a moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Everolimus: (Moderate) Concomitant use of dihydrocodeine with everolimus may alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of dihydrocodeine until stable drug effects are achieved. Discontinuation of everolimus could alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If everolimus is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Everolimus is a weak inhibitor of CYP3A4 and CYP2D6. CYP3A4 inhibitors may increase dihydrocodeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Famotidine; Ibuprofen: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure.
Fedratinib: (Moderate) Concomitant use of dihydrocodeine with fedratinib may alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of dihydrocodeine until stable drug effects are achieved. If fedratinib is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Fedratinib is a moderate inhibitor of CYP3A4 and CYP2D6. CYP3A4 inhibitors may increase dihydrocodeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Fenoprofen: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
Fesoterodine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when fesoterodine, an anticholinergic drug for overactive bladder. is used with opiate agonists. The concomitant use of these drugs together may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. Both agents may also cause drowsiness or blurred vision, and patients should use care in driving or performing other hazardous tasks until the effects of the drugs are known. (Minor) Beverages containing caffeine or ethanol may aggravate bladder symptoms and counteract the effectiveness of fesoterodine to some degree. Patients may wish to limit their intake of caffeinated drugs, dietary supplements (e.g., guarana), or beverages (e.g., green tea, other teas, coffee, colas) and alcoholic beverages.
Fexofenadine; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Fish Oil, Omega-3 Fatty Acids (Dietary Supplements): (Moderate) Because fish oil, omega-3 fatty acids inhibit platelet aggregation, caution is advised when fish oils are used concurrently with aspirin. Theoretically, the risk of bleeding may be increased.
Flavocoxid, Flavocoxid; Citrated Zinc Bisglycinate: (Major) Because flavocoxid has been associated with isolated cases of occult GI bleeding, additive pharmacodynamic effects may be seen in patients receiving salicylates. Avoid the concurrent use of flavocoxid with salicylates until further data are available.
Flavoxate: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Flibanserin: (Moderate) The concomitant use of flibanserin with CNS depressants, such as opiate agonists, may increase the risk of CNS depression (e.g., dizziness, somnolence) compared to the use of flibanserin alone. Patients should avoid activities requiring full alertness (e.g., operating machinery or driving) until at least 6 hours after each dose and until they know how flibanserin affects them.
Fluconazole: (Moderate) Concomitant use of dihydrocodeine with fluconazole may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of fluconazole could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If fluconazole is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Fluconazole is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Fluconazole has been shown to inhibit the clearance of caffeine by 25 percent. The clinical significance of these interactions has not been determined.
Fluoxetine: (Moderate) Careful monitoring, particularly during treatment initiation and dose adjustment, is recommended during coadministration of dihydrocodeine and fluoxetine because of the potential risk of serotonin syndrome, reduced dihydrocodeine efficacy, and potential for opioid withdrawal symptoms. Discontinue dihydrocodeine if serotonin syndrome is suspected. Concomitant use may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. Monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of fluoxetine could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If fluoxetine is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Fluoxetine is a strong inhibitor of CYP2D6. (Moderate) The combined use of selective serotonin reuptake inhibitors and aspirin, ASA may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. Additionally, aspirin impairs the gastric mucosa defenses by inhibiting prostaglandin formation.
Fluoxetine; Olanzapine: (Moderate) Additive effects are possible when olanzapine is combined with other drugs which cause respiratory depression and/or CNS depression, including opiate agonists. (Moderate) Careful monitoring, particularly during treatment initiation and dose adjustment, is recommended during coadministration of dihydrocodeine and fluoxetine because of the potential risk of serotonin syndrome, reduced dihydrocodeine efficacy, and potential for opioid withdrawal symptoms. Discontinue dihydrocodeine if serotonin syndrome is suspected. Concomitant use may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. Monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of fluoxetine could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If fluoxetine is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Fluoxetine is a strong inhibitor of CYP2D6. (Moderate) The combined use of selective serotonin reuptake inhibitors and aspirin, ASA may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. Additionally, aspirin impairs the gastric mucosa defenses by inhibiting prostaglandin formation.
Fluphenazine: (Moderate) Concomitant use of opioid agonists with fluphenazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking fluphenazine. Limit the use of opioid pain medications with fluphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Flurazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Flurbiprofen: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
Fluticasone; Salmeterol: (Moderate) Sensitive patients may wish to limit or avoid excessive caffeine intake from foods, beverages, dietary supplements and medications during therapy with beta-agonists. Additive side effects may occur between caffeine and beta-agonists. Caffeine is a CNS-stimulant and beta-agonists are sympathomimetic agents. Sensitive patients might experience tremor, sleep difficulties, or mild increases in heart rate.
Fluticasone; Umeclidinium; Vilanterol: (Moderate) Sensitive patients may wish to limit or avoid excessive caffeine intake from foods, beverages, dietary supplements and medications during therapy with beta-agonists. Additive side effects may occur between caffeine and beta-agonists. Caffeine is a CNS-stimulant and beta-agonists are sympathomimetic agents. Sensitive patients might experience tremor, sleep difficulties, or mild increases in heart rate.
Fluticasone; Vilanterol: (Moderate) Sensitive patients may wish to limit or avoid excessive caffeine intake from foods, beverages, dietary supplements and medications during therapy with beta-agonists. Additive side effects may occur between caffeine and beta-agonists. Caffeine is a CNS-stimulant and beta-agonists are sympathomimetic agents. Sensitive patients might experience tremor, sleep difficulties, or mild increases in heart rate.
Fluvoxamine: (Major) Careful monitoring, particularly during treatment initiation and dose adjustment, is recommended during coadministration of dihydrocodeine and fluvoxamine because of the potential risk of serotonin syndrome and prolonged opioid adverse reactions. Discontinue dihydrocodeine if serotonin syndrome is suspected. Concomitant use of dihydrocodeine with fluvoxamine may increase dihydrocodeine plasma concentrations and prolong opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. Monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of fluvoxamine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If fluvoxamine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Fluvoxamine is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. (Moderate) Strong inhibitors of CYP1A2, such as fluvoxamine, may inhibit the metabolism of caffeine. No specific management is recommended except in patients with caffeine-related side effects after initiating fluvoxamine. In such patients, the dosage of caffeine containing medications or the ingestion of caffeine containing products may need to be reduced. (Moderate) The combined use of selective serotonin reuptake inhibitors and aspirin, ASA may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. Additionally, aspirin impairs the gastric mucosa defenses by inhibiting prostaglandin formation.
Fondaparinux: (Moderate) An additive risk of bleeding may be seen in patients receiving platelet inhibitors (e.g. aspirin, ASA) in combination with fondaparinux. Data on the concomitant use of fondaparinux with aspirin are lacking; however, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Formoterol: (Moderate) Sensitive patients may wish to limit or avoid excessive caffeine intake from foods, beverages, dietary supplements and medications during therapy with beta-agonists. Additive side effects may occur between caffeine and beta-agonists. Caffeine is a CNS-stimulant and beta-agonists are sympathomimetic agents. Sensitive patients might experience tremor, sleep difficulties, or mild increases in heart rate.
Formoterol; Mometasone: (Moderate) Sensitive patients may wish to limit or avoid excessive caffeine intake from foods, beverages, dietary supplements and medications during therapy with beta-agonists. Additive side effects may occur between caffeine and beta-agonists. Caffeine is a CNS-stimulant and beta-agonists are sympathomimetic agents. Sensitive patients might experience tremor, sleep difficulties, or mild increases in heart rate.
Fosamprenavir: (Moderate) Concomitant use of dihydrocodeine with fosamprenavir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of fosamprenavir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If fosamprenavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Fosamprenavir is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Foscarnet: (Minor) Due to the inhibition of renal prostaglandins by salicylates, concurrent use of salicylates and other nephrotoxic agents, such as foscarnet, may lead to additive nephrotoxicity.
Fosinopril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Fosphenytoin: (Moderate) Concomitant use of dihydrocodeine with fosphenytoin can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If fosphenytoin is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Fosphenytoin is a strong inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) Large doses of salicylates can displace phenytoin from plasma protein-binding sites. Although increased serum concentrations of unbound phenytoin may lead to phenytoin toxicity, the liver may also more rapidly clear unbound drug. Fosphenytoin is converted to phenytoin in vivo, so this interaction may also occur with fosphenytoin.
Fospropofol: (Major) Concomitant use of dihydrocodeine with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients receiving a general anesthetic. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Fostamatinib: (Moderate) Concomitant use of dihydrocodeine with fostamatinib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of fostamatinib could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If fostamatinib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Fostamatinib is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Furosemide: (Moderate) Salicylates may decrease the diuretic, natriuretic, and antihypertensive actions of diuretics, possibly through inhibition of renal prostaglandin synthesis. Patients receiving loop diuretics and salicylates should be monitored for changes in the effectiveness of their diuretic therapy.
Gabapentin: (Moderate) Concomitant use of opioid agonists with gabapentin may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking gabapentin. Limit the use of opioid pain medications with gabapentin to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Gallium Ga 68 Dotatate: (Major) In general, avoid use of mannitol and salicylates. Concomitant administration of nephrotoxic drugs, such as the salicylates, increases the risk of renal failure after administration of mannitol. However, mannitol promotes the urinary excretion of salicylates, and may be used as an adjunct in salicylate intoxication.
Garlic, Allium sativum: (Moderate) Garlic, Allium sativum may produce clinically-significant antiplatelet effects; until more data are available, garlic should be used cautiously in patients receiving drugs with a potential risk for bleeding such as aspirin, ASA.
General anesthetics: (Major) Concomitant use of dihydrocodeine with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients receiving a general anesthetic. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Ginger, Zingiber officinale: (Moderate) There may be an increased risk of bleeding in patients on aspirin therapy who take ginger as a supplement (i.e., usual dietary intake is not expected to pose a risk). Several pungent constituents of ginger, Zingiber officinale are reported to inhibit arachidonic acid induced platelet activation in human whole blood. Ginger-associated platelet inhibition may be related to a decrease in COX-1/Thromboxane synthase enzymatic activity. The increased risk of bleeding is theoretical; clinical data of an interaction are not available.
Ginkgo, Ginkgo biloba: (Major) Avoid Ginkgo biloba in patients on aspirin therapy, as there is an increased risk of bleeding. Ginkgo biloba inhibits platelet aggregation; several case reports describe bleeding complications, with or without concomitant drug therapy.
Givosiran: (Major) Avoid concomitant use of givosiran and caffeine due to the risk of increased caffeine-related adverse reactions. If use is necessary, consider decreasing the caffeine dose. Caffeine is a sensitive CYP1A2 substrate. Givosiran may moderately reduce hepatic CYP1A2 enzyme activity because of its pharmacological effects on the hepatic heme biosynthesis pathway.
Glimepiride: (Moderate) If salicylates and sulfonylureas are to be administered together, patients should be monitored for changes in glycemic control. Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar and may potentiate the effects of other antidiabetic agents. This mechanism may explain how salicylates can potentiate the clinical effects of sulfonylureas; however, displacement of sulfonylureas from protein binding sites has also been reported. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria.
Glimepiride; Pioglitazone: (Moderate) If salicylates and sulfonylureas are to be administered together, patients should be monitored for changes in glycemic control. Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar and may potentiate the effects of other antidiabetic agents. This mechanism may explain how salicylates can potentiate the clinical effects of sulfonylureas; however, displacement of sulfonylureas from protein binding sites has also been reported. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. (Moderate) Salicylates can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates can cause hyperglycemia and glycosuria.
Glimepiride; Rosiglitazone: (Moderate) If salicylates and sulfonylureas are to be administered together, patients should be monitored for changes in glycemic control. Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar and may potentiate the effects of other antidiabetic agents. This mechanism may explain how salicylates can potentiate the clinical effects of sulfonylureas; however, displacement of sulfonylureas from protein binding sites has also been reported. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. (Moderate) Salicylates can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates can cause hyperglycemia and glycosuria.
Glipizide: (Moderate) If salicylates and sulfonylureas are to be administered together, patients should be monitored for changes in glycemic control. Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar and may potentiate the effects of other antidiabetic agents. This mechanism may explain how salicylates can potentiate the clinical effects of sulfonylureas; however, displacement of sulfonylureas from protein binding sites has also been reported. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria.
Glipizide; Metformin: (Moderate) If salicylates and sulfonylureas are to be administered together, patients should be monitored for changes in glycemic control. Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar and may potentiate the effects of other antidiabetic agents. This mechanism may explain how salicylates can potentiate the clinical effects of sulfonylureas; however, displacement of sulfonylureas from protein binding sites has also been reported. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. (Moderate) Large doses of salicylates may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis. If these agents are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control.
Glyburide: (Moderate) If salicylates and sulfonylureas are to be administered together, patients should be monitored for changes in glycemic control. Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar and may potentiate the effects of other antidiabetic agents. This mechanism may explain how salicylates can potentiate the clinical effects of sulfonylureas; however, displacement of sulfonylureas from protein binding sites has also been reported. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria.
Glyburide; Metformin: (Moderate) If salicylates and sulfonylureas are to be administered together, patients should be monitored for changes in glycemic control. Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar and may potentiate the effects of other antidiabetic agents. This mechanism may explain how salicylates can potentiate the clinical effects of sulfonylureas; however, displacement of sulfonylureas from protein binding sites has also been reported. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. (Moderate) Large doses of salicylates may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis. If these agents are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control.
Glycopyrrolate: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Glycopyrrolate; Formoterol: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. (Moderate) Sensitive patients may wish to limit or avoid excessive caffeine intake from foods, beverages, dietary supplements and medications during therapy with beta-agonists. Additive side effects may occur between caffeine and beta-agonists. Caffeine is a CNS-stimulant and beta-agonists are sympathomimetic agents. Sensitive patients might experience tremor, sleep difficulties, or mild increases in heart rate.
Grapefruit juice: (Moderate) Patients should not significantly alter their intake of grapefruit or grapefruit juice during therapy with dihydrocodeine. Grapefruit juice, a CYP3A4 inhibitor, may increase plasma concentrations of dihydrocodeine, a CYP3A4 substrate. This may increase or prolong dihydrocodeine-related toxicities including respiratory depression. Advise patients accordingly; patient monitoring and dosage adjustments may be necessary if grapefruit is consumed regularly. (Minor) Data are limited and conflicting as to whether grapefruit juice significantly alters the serum concentrations and/or AUC of caffeine. Caffeine is primarily a CYP1A2 substrate, and grapefruit juice appears to have but a small effect on this enzyme in vivo. One report suggests that grapefruit juice decreases caffeine elimination by inhibition of flavin-containing monooxygenase, a P450 independent system. This interaction might increase caffeine levels and mildly potentiate the clinical effects and common side effects of caffeine. If side effects appear, patients may need to limit either caffeine or grapefruit juice intake.
Green Tea: (Moderate) Green tea should be used cautiously in patients taking aspirin; there may be an increased risk of bleeding. Monitoring clinical and/or laboratory parameters is warranted. Green tea has demonstrated antiplatelet and fibrinolytic actions in animals. (Moderate) Many green tea products contain caffeine. Due to the risk for adverse effects, avoid the concurrent administration of caffeine and green tea products that contain caffeine when possible. Concurrent administration can produce excessive caffeine-related adverse events such as nausea, irritability, nervousness, and insomnia.
Griseofulvin: (Moderate) Concurrent administration of griseofulvin with salicylates may result in decreased salicylate serum concentrations. Caution and close monitoring for changes in the effectiveness of the salicylate are recommended.
Guaifenesin; Hydrocodone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
Guaifenesin; Hydrocodone; Pseudoephedrine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Guaifenesin; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Guaifenesin; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Guanabenz: (Moderate) Guanabenz is associated with sedative effects. Guanabenz can potentiate the effects of CNS depressants such as opiate agonists, when administered concomitantly.
Guanfacine: (Moderate) Central-acting adrenergic agonists like guanfacine have CNS depressive effects and can potentiate the actions of other CNS depressants including opiate agonists.
Halofantrine: (Moderate) Concomitant use of dihydrocodeine with halofantrine may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of halofantrine could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If halofantrine is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Halofantrine is a moderate inhibitor of CYP2D6.
Haloperidol: (Moderate) Concomitant use of dihydrocodeine with haloperidol may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of haloperidol could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If haloperidol is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Haloperidol is a moderate inhibitor of CYP2D6.
Halothane: (Major) Concomitant use of dihydrocodeine with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients receiving a general anesthetic. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Heparin: (Moderate) An additive risk of bleeding may be seen in patients receiving platelet inhibitors (e.g. aspirin, ASA). Despite the potential drug-drug interaction between aspirin and heparin, heparin is frequently administered in combination with low-dose aspirin therapy to patients who have had an acute myocardial infarction and in other disease states. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Homatropine; Hydrocodone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Hyaluronidase, Recombinant; Immune Globulin: (Moderate) Immune Globulin (IG) products have been reported to be associated with renal dysfunction, acute renal failure, osmotic nephrosis, and death. Patients predisposed to acute renal failure include patients receiving known nephrotoxic drugs like nonsteroidal anti-inflammatory drugs (NSAIDs) and salicylates. Coadminister IG products at the minimum concentration available and the minimum rate of infusion practicable. Also, closely monitor renal function. (Minor) Salicylates, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
Hyaluronidase: (Minor) Salicylates, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
Hydantoins: (Minor) The metabolism of caffeine, can be increased by concurrent use with medications that cause induction of hepatic CYP450 enzymes like the hydantoin anticonvulsants.
Hydralazine; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Hydrochlorothiazide, HCTZ; Irbesartan: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Hydrochlorothiazide, HCTZ; Lisinopril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Hydrochlorothiazide, HCTZ; Losartan: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Hydrochlorothiazide, HCTZ; Methyldopa: (Moderate) Methyldopa is associated with sedative effects. Methyldopa can potentiate the effects of CNS depressants, such as opiate agonists, when administered concomitantly. (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Hydrochlorothiazide, HCTZ; Metoprolol: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Hydrochlorothiazide, HCTZ; Olmesartan: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Hydrochlorothiazide, HCTZ; Propranolol: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Hydrochlorothiazide, HCTZ; Quinapril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Hydrochlorothiazide, HCTZ; Spironolactone: (Moderate) Concomitant use of aspirin and spironolactone may decrease the efficacy of spironolactone due to possible inhibition of tubular secretion of canrenone. Monitor patient closely during coadministration for desired effect; a higher maintenance dose may be necessary. In drug interaction studies, a single dose of 600 mg of aspirin inhibited the natriuretic effect of spironolactone. Salicylates can also increase the risk of renal insufficiency in patients receiving diuretics, secondary to effects on renal blood flow. Salicylates inhibit renal prostaglandin production, which causes salt and water retention and decreased renal blood flow. This combination may cause hyperkalemia. (Moderate) Opiate agonists like dihydrocodeine may potentiate orthostatic hypotension when given concomitantly with spironolactone. (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Hydrochlorothiazide, HCTZ; Telmisartan: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Hydrochlorothiazide, HCTZ; Triamterene: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal insufficiency in patients receiving diuretics, secondary to effects on renal blood flow. Salicylates inhibit renal prostaglandin production, which causes salt and water retention and decreased renal blood flow. Coadministration may cause hyperkalemia. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Hydrochlorothiazide, HCTZ; Valsartan: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Hydrocodone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
Hydrocodone; Ibuprofen: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure. (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
Hydrocodone; Phenylephrine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Hydrocodone; Potassium Guaiacolsulfonate: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
Hydrocodone; Potassium Guaiacolsulfonate; Pseudoephedrine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Hydrocodone; Pseudoephedrine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Hydromorphone: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Hydroxychloroquine: (Moderate) Concomitant use of dihydrocodeine with hydroxychloroquine may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of hydroxychloroquine could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If hydroxychloroquine is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Hydroxychloroquine is a moderate inhibitor of CYP2D6.
Hydroxyzine: (Major) Concomitant use of opioid agonists with hydroxyzine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with hydroxyzine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Hyoscyamine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate: (Severe) Dihydrocodeine use is contraindicated in patients who are receiving or who have received monoamine oxidase inhibitors (MAOIs) within the previous 14 days. Methylene blue is a reversible inhibitor of MAO. Concomitant use of dihydrocodeine with other serotonergic drugs such as MAOIs may result in serious adverse effects including serotonin syndrome. MAOIs may cause additive CNS depression, respiratory depression, drowsiness, dizziness, or hypotension when used with opiate agonists such as dihydrocodeine. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Ibritumomab Tiuxetan: (Major) During and after therapy, avoid the concomitant use of Yttrium (Y)-90 ibrutumomab tiuxetan with drugs that interfere with platelet function such as aspirin; the risk of bleeding may be increased. If coadministration with asprin is necessary, monitor platelet counts more frequently for evidence of thrombocytopenia. (Moderate) Agents that acidify the urine, like phosphate salts, should be avoided in patients receiving high-dose salicylates. Urine acidifying agents may increase renal tubular reabsorption of salicylic acid and possibly increase salicylic acid levels. (Moderate) Concurrent administration of high doses of alkalinizing agents may increase urine pH and decrease serum salicylate levels by decreasing renal tubular reabsorption of salicylic acid.
Ibrutinib: (Moderate) The concomitant use of ibrutinib and antiplatelet agents such as aspirin may increase the risk of bleeding; monitor patients for signs of bleeding. Severe bleeding events have occurred with ibrutinib therapy including intracranial hemorrhage, GI bleeding, hematuria, and post procedural hemorrhage; some events were fatal. The mechanism for bleeding with ibrutinib therapy is not well understood. Also, aspirin may mask signs of infection such as fever and in patients following treatment with antineoplastic agents or immunosuppressives.
Ibuprofen: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure.
Ibuprofen; Oxycodone: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure. (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
Ibuprofen; Pseudoephedrine: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Idelalisib: (Moderate) Concomitant use of dihydrocodeine with idelalisib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of idelalisib could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If idelalisib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Idelalisib is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Iloprost: (Moderate) When used concurrently with platelet inhibitors, inhaled iloprost may increase the risk of bleeding.
Imatinib: (Moderate) Concomitant use of dihydrocodeine with imatinib may alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of dihydrocodeine until stable drug effects are achieved. Discontinuation of imatinib could alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as pro longed opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If imatinib is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Imatinib is a moderate inhibitor of CYP3A4 and a weak inhibitor of CYP2D6. CYP3A4 inhibitors may increase dihydrocodeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Imipramine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation, somnolence, and increased risk of serotonin syndrome. The anticholinergic properties of tricyclic antidepressants may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Avoid prescribing opioid cough medications in patients taking tricyclic antidepressants. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and serotonin syndrome.
Immune Globulin IV, IVIG, IGIV: (Moderate) Immune Globulin (IG) products have been reported to be associated with renal dysfunction, acute renal failure, osmotic nephrosis, and death. Patients predisposed to acute renal failure include patients receiving known nephrotoxic drugs like nonsteroidal anti-inflammatory drugs (NSAIDs) and salicylates. Coadminister IG products at the minimum concentration available and the minimum rate of infusion practicable. Also, closely monitor renal function.
Incretin Mimetics: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
Indacaterol: (Moderate) Sensitive patients may wish to limit or avoid excessive caffeine intake from foods, beverages, dietary supplements and medications during therapy with beta-agonists. Additive side effects may occur between caffeine and beta-agonists. Caffeine is a CNS-stimulant and beta-agonists are sympathomimetic agents. Sensitive patients might experience tremor, sleep difficulties, or mild increases in heart rate.
Indacaterol; Glycopyrrolate: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. (Moderate) Sensitive patients may wish to limit or avoid excessive caffeine intake from foods, beverages, dietary supplements and medications during therapy with beta-agonists. Additive side effects may occur between caffeine and beta-agonists. Caffeine is a CNS-stimulant and beta-agonists are sympathomimetic agents. Sensitive patients might experience tremor, sleep difficulties, or mild increases in heart rate.
Indapamide: (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics because salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance.
Indinavir: (Moderate) Concomitant use of dihydrocodeine with indinavir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of indinavir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If indinavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Indinavir is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Indomethacin: (Major) The concurrent use of salicylates and indomethacin is not recommended. Combined use does not produce any greater therapeutic effect than indomethacin monotherapy. Also, a significantly greater incidence of gastrointestinal adverse effects with concurrent use has been observed. Because NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time, additive effects may be seen in patients receiving platelet inhibitors (e.g., aspirin), anticoagulants, or thrombolytic agents.
Inotersen: (Moderate) Use caution with concomitant use of inotersen and salicylates due to the risk of glomerulonephritis and nephrotoxicity as well as the potential risk of bleeding from thrombocytopenia. Consider discontinuation of salicylates in a patient taking inotersen with a platelet count of less than 50,000 per microliter.
Insulins: (Moderate) Use large doses of aspirin cautiously in patients receiving insulin. Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia.
Intravenous Lipid Emulsions: (Moderate) Because fish oil, omega-3 fatty acids inhibit platelet aggregation, caution is advised when fish oils are used concurrently with aspirin. Theoretically, the risk of bleeding may be increased.
Iron Sucrose, Sucroferric Oxyhydroxide: (Moderate) Administer aspirin at least 1 hour before oral iron sucrose, sucroferric oxyhydroxide. Oral iron salts may reduce the bioavailability of aspirin, leading to decreased absorption.
Isavuconazonium: (Moderate) Concomitant use of dihydrocodeine with isavuconazonium may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of isavuconazonium could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If isavuconazonium is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Isavuconazonium is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Isocarboxazid: (Major) Excessive use of caffeine in any form should be avoided in patients receiving Monoamine oxidase inhibitors (MAOIs). Limit caffeine intake during MAOI use and for 1 to 2 weeks after discontinuation of any MAOI. the use of non-prescription medicines or dietary supplements containing caffeine should be avoided. Patients should try to avoid or limit the intake of all items containing caffeine such as tea, coffee, chocolate, and cola. Cardiac arrhythmias or severe hypertension may occur because of the potentiation of caffeine's sympathomimetic effects by MAOIs if caffeine intake is excessive. Ordinarily, selegiline may be an exception, it can only be used safely without dietary restrictions at doses where it presumably selectively inhibits MAO-B (e.g., 10 mg/day). At doses of 20 mg/day, selegiline can interact with foods and beverages. The precise dose at which selegiline becomes a non-selective inhibitor of all MAO is unknown, but may be in the range of 30 to 40 mg per day. Attention to the dose dependent nature of selegiline's selectivity is critical if it is to be used without elaborate restrictions being placed on diet. (Moderate) Carefully observe patients for evidence of serotonin syndrome, particularly during treatment initiation and dose adjustment, if dihydrocodeine is administered with a monoamine oxidase inhibitor (MAOI). Discontinue dihydrocodeine immediately if serotonin syndrome is suspected. This combination may also result in central nervous system excitation and hypertension.
Isoflurane: (Major) Concomitant use of dihydrocodeine with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients receiving a general anesthetic. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Isoniazid, INH: (Moderate) Although isoniazid does not inhibit mitochondrial MAO, it does appear to inhibit plasma MAO. Dangerous cardiac arrhythmias or severe hypertension can occur because of the potentiation of caffeine's sympathomimetic effects by MAOIs. Caffeine use should be minimized or avoided during and for 1 to 2 weeks after discontinuation of any MAOI. (Moderate) Concomitant use of dihydrocodeine with isoniazid may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of isoniazid could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If isoniazid is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Isoniazid is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Isoniazid, INH; Pyrazinamide, PZA; Rifampin: (Moderate) Although isoniazid does not inhibit mitochondrial MAO, it does appear to inhibit plasma MAO. Dangerous cardiac arrhythmias or severe hypertension can occur because of the potentiation of caffeine's sympathomimetic effects by MAOIs. Caffeine use should be minimized or avoided during and for 1 to 2 weeks after discontinuation of any MAOI. (Moderate) Concomitant use of dihydrocodeine with isoniazid may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of isoniazid could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If isoniazid is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Isoniazid is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Concomitant use of dihydrocodeine with rifamycins can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If the rifamycin is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Rifamycins are inducers of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) Rifampin is a potent inducer of the cytochrome P450 hepatic enzyme system and can reduce the plasma concentrations and possibly the efficacy of caffeine, including caffeine found in green tea products.
Isoniazid, INH; Rifampin: (Moderate) Although isoniazid does not inhibit mitochondrial MAO, it does appear to inhibit plasma MAO. Dangerous cardiac arrhythmias or severe hypertension can occur because of the potentiation of caffeine's sympathomimetic effects by MAOIs. Caffeine use should be minimized or avoided during and for 1 to 2 weeks after discontinuation of any MAOI. (Moderate) Concomitant use of dihydrocodeine with isoniazid may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of isoniazid could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If isoniazid is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Isoniazid is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Concomitant use of dihydrocodeine with rifamycins can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If the rifamycin is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Rifamycins are inducers of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) Rifampin is a potent inducer of the cytochrome P450 hepatic enzyme system and can reduce the plasma concentrations and possibly the efficacy of caffeine, including caffeine found in green tea products.
Isoproterenol: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants.
Istradefylline: (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of istradefylline 40 mg daily is necessary. If istradefylline is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Concomitant use of dihydrocodeine with istradefylline may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If istradefylline is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Istradefylline administered as 40 mg daily is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. There was no effect on drug exposure when istradefylline 20 mg daily was coadministered with a sensitive CYP3A4 substrate.
Itraconazole: (Moderate) Concomitant use of dihydrocodeine with itraconazole may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of itraconazole could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If itraconazole is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Itraconazole is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Ivacaftor: (Moderate) Concomitant use of dihydrocodeine with ivacaftor may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of ivacaftor could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If ivacaftor is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Ivacaftor is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Ketamine: (Major) Concomitant use of dihydrocodeine with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients receiving a general anesthetic. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Ketoconazole: (Moderate) Concomitant use of dihydrocodeine with ketoconazole may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of ketoconazole could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If ketoconazole is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Ketoconazole is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Ketoconazole has been shown to inhibit the clearance of caffeine by 11 percent. The clinical significance of these interactions has not been determined.
Ketoprofen: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity. (Minor) Caffeine administered concurrently with ketoprofen reduced the urine volume in 4 healthy volunteers. The clinical significance of the interaction in preterm neonates is not known.
Ketorolac: (Severe) Increased adverse gastrointestinal and other effects are possible if ketorolac is used with salicylates. In addition, concomitant administration of salicylates and ketorolac has resulted in a reduction in protein binding and a two-fold increase in unbound plasma concentrations of ketorolac. As a result, concomitant use of ketorolac and aspirin or any other NSAID is contraindicated. Because ketorolac can cause GI bleeding, inhibit platelet aggregation, and may prolong bleeding time, additive effects may be seen in patients receiving platelet inhibitors (e.g., aspirin), anticoagulants, or thrombolytic agents.
Lamivudine; Tenofovir Disoproxil Fumarate: (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus.
Lansoprazole; Naproxen: (Major) Concomitant use of analgesic doses of aspirin with naproxen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of naproxen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of naproxen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to naproxen interference with the antiplatelet effect of aspirin during the washout period. A decrease in antiplatelet activity was observed at 24 hours after 10 days of naproxen 220 mg/day with immediate-release aspirin 81 mg/day vs. aspirin alone [(93.1% (naproxen and aspirin) vs. 98.7% (aspirin alone)]. The interaction was observed even after discontinuation of naproxen on day 11 while aspirin therapy continued but normalized by day 13. The interaction was greater when naproxen was given 30 minutes before aspirin (87.7% vs. 98.7%) and minimal when aspirin was administered 30 minutes before naproxen (95.4% vs. 98.7%). The interaction was minimal at 24 hours after day 10 when naproxen 220 mg twice daily was given 30 minutes before low-dose immediate-release aspirin (95.7% vs. 98.7%); however, the interaction was greater on day 11 after naproxen discontinuation (84.3% vs. 98.7%) and did not normalize by day 13 (90.7% vs. 98.5%). The interaction may also be present with the use of prescription doses of naproxen or with enteric-coated, low-dose aspirin; however, peak interference with aspirin function may occur later due to a longer washout period.
Lapatinib: (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of lapatinib is necessary. If lapatinib is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Concomitant use of dihydrocodeine with lapatinib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If lapatinib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Lapatinib is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Larotrectinib: (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of larotrectinib is necessary. If larotrectinib is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Concomitant use of dihydrocodeine with larotrectinib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If larotrectinib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Larotrectinib is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Lefamulin: (Moderate) Concomitant use of dihydrocodeine with oral lefamulin may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of oral lefamulin could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If oral lefamulin is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Oral lefamulin is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine; an interaction is not expected with intravenous lefamulin.
Lesinurad: (Moderate) Aspirin, ASA at doses higher than 325 mg per day may decrease the efficacy of lesinurad in combination with allopurinol. Aspirin at doses of 325 mg or less per day (i.e., for cardiovascular protection) does not decrease the efficacy of lesinurad and can be coadministered with lesinurad. (Moderate) Concomitant use of dihydrocodeine with lesinurad can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If lesinurad is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Lesinurad is a weak inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Lesinurad; Allopurinol: (Moderate) Aspirin, ASA at doses higher than 325 mg per day may decrease the efficacy of lesinurad in combination with allopurinol. Aspirin at doses of 325 mg or less per day (i.e., for cardiovascular protection) does not decrease the efficacy of lesinurad and can be coadministered with lesinurad. (Moderate) Concomitant use of dihydrocodeine with lesinurad can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If lesinurad is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Lesinurad is a weak inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Letermovir: (Moderate) Concomitant use of dihydrocodeine with letermovir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of letermovir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If letermovir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Letermovir is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Levalbuterol: (Moderate) Sensitive patients may wish to limit or avoid excessive caffeine intake from foods, beverages, dietary supplements and medications during therapy with beta-agonists. Additive side effects may occur between caffeine and beta-agonists. Caffeine is a CNS-stimulant and beta-agonists are sympathomimetic agents. Sensitive patients might experience tremor, sleep difficulties, or mild increases in heart rate.
Levobupivacaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Levocetirizine: (Moderate) Concomitant use of opioid agonists with cetirizine/levocetirizine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with cetirizine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Lidocaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Linagliptin: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents, such as linagliptin.
Linagliptin; Metformin: (Moderate) Large doses of salicylates may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis. If these agents are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents, such as linagliptin.
Lincosamides: (Moderate) Lincosamides, which have been shown to exhibit neuromuscular blocking action, can enhance the effects of opiate agonists if used concomitantly, enhancing respiratory depressant effects. They should be used together with caution and the patient carefully monitored.
Linezolid: (Severe) Dihydrocodeine use is contraindicated in patients who are receiving or who have received monoamine oxidase inhibitors (MAOIs) within the previous 14 days. Linezolid is a reversible, non-selective inhibitor of MAO. Concomitant use of dihydrocodeine with other serotonergic drugs such as MAOIs may result in serious adverse effects including serotonin syndrome. MAOIs may cause additive CNS depression, respiratory depression, drowsiness, dizziness, or hypotension when used with opiate agonists such as dihydrocodeine. (Moderate) Caffeine use should be minimized or avoided during and for 1 to 2 weeks after discontinuation of linezolid. Linezolid is an antibiotic that is also a weak, reversible nonselective inhibitor of monoamine oxidase (MAO). Dangerous cardiac arrhythmias or severe hypertension can occur because of the potentiation of caffeine's sympathomimetic effects by MAOIs.
Lisdexamfetamine: (Moderate) Avoid excessive caffeine intake during use of lisdexamfetamine. Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. Excessive caffeine ingestion (via medicines, foods like chocolate, dietary supplements, or beverages including coffee, green tea, other teas, colas) may contribute to side effects like nervousness, irritability, nausea, insomnia, or tremor. Patients should avoid medications and dietary supplements which contain high amounts of caffeine.
Lisinopril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Lithium: (Major) Caffeine appears to reduce serum lithium concentrations. Adverse reactions to lithium have also been noted to increase simultaneously with a reduction in caffeine intake. Patients taking lithium should be counseled regarding their intake of caffeine.
Lofexidine: (Moderate) Monitor for excessive hypotension and sedation during coadministration of lofexidine and dihydrocodeine. Lofexidine can potentiate the effects of CNS depressants.
Loop diuretics: (Moderate) Salicylates may decrease the diuretic, natriuretic, and antihypertensive actions of diuretics, possibly through inhibition of renal prostaglandin synthesis. Patients receiving loop diuretics and salicylates should be monitored for changes in the effectiveness of their diuretic therapy.
Loperamide: (Moderate) Concurrent use of loperamide and opiate agonists may lead to additive CNS depression. Additive constipation may also be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Loperamide; Simethicone: (Moderate) Concurrent use of loperamide and opiate agonists may lead to additive CNS depression. Additive constipation may also be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Lopinavir; Ritonavir: (Moderate) Concomitant use of dihydrocodeine with lopinavir/ritonavir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of lopinavir/ritonavir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If lopinavir/ritonavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Lopinavir/ritonavir is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Concomitant use of dihydrocodeine with ritonavir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of ritonavir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If ritonavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Ritonavir is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Loratadine; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Lorazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Lorcaserin: (Moderate) Concomitant use of dihydrocodeine with lorcaserin may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of lorcaserin could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If lorcaserin is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Lorcaserin is a weak inhibitor of CYP2D6.
Lorlatinib: (Moderate) Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal if coadministration with lorlatinib is necessary; consider increasing the dose of dihydrocodeine as needed. If lorlatinib is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Lorlatinib is a moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. Concomitant use of dihydrocodeine with lorlatinib can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Low Molecular Weight Heparins: (Moderate) An additive risk of bleeding may be seen in patients receiving a low molecular weight heparin in combination with other agents known to increase the risk of bleeding such as salicylates. Monitor clinical and laboratory response closely during concurrent use.
Loxapine: (Moderate) Loxapine can potentiate the actions of other CNS depressants such as opiate agonists. Caution should be exercised with simultaneous use of these agents due to potential excessive CNS effects.
Lumacaftor; Ivacaftor: (Moderate) Concomitant use of dihydrocodeine with ivacaftor may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of ivacaftor could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If ivacaftor is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Ivacaftor is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Concomitant use of dihydrocodeine with lumacaftor; ivacaftor can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If lumacaftor; ivacaftor is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Lumacaftor; ivacaftor is a strong inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Lumacaftor; Ivacaftor: (Moderate) Concomitant use of dihydrocodeine with lumacaftor; ivacaftor can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If lumacaftor; ivacaftor is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Lumacaftor; ivacaftor is a strong inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Lurasidone: (Moderate) Due to the CNS effects of lurasidone, caution should be used when lurasidone is given in combination with other centrally acting medications such as opiate agonists.
Macimorelin: (Major) Avoid use of macimorelin with drugs that directly affect pituitary growth hormone secretion, such as salicylates. Healthcare providers are advised to discontinue salicylate therapy and observe a sufficient washout period before administering macimorelin. Use of these medications together may impact the accuracy of the macimorelin growth hormone test.
Magnesium Salts: (Minor) Because of the CNS-depressant effects of magnesium sulfate, additive central-depressant effects can occur following concurrent administration with CNS depressants such as opiate agonists. Caution should be exercised when using these agents concurrently.
Mannitol: (Major) In general, avoid use of mannitol and salicylates. Concomitant administration of nephrotoxic drugs, such as the salicylates, increases the risk of renal failure after administration of mannitol. However, mannitol promotes the urinary excretion of salicylates, and may be used as an adjunct in salicylate intoxication.
Maprotiline: (Major) Concomitant use of opioid agonists with maprotiline may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking maprotiline. Limit the use of opioid pain medications with maprotiline to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Measles Virus; Mumps Virus; Rubella Virus; Varicella Virus Vaccine, Live: (Major) No adverse events associated with the use of salicylates after varicella vaccination have been reported. However, the manufacturer of varicella virus vaccine live recommends the avoidance of salicylates or aspirin, ASA use for 6 weeks after vaccination. Reye's syndrome, which exclusively affects children under 15 years old, has been associated with aspirin use following active varicella infection. Vaccination with close clinical monitoring is recommended for children who require therapeutic aspirin, ASA therapy; according to the CDC the use of attenuated, live varicella virus vaccine is thought to present less risk than natural varicella disease to such children.
Meclofenamate Sodium: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
Mefenamic Acid: (Major) Increased adverse gastrointestinal (GI) effects are possible if mefenamic acid is used with salicylates. In addition, concomitant administration of salicylates and mefenamic acid may result in an increase in unbound plasma concentrations of either drug, which could result in greater adverse effects. In general, concomitant use of aspirin and mefenamic acid is not recommended.
Meglitinides: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar and may potentiate the effects of antidiabetic agents. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose or use of greater than maximum recommended daily dosages, salicylates can cause either hypoglycemia or hyperglycemia. Large doses of aspirin should be used cautiously in patients who receive antidiabetic agents.
Melatonin: (Moderate) Concomitant use of opioid agonists with melatonin may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking melatonin. Limit the use of opioid pain medications with melatonin to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Minor) Caffeine is a central nervous system (CNS) stimulant. Patients taking melatonin for sleep should avoid caffeine-containing medications, dietary supplements, foods, and beverages close to bedtime, as well as excessive total daily caffeine intake, as part of proper sleep hygiene, since caffeine intake can interfere with proper sleep.
Meloxicam: (Major) Additive adverse gastrointestinal (GI) effects are possible if meloxicam is used with salicylates (e.g., aspirin). The concurrent use of aspirin and a nonsteroidal anti-inflammatory drug (NSAID) does increase the risk of serious gastrointestinal events. Concomitant administration of aspirin, ASA (3000 mg/day) to healthy volunteers increased the meloxicam AUC by 10% and increased the meloxicam peak plasma concentrations by 24%. Because of its lack of platelet effects, meloxicam is not a substitute for aspirin for cardiovascular prophylaxis.
Mepenzolate: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Meperidine; Promethazine: (Major) Concomitant use of opioid agonists with promethazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking promethazine. Limit the use of opioid pain medications with promethazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce the opioid dose by one-quarter to one-half; use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Mephobarbital: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) The metabolism of caffeine can be increased by concurrent use with barbiturates. The hypnotic effects of barbiturates can be reduced by caffeine administration.
Mepivacaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Mepivacaine; Levonordefrin: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Meprobamate: (Moderate) Concomitant use of meprobamate and dihydrocodeine can potentiate the effects of dihydrocodeine, which may potentially lead to respiratory depression, CNS depression, sedation, or hypotensive responses. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. A reduced dosage of dihydrocodeine and/or meprobamate may be recommended. Monitor patients for sedation and respiratory depression.
Mestranol; Norethindrone: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol or combined hormonal oral contraceptives. This interaction occurs from the inhibition of methylxanthine oxidation in the liver. Patients may need to be informed about increased caffeine side effects, like nausea or tremors.
Metaproterenol: (Moderate) Sensitive patients may wish to limit or avoid excessive caffeine intake from foods, beverages, dietary supplements and medications during therapy with beta-agonists. Additive side effects may occur between caffeine and beta-agonists. Caffeine is a CNS-stimulant and beta-agonists are sympathomimetic agents. Sensitive patients might experience tremor, sleep difficulties, or mild increases in heart rate.
Metaxalone: (Major) Concomitant use of dihydrocodeine with a skeletal muscle relaxant may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients taking a skeletal muscle relaxant. Limit the use of opioid pain medications with a skeletal muscle relaxant to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Metformin: (Moderate) Large doses of salicylates may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis. If these agents are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control.
Metformin; Pioglitazone: (Moderate) Large doses of salicylates may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis. If these agents are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. (Moderate) Salicylates can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates can cause hyperglycemia and glycosuria.
Metformin; Repaglinide: (Moderate) Large doses of salicylates may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis. If these agents are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar and may potentiate the effects of antidiabetic agents. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose or use of greater than maximum recommended daily dosages, salicylates can cause either hypoglycemia or hyperglycemia. Large doses of aspirin should be used cautiously in patients who receive antidiabetic agents.
Metformin; Rosiglitazone: (Moderate) Large doses of salicylates may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis. If these agents are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. (Moderate) Salicylates can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates can cause hyperglycemia and glycosuria.
Metformin; Saxagliptin: (Moderate) Large doses of salicylates may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis. If these agents are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. (Moderate) Salicylates can indirectly increase insulin secretion, decreasing blood glucose concentrations. In large doses, salicylates may cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving saxagliptin.
Metformin; Sitagliptin: (Moderate) Large doses of salicylates may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis. If these agents are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. (Moderate) Salicylates can indirectly increase insulin secretion, decreasing blood glucose concentrations. In large doses, salicylates may cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Methadone: (Major) Concomitant use of methadone with another CNS depressant like dihydrocodeine can lead to additive respiratory depression, hypotension, profound sedation, or coma. Prior to concurrent use of methadone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Methadone should be used with caution and in reduced dosages if used concurrently with a CNS depressant; also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
Methamphetamine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. Avoid excessive caffeine intake during use of methamphetamine. Excessive caffeine ingestion (via medicines, foods like chocolate, dietary supplements, or beverages including coffee, green tea, other teas, colas) may contribute to side effects like nervousness, irritability, nausea, insomnia, or tremor. Patients should avoid medications and dietary supplements which contain high amounts of caffeine.
Methazolamide: (Major) Avoid the coadministration of high-dose salicylates and carbonic anhydrase inhibitors, like methazolamide, whenever possible. The combination yielded reports of anorexia, tachypnea, lethargy, metabolic acidosis, coma, and death. The mechanism appears to be accumulation of the carbonic anhydrase inhibitor, resulting in increased CNS depression and metabolic acidosis. The acidosis may allow greater CNS penetration of the salicylate.
Methenamine; Sodium Acid Phosphate; Methylene Blue; Hyoscyamine: (Severe) Dihydrocodeine use is contraindicated in patients who are receiving or who have received monoamine oxidase inhibitors (MAOIs) within the previous 14 days. Methylene blue is a reversible inhibitor of MAO. Concomitant use of dihydrocodeine with other serotonergic drugs such as MAOIs may result in serious adverse effects including serotonin syndrome. MAOIs may cause additive CNS depression, respiratory depression, drowsiness, dizziness, or hypotension when used with opiate agonists such as dihydrocodeine. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Methocarbamol: (Major) Concomitant use of dihydrocodeine with a skeletal muscle relaxant may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients taking a skeletal muscle relaxant. Limit the use of opioid pain medications with a skeletal muscle relaxant to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Methohexital: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) The metabolism of caffeine can be increased by concurrent use with barbiturates. The hypnotic effects of barbiturates can be reduced by caffeine administration.
Methotrexate: (Severe) Caution should be exercised when salicylates are given in combination with methotrexate. Since both are weak acids, salicylates can impair the renal secretion of methotrexate and increase the risk of methotrexate toxicity. Salicylates can also displace methotrexate from protein-binding sites. Although the risk for drug interactions with methotrexate is greatest during high-dose methotrexate therapy, it has been recommended that any of these drugs be used cautiously with methotrexate even when methotrexate is used in low doses for the treatment of rheumatoid arthritis. A significantly higher incidence of leukopenia has been reported in patients taking aspirin during methotrexate therapy. In addition, large doses of salicylates (>= 3 to 4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Methscopolamine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Methyclothiazide: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Methyldopa: (Moderate) Methyldopa is associated with sedative effects. Methyldopa can potentiate the effects of CNS depressants, such as opiate agonists, when administered concomitantly.
Methylene Blue: (Severe) Dihydrocodeine use is contraindicated in patients who are receiving or who have received monoamine oxidase inhibitors (MAOIs) within the previous 14 days. Methylene blue is a reversible inhibitor of MAO. Concomitant use of dihydrocodeine with other serotonergic drugs such as MAOIs may result in serious adverse effects including serotonin syndrome. MAOIs may cause additive CNS depression, respiratory depression, drowsiness, dizziness, or hypotension when used with opiate agonists such as dihydrocodeine.
Methylphenidate: (Moderate) Caffeine is a CNS stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. Avoid excessive caffeine intake during use of methylphenidate. Excessive caffeine ingestion (via medicines, foods like chocolate, dietary supplements, or beverages including coffee, green tea, other teas, colas) may contribute to side effects like nervousness, irritability, nausea, insomnia, or tremor. Patients should avoid medications and dietary supplements which contain high amounts of caffeine.
Methylsulfonylmethane, MSM: (Moderate) It would be prudent for patients who take aspirin to avoid methylsulfonylmethane, MSM. Monitor patients who choose to take MSM while on aspirin therapy for bleeding. Patients taking MSM and anticoagulant drugs have reported increased anticoagulant effects such as increased bruising or blood in the stool.
Metoclopramide: (Moderate) The effects of metoclopramide on gastrointestinal motility are antagonized by narcotic analgesics. Concomitant use of opioid agonists with metoclopramide may also cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking metoclopramide. Limit the use of opioid pain medications with metoclopramide to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Minor) Metoclopramide can increase the rate or extent of absorption of aspirin because of accelerated gastric emptying, which increases the contact time with the small bowel where this drug is absorbed.
Metolazone: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics. Salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance. Salicylates may decrease the hyperuricemic effect of hydrochlorothiazide.
Metyrapone: (Moderate) Metyrapone may cause dizziness and/or drowsiness. Other drugs that may also cause drowsiness, such as opiate agonists, should be used with caution. Additive drowsiness and/or dizziness is possible.
Metyrosine: (Moderate) The concomitant administration of metyrosine with opiate agonists can result in additive sedative effects.
Mexiletine: (Moderate) Mexiletine is an inhibitor of CYP1A2 isoenzymes, and may reduce CYP1A2-mediated caffeine metabolism. Mexiletine has been shown to increase caffeine concentrations by as much as 23 percent after a single 200 mg dose of mexiletine (nonsignificant increase, p<0.1). Another study has reported that the elimination of caffeine is decreased by 50 percent. While the clinical significance of this interaction is not known, elevated plasma caffeine levels may be of concern in patients with arrhythmias. Patients with cardiac arrhythmias on mexiletine should be cautioned to limit their intake of caffeine.
Midazolam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Midodrine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants.
Mifepristone: (Moderate) Concomitant use of dihydrocodeine with chronic mifepristone therapy may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of mifepristone could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If mifepristone is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Mifepristone is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. The clinical significance of this interaction with the short-term use of mifepristone for termination of pregnancy is unknown.
Minocycline: (Minor) Injectable minocycline contains magnesium sulfate heptahydrate. Because of the CNS-depressant effects of magnesium sulfate, additive central-depressant effects can occur following concurrent administration with CNS depressants such as opiate agonists. Caution should be exercised when using these agents concurrently.
Mirabegron: (Moderate) Concomitant use of dihydrocodeine with mirabegron may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of mirabegron could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If mirabegron is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Mirabegron is a moderate inhibitor of CYP2D6.
Mirtazapine: (Major) Concomitant use of opioid agonists with mirtazapine may cause excessive sedation, somnolence, and increased risk of serotonin syndrome. Avoid prescribing opioid cough medications in patients taking mirtazapine. Limit the use of opioid pain medications with mirtazapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and serotonin syndrome.
Mitotane: (Moderate) Concomitant use of dihydrocodeine with mitotane can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If mitotane is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Mitotane is a strong inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Mivacurium: (Moderate) Additive CNS depression may occur if dihydrocodeine is used concomitantly with other CNS depressants, including neuromuscular blockers.
Modafinil: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. Caffeine should be used cautiously with modafinil. Excessive intake should be limited. Excessive intake may cause nervousness, irritability, insomnia or other side effects. (Moderate) Concomitant use of dihydrocodeine with modafinil can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If modafinil is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Modafinil is a moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Moexipril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Molindone: (Moderate) Concomitant use of opiate agonists with other central nervous system (CNS) depressants, such as molindone, can potentiate the effects of the opiate and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of an opiate in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If these agents are used together, a reduced dosage of the opiate and/or molindone is recommended. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Monoamine oxidase inhibitors: (Major) Excessive use of caffeine in any form should be avoided in patients receiving Monoamine oxidase inhibitors (MAOIs). Limit caffeine intake during MAOI use and for 1 to 2 weeks after discontinuation of any MAOI. the use of non-prescription medicines or dietary supplements containing caffeine should be avoided. Patients should try to avoid or limit the intake of all items containing caffeine such as tea, coffee, chocolate, and cola. Cardiac arrhythmias or severe hypertension may occur because of the potentiation of caffeine's sympathomimetic effects by MAOIs if caffeine intake is excessive. Ordinarily, selegiline may be an exception, it can only be used safely without dietary restrictions at doses where it presumably selectively inhibits MAO-B (e.g., 10 mg/day). At doses of 20 mg/day, selegiline can interact with foods and beverages. The precise dose at which selegiline becomes a non-selective inhibitor of all MAO is unknown, but may be in the range of 30 to 40 mg per day. Attention to the dose dependent nature of selegiline's selectivity is critical if it is to be used without elaborate restrictions being placed on diet. (Moderate) Carefully observe patients for evidence of serotonin syndrome, particularly during treatment initiation and dose adjustment, if dihydrocodeine is administered with a monoamine oxidase inhibitor (MAOI). Discontinue dihydrocodeine immediately if serotonin syndrome is suspected. This combination may also result in central nervous system excitation and hypertension.
Morphine: (Major) Concomitant use of morphine with dihydrocodeine can potentiate the effects of morphine on respiration, blood pressure, and alertness. Profound sedation and coma may also occur. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. A reduced dosage of morphine and/or dihydrocodeine is recommended; for extended-release products, start with the lowest possible dose of morphine (i.e., 15 mg PO every 12 hours, extended-release tablets; 30 mg or less PO every 24 hours; extended-release capsules). Monitor patients for sedation and respiratory depression.
Morphine; Naltrexone: (Major) Concomitant use of morphine with dihydrocodeine can potentiate the effects of morphine on respiration, blood pressure, and alertness. Profound sedation and coma may also occur. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. A reduced dosage of morphine and/or dihydrocodeine is recommended; for extended-release products, start with the lowest possible dose of morphine (i.e., 15 mg PO every 12 hours, extended-release tablets; 30 mg or less PO every 24 hours; extended-release capsules). Monitor patients for sedation and respiratory depression.
Muromonab-CD3: (Minor) Due to aspirin's effect on platelet aggregation and GI mucosa, aspirin should be used cautiously in patients with thrombocytopenia following treatment with antineoplastic agents due to an increased risk of bleeding.
Mycophenolate: (Moderate) Mycophenolic acid is more than 98% bound to albumin. Concurrent use of mycophenolate with salicylates can decrease the protein binding of mycophenolic acid resulting in an increase in the free fraction of MPA. Patients should be observed for increased clinical effects from mycophenolate as well as additive adverse effects.
Nabilone: (Moderate) Concomitant use of opiate agonists with other central nervous system (CNS) depressants, such as nabilone, can potentiate the effects of the opiate and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of an opiate in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If these agents are used together, a reduced dosage of the opiate and/or the CNS depressant is recommended. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Nabumetone: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
Nafcillin: (Moderate) Concomitant use of dihydrocodeine with nafcillin can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If nafcillin is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Nafcillin is a moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) Due to the high protein binding of aspirin, it could displace or be displaced from binding sites by other highly protein-bound drugs, such as penicillins. Also, aspirin may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. Overall, this combination should be used with caution and patients monitored for increased side effects.
Nalbuphine: (Major) Avoid the concomitant use of nalbuphine and opiate agonists, such as dihydrocodeine. Nalbuphine is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce the analgesic effects of dihydrocodeine. Nalbuphine may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of nalbuphine with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
Naloxone: (Major) Naloxone can antagonize the therapeutic efficacy of dihydrocodeine in addition to precipitating withdrawal symptoms in patients who are physically dependent on opiate drugs including dihydrocodeine.
Naltrexone: (Major) When naltrexone is used as adjuvant treatment of opiate or alcohol dependence, use is contraindicated in patients currently receiving opiate agonists. Naltrexone will antagonize the therapeutic benefits of opiate agonists and will induce a withdrawal reaction in patients with physical dependence to opioids. Also, patients should be opiate-free for at least 7-10 days prior to initiating naltrexone therapy. If there is any question of opioid use in the past 7-10 days and the patient is not experiencing opioid withdrawal symptoms and/or the urine is negative for opioids, a naloxone challenge test needs to be performed. If a patient receives naltrexone, and an opiate agonist is needed for an emergency situation, large doses of opiate agonists may ultimately overwhelm naltrexone antagonism of opiate receptors. Immediately following administration of exogenous opiate agonists, the opiate plasma concentration may be sufficient to overcome naltrexone competitive blockade, but the patient may experience deeper and more prolonged respiratory depression and thus, may be in danger of respiratory arrest and circulatory collapse. Non-receptor mediated actions like facial swelling, itching, generalized erythema, or bronchoconstriction may occur presumably due to histamine release. A rapidly acting opiate agonist is preferred as the duration of respiratory depression will be shorter. Patients receiving naltrexone may also experience opiate side effects with low doses of opiate agonists. If the opiate agonist is taken in such a way that high concentrations remain in the body beyond the time naltrexone exerts its therapeutic effects, serious side effects may occur.
Naproxen: (Major) Concomitant use of analgesic doses of aspirin with naproxen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of naproxen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of naproxen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to naproxen interference with the antiplatelet effect of aspirin during the washout period. A decrease in antiplatelet activity was observed at 24 hours after 10 days of naproxen 220 mg/day with immediate-release aspirin 81 mg/day vs. aspirin alone [(93.1% (naproxen and aspirin) vs. 98.7% (aspirin alone)]. The interaction was observed even after discontinuation of naproxen on day 11 while aspirin therapy continued but normalized by day 13. The interaction was greater when naproxen was given 30 minutes before aspirin (87.7% vs. 98.7%) and minimal when aspirin was administered 30 minutes before naproxen (95.4% vs. 98.7%). The interaction was minimal at 24 hours after day 10 when naproxen 220 mg twice daily was given 30 minutes before low-dose immediate-release aspirin (95.7% vs. 98.7%); however, the interaction was greater on day 11 after naproxen discontinuation (84.3% vs. 98.7%) and did not normalize by day 13 (90.7% vs. 98.5%). The interaction may also be present with the use of prescription doses of naproxen or with enteric-coated, low-dose aspirin; however, peak interference with aspirin function may occur later due to a longer washout period.
Naproxen; Pseudoephedrine: (Major) Concomitant use of analgesic doses of aspirin with naproxen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of naproxen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of naproxen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to naproxen interference with the antiplatelet effect of aspirin during the washout period. A decrease in antiplatelet activity was observed at 24 hours after 10 days of naproxen 220 mg/day with immediate-release aspirin 81 mg/day vs. aspirin alone [(93.1% (naproxen and aspirin) vs. 98.7% (aspirin alone)]. The interaction was observed even after discontinuation of naproxen on day 11 while aspirin therapy continued but normalized by day 13. The interaction was greater when naproxen was given 30 minutes before aspirin (87.7% vs. 98.7%) and minimal when aspirin was administered 30 minutes before naproxen (95.4% vs. 98.7%). The interaction was minimal at 24 hours after day 10 when naproxen 220 mg twice daily was given 30 minutes before low-dose immediate-release aspirin (95.7% vs. 98.7%); however, the interaction was greater on day 11 after naproxen discontinuation (84.3% vs. 98.7%) and did not normalize by day 13 (90.7% vs. 98.5%). The interaction may also be present with the use of prescription doses of naproxen or with enteric-coated, low-dose aspirin; however, peak interference with aspirin function may occur later due to a longer washout period. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Naproxen; Sumatriptan: (Major) Concomitant use of analgesic doses of aspirin with naproxen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of naproxen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of naproxen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to naproxen interference with the antiplatelet effect of aspirin during the washout period. A decrease in antiplatelet activity was observed at 24 hours after 10 days of naproxen 220 mg/day with immediate-release aspirin 81 mg/day vs. aspirin alone [(93.1% (naproxen and aspirin) vs. 98.7% (aspirin alone)]. The interaction was observed even after discontinuation of naproxen on day 11 while aspirin therapy continued but normalized by day 13. The interaction was greater when naproxen was given 30 minutes before aspirin (87.7% vs. 98.7%) and minimal when aspirin was administered 30 minutes before naproxen (95.4% vs. 98.7%). The interaction was minimal at 24 hours after day 10 when naproxen 220 mg twice daily was given 30 minutes before low-dose immediate-release aspirin (95.7% vs. 98.7%); however, the interaction was greater on day 11 after naproxen discontinuation (84.3% vs. 98.7%) and did not normalize by day 13 (90.7% vs. 98.5%). The interaction may also be present with the use of prescription doses of naproxen or with enteric-coated, low-dose aspirin; however, peak interference with aspirin function may occur later due to a longer washout period.
Nateglinide: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar and may potentiate the effects of antidiabetic agents. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose or use of greater than maximum recommended daily dosages, salicylates can cause either hypoglycemia or hyperglycemia. Large doses of aspirin should be used cautiously in patients who receive antidiabetic agents.
Nefazodone: (Major) Concomitant use of dihydrocodeine with nefazodone may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. Additionally, the concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinue dihydrocodeine if serotonin syndrome occurs. Discontinuation of nefazodone could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If nefazodone is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Nefazodone is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Nelfinavir: (Moderate) Concomitant use of dihydrocodeine with nelfinavir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of nelfinavir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If nelfinavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Nelfinavir is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Nesiritide, BNP: (Major) The potential for hypotension may be increased when coadministering nesiritide with opiate agonists.
Netupitant, Fosnetupitant; Palonosetron: (Moderate) Concomitant use of dihydrocodeine with netupitant may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of netupitant could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If netupitant is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Netupitant is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Neuromuscular blockers: (Moderate) Additive CNS depression may occur if dihydrocodeine is used concomitantly with other CNS depressants, including neuromuscular blockers.
Nevirapine: (Moderate) Concomitant use of dihydrocodeine with nevirapine can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If nevirapine is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Nevirapine is a moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Nicardipine: (Moderate) Concomitant use of dihydrocodeine with nicardipine may alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of dihydrocodeine until stable drug effects are achieved. Discontinuation of nicardipine could alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If nicardipine is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Nicardipine is a weak inhibitor of CYP3A4 and CYP2D6. CYP3A4 inhibitors may increase dihydrocodeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Nilotinib: (Moderate) Concomitant use of dihydrocodeine with nilotinib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of nilotinib could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If nilotinib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Nilotinib is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Nitazoxanide: (Moderate) The active metabolite of nitazoxanide, tizoxanide, is highly bound to plasma proteins. Caution should be exercised when administering nitazoxanide concurrently with other highly plasma protein-bound drugs with narrow therapeutic indices because competition for binding sites may occur.
Nitroglycerin: (Moderate) When coadministered with aspirin, ASA (doses between 500 mg and 1000 mg), the maximum plasma concentration (Cmax) and exposure (AUC) of a single nitroglycerin dose is increased by 67% and 73%, respectively. Additionally, limited data suggest that patients receiving aspirin, ASA in high doses can exhibit an exaggerated response to sublingual nitroglycerin. Although hypotension and tachycardia were more significant during concomitant therapy, no special precautions appear necessary. The pharmacologic effects of 0.4% nitroglycerin rectal ointment may also be enhanced when administered concomitantly with aspirin, ASA; therefore, close clinical monitoring is advised. (Minor) Nitroglycerin can cause hypotension. This action may be additive with other agents that can cause hypotension such as opiate agonists. Patients should be monitored more closely for hypotension if nitroglycerin is used concurrently with opiate agonists.
Non-Ionic Contrast Media: (Major) Use of medications that lower the seizure threshold should be carefully evaluated when considering intrathecal radiopaque contrast agents. Caffeine and caffeine containing products should be discontinued at least 48 hours before myelography and should not be resumed for at least 24 hours post-procedure.
Norepinephrine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants.
Nortriptyline: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation, somnolence, and increased risk of serotonin syndrome. The anticholinergic properties of tricyclic antidepressants may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Avoid prescribing opioid cough medications in patients taking tricyclic antidepressants. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and serotonin syndrome.
Obeticholic Acid: (Moderate) Obeticholic acid may increase the exposure to concomitant drugs that are CYP1A2 substrates, such as caffeine. Concomitant administration of 200 mg caffeine as a single dose with obeticholic acid 10 mg once daily resulted in a 42% increase in caffeine AUC and a 6% increase in caffeine Cmax. Therapeutic monitoring is recommended with coadministration. No specific management is recommended except in patients who complain of caffeine-related side effects like nausea, tremor, or palpitations. In such patients, the dosage of caffeine-containing medications or the ingestion of caffeine-containing products may need to be reduced.
Octreotide: (Moderate) Octreotide can cause additive constipation with opiate agonists such as dihydrocodeine. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. Monitor patients during concomitant use.
Olanzapine: (Moderate) Additive effects are possible when olanzapine is combined with other drugs which cause respiratory depression and/or CNS depression, including opiate agonists.
Olodaterol: (Moderate) Sensitive patients may wish to limit or avoid excessive caffeine intake from foods, beverages, dietary supplements and medications during therapy with beta-agonists. Additive side effects may occur between caffeine and beta-agonists. Caffeine is a CNS-stimulant and beta-agonists are sympathomimetic agents. Sensitive patients might experience tremor, sleep difficulties, or mild increases in heart rate.
Omacetaxine: (Major) Avoid the concomitant use of omacetaxine and aspirin, ASA when the platelet count is less than 50,000 cells/microliter due to an increased risk of bleeding. Also, aspirin may mask signs of infection such as fever and pain in patients following treatment with antineoplastic agents or immunosuppressives. Aspirin, ASA should be used with caution in patients receiving immunosuppressive therapy. Special consideration should be given to myelosuppressed patients prior to receiving aspirin.
Ombitasvir; Paritaprevir; Ritonavir: (Moderate) Concomitant use of dihydrocodeine with ritonavir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of ritonavir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If ritonavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Ritonavir is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Omeprazole; Sodium Bicarbonate: (Moderate) Concurrent administration of high doses of alkalinizing agents may increase urine pH and decrease serum salicylate levels by decreasing renal tubular reabsorption of salicylic acid.
Oritavancin: (Moderate) Concomitant use of dihydrocodeine with oritavancin can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If oritavancin is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Oritavancin is a weak inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Orphenadrine: (Major) Concomitant use of dihydrocodeine with a skeletal muscle relaxant may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients taking a skeletal muscle relaxant. Limit the use of opioid pain medications with a skeletal muscle relaxant to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Oxacillin: (Minor) Due to the high protein binding of aspirin, it could displace or be displaced from binding sites by other highly protein-bound drugs, such as penicillins. Also, aspirin may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. Overall, this combination should be used with caution and patients monitored for increased side effects.
Oxaprozin: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
Oxazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Oxcarbazepine: (Moderate) Concomitant use of dihydrocodeine with oxcarbazepine can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If oxcarbazepine is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Oxcarbazepine is a weak inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Oxybutynin: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. (Minor) Consuming greater than 400 mg/day caffeine has been associated with the development of urinary incontinence. Caffeine may aggravate bladder symptoms, increase urine output, and counteract the effectiveness of drugs used to treat overactive bladder such as oxybutynin. Patients may wish to limit their intake of caffeinated drugs, dietary supplements (e.g., guarana), or beverages (e.g., green tea, other teas, coffee, colas).
Oxycodone: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
Oxymorphone: (Major) Concomitant use of oxymorphone with other CNS depressants may produce additive CNS depressant effects. Respiratory depression, hypotension, profound sedation, or coma may result from combination therapy. Prior to concurrent use of oxymorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Oxymorphone should be used in reduced dosages if used concurrently with a CNS depressant; initiate oxymorphone at one-third to one-half the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Slowly titrate the dose as necessary for adequate pain relief and monitor for sedation or respiratory depression.
Palbociclib: (Moderate) Concomitant use of dihydrocodeine with palbociclib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of palbociclib could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If palbociclib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Palbociclib is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Paliperidone: (Moderate) Drugs that can cause CNS depression such as opiate agonists, if used concomitantly with paliperidone, can increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Monitor for signs and symptoms of CNS depression during coadministration of paliperidone and dihydrocodeine and advise patients to avoid driving or engaging in other activities requiring mental alertness until they know how this combination affects them.
Pancuronium: (Moderate) Additive CNS depression may occur if dihydrocodeine is used concomitantly with other CNS depressants, including neuromuscular blockers.
Panobinostat: (Moderate) Concomitant use of dihydrocodeine with panobinostat may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of panobinostat could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If panobinostat is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Panobinostat is a moderate inhibitor of CYP2D6.
Papaverine: (Moderate) Papaverine is a benzylisoquinoline alkaloid of opium and may have synergistic effects with opiate agonists. Concurrent use of papaverine with potent CNS depressants could lead to enhanced sedation.
Paroxetine: (Moderate) Careful monitoring, particularly during treatment initiation and dose adjustment, is recommended during coadministration of dihydrocodeine and paroxetine because of the potential risk of serotonin syndrome, reduced dihydrocodeine efficacy, and potential for opioid withdrawal symptoms. Discontinue dihydrocodeine if serotonin syndrome is suspected. It is recommended to avoid this combination when dihydrocodeine is being used for cough. Concomitant use may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. Monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of paroxetine could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If paroxetine is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Paroxetine is a strong inhibitor of CYP2D6. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. (Moderate) The combined use of selective serotonin reuptake inhibitors and aspirin, ASA may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. Additionally, aspirin impairs the gastric mucosa defenses by inhibiting prostaglandin formation.
Pazopanib: (Moderate) Concomitant use of dihydrocodeine with pazopanib may alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of dihydrocodeine until stable drug effects are achieved. Discontinuation of pazopanib could alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If pazopanib is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Pazopanib is a weak inhibitor of CYP3A4 and CYP2D6. CYP3A4 inhibitors may increase dihydrocodeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Peginterferon Alfa-2b: (Moderate) Concomitant use of dihydrocodeine with peginterferon alfa-2b may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of peginterferon alfa-2b could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If peginterferon alfa-2b is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Peginterferon alfa-2b is a weak inhibitor of CYP2D6. (Moderate) The effects of peginterferon alfa-2b on CYP1A2 were evaluated in drug interaction studies. Administration of peginterferon alfa-2b with caffeine, a CYP1A2 substrate, resulted in an 18% to 39% increase in the geographic mean exposure for caffeine, suggesting inhibition of CYP1A2. Monitor for adverse effects associated with increased exposure to caffeine if peginterferon alfa-2b is coadministered with caffeine.
Pegvisomant: (Moderate) In clinical trials, patients taking opiate agonists often required higher serum pegvisomant concentrations to achieve appropriate IGF-I suppression compared with patients not receiving opiate agonists. The mechanism of this interaction is unknown.
Pemoline: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants.
Penicillin G Benzathine: (Minor) Due to the high protein binding of aspirin, it could displace or be displaced from binding sites by other highly protein-bound drugs, such as penicillins. Also, aspirin may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. Overall, this combination should be used with caution and patients monitored for increased side effects.
Penicillin G Benzathine; Penicillin G Procaine: (Minor) Due to the high protein binding of aspirin, it could displace or be displaced from binding sites by other highly protein-bound drugs, such as penicillins. Also, aspirin may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. Overall, this combination should be used with caution and patients monitored for increased side effects.
Penicillin G Procaine: (Minor) Due to the high protein binding of aspirin, it could displace or be displaced from binding sites by other highly protein-bound drugs, such as penicillins. Also, aspirin may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. Overall, this combination should be used with caution and patients monitored for increased side effects.
Penicillin G: (Minor) Due to the high protein binding of aspirin, it could displace or be displaced from binding sites by other highly protein-bound drugs, such as penicillins. Also, aspirin may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. Overall, this combination should be used with caution and patients monitored for increased side effects.
Penicillin V: (Minor) Due to the high protein binding of aspirin, it could displace or be displaced from binding sites by other highly protein-bound drugs, such as penicillins. Also, aspirin may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. Overall, this combination should be used with caution and patients monitored for increased side effects.
Penicillins: (Minor) Due to the high protein binding of aspirin, it could displace or be displaced from binding sites by other highly protein-bound drugs, such as penicillins. Also, aspirin may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. Overall, this combination should be used with caution and patients monitored for increased side effects.
Pentazocine: (Major) Avoid the concomitant use of pentazocine and opiate agonists, such as dihydrocodeine. Pentazocine is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce the analgesic effects of dihydrocodeine. Pentazocine may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of pentazocine with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
Pentazocine; Naloxone: (Major) Avoid the concomitant use of pentazocine and opiate agonists, such as dihydrocodeine. Pentazocine is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce the analgesic effects of dihydrocodeine. Pentazocine may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of pentazocine with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist. (Major) Naloxone can antagonize the therapeutic efficacy of dihydrocodeine in addition to precipitating withdrawal symptoms in patients who are physically dependent on opiate drugs including dihydrocodeine.
Pentobarbital: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid wit hdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) The metabolism of caffeine can be increased by concurrent use with barbiturates. The hypnotic effects of barbiturates can be reduced by caffeine administration.
Pentosan: (Moderate) Pentosan is a weak anticoagulant. Pentosan has 1/15 the anticoagulant activity of heparin. An additive risk of bleeding may be seen in patients receiving other platelet inhibitors (e.g. aspirin, ASA) in combination with pentosan. Also, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Pentoxifylline: (Moderate) The concomitant administration of platelet inhibitor with pentoxifylline in the treatment of intermittent claudication has not been evaluated and should be approached with caution, due to the potential for synergistic effects.
Perampanel: (Moderate) Concomitant use of opioid agonists with perampanel may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking perampanel. Limit the use of opioid pain medications with perampanel to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Perindopril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Perindopril; Amlodipine: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Perphenazine: (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking perphenazine. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Perphenazine; Amitriptyline: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation, somnolence, and increased risk of serotonin syndrome. The anticholinergic properties of tricyclic antidepressants may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Avoid prescribing opioid cough medications in patients taking tricyclic antidepressants. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and serotonin syndrome. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking perphenazine. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Phendimetrazine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants.
Phenelzine: (Major) Excessive use of caffeine in any form should be avoided in patients receiving Monoamine oxidase inhibitors (MAOIs). Limit caffeine intake during MAOI use and for 1 to 2 weeks after discontinuation of any MAOI. the use of non-prescription medicines or dietary supplements containing caffeine should be avoided. Patients should try to avoid or limit the intake of all items containing caffeine such as tea, coffee, chocolate, and cola. Cardiac arrhythmias or severe hypertension may occur because of the potentiation of caffeine's sympathomimetic effects by MAOIs if caffeine intake is excessive. Ordinarily, selegiline may be an exception, it can only be used safely without dietary restrictions at doses where it presumably selectively inhibits MAO-B (e.g., 10 mg/day). At doses of 20 mg/day, selegiline can interact with foods and beverages. The precise dose at which selegiline becomes a non-selective inhibitor of all MAO is unknown, but may be in the range of 30 to 40 mg per day. Attention to the dose dependent nature of selegiline's selectivity is critical if it is to be used without elaborate restrictions being placed on diet. (Moderate) Carefully observe patients for evidence of serotonin syndrome, particularly during treatment initiation and dose adjustment, if dihydrocodeine is administered with a monoamine oxidase inhibitor (MAOI). Discontinue dihydrocodeine immediately if serotonin syndrome is suspected. This combination may also result in central nervous system excitation and hypertension.
Phenobarbital: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) The metabolism of caffeine can be increased by concurrent use with barbiturates. The hypnotic effects of barbiturates can be reduced by caffeine administration.
Phentermine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants.
Phentermine; Topiramate: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. (Moderate) Concomitant use of dihydrocodeine with topiramate can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If topiramate is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Topiramate is a weak inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Phenylephrine; Promethazine: (Major) Concomitant use of opioid agonists with promethazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking promethazine. Limit the use of opioid pain medications with promethazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce the opioid dose by one-quarter to one-half; use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Phenytoin: (Moderate) Concomitant use of dihydrocodeine with phenytoin can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If phenytoin is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Phenytoin is a strong inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) Large doses of salicylates can displace phenytoin from plasma protein-binding sites. Although increased serum concentrations of unbound phenytoin may lead to phenytoin toxicity, the liver may also more rapidly clear unbound drug. Displacement of phenytoin from binding sites can lead to a decrease in the total phenytoin serum concentration. Close monitoring for excessive phenytoin toxicity or decreased phenytoin efficacy is recommended.
Phosphorated Carbohydrate Solution: (Moderate) Agents that acidify the urine, like phosphate salts, should be avoided in patients receiving high-dose salicylates. Urine acidifying agents may increase renal tubular reabsorption of salicylic acid and possibly increase salicylic acid levels.
Phosphorus: (Moderate) Agents that acidify the urine, like phosphate salts, should be avoided in patients receiving high-dose salicylates. Urine acidifying agents may increase renal tubular reabsorption of salicylic acid and possibly increase salicylic acid levels.
Photosensitizing agents (topical): (Minor) Preclinical data suggest that agents that affect platelet function and inhibit prostaglandin synthesis could decrease the efficacy of photosensitizing agents used during photodynamic therapy.
Pimozide: (Moderate) Concomitant use of other central nervous system (CNS) depressants, such as pimozide, can potentiate the effects of dihydrocodeine and may lead to additive CNS or respiratory depression, or profound sedation. If these agents are used together, a reduced initial dosage of dihydrocodeine is recommended. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Pioglitazone: (Moderate) Salicylates can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates can cause hyperglycemia and glycosuria.
Piperacillin: (Minor) Due to the high protein binding of aspirin, it could displace or be displaced from binding sites by other highly protein-bound drugs, such as penicillins. Also, aspirin may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. Overall, this combination should be used with caution and patients monitored for increased side effects.
Piperacillin; Tazobactam: (Minor) Due to the high protein binding of aspirin, it could displace or be displaced from binding sites by other highly protein-bound drugs, such as penicillins. Also, aspirin may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. Overall, this combination should be used with caution and patients monitored for increased side effects.
Pirbuterol: (Moderate) Sensitive patients may wish to limit or avoid excessive caffeine intake from foods, beverages, dietary supplements and medications during therapy with beta-agonists. Additive side effects may occur between caffeine and beta-agonists. Caffeine is a CNS-stimulant and beta-agonists are sympathomimetic agents. Sensitive patients might experience tremor, sleep difficulties, or mild increases in heart rate.
Piroxicam: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
Pneumococcal Vaccine, Polyvalent: (Moderate) Concomitant administration of antipyretics, such as aspirin, ASA, may decrease an individual's immunological response to the pneumococcal vaccine. A post-marketing study conducted in Poland using a non-US vaccination schedule (2, 3, 4, and 12 months of age) evaluated the impact of prophylactic oral acetaminophen on antibody responses to Prevnar 13. Data show that acetaminophen, given at the time of vaccination and then dosed at 6 to 8 hour intervals for 3 doses on a scheduled basis, reduced the antibody response to some serotypes after the third dose of Prevnar 13 when compared to the antibody responses of infants who only received antipyretics 'as needed' for treatment. However, reduced antibody responses were not observed after the fourth dose of Prevnar 13 with prophylactic acetaminophen.
Polymyxins: (Major) Theoretically, the chronic coadministration of these drugs may increase the risk of developing nephrotoxicity, even in patients who have normal renal function. Monitor patients for changes in renal function if these drugs are coadministered. Since colistimethate sodium is eliminated by the kidney, coadministration with other potentially nephrotoxic drugs, including salicylates, may increase serum concentrations of either drug.
Porfimer: (Major) Agents that inhibit prostaglandin synthesis such as aspirin, ASA could decrease the efficacy of porfimer photodynamic therapy (PDT).
Posaconazole: (Moderate) Concomitant use of dihydrocodeine with posaconazole may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of posaconazole could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If posaconazole is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Posaconazole is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Potassium Bicarbonate: (Moderate) Concurrent administration of high doses of alkalinizing agents may increase urine pH and decrease serum salicylate levels by decreasing renal tubular reabsorption of salicylic acid. (Moderate) Urinary alkalinizing agents, like potassium citrate, increase the excretion of salicylates by increasing renal clearance.
Potassium Chloride: (Moderate) Urinary alkalinizing agents, like potassium citrate, increase the excretion of salicylates by increasing renal clearance.
Potassium Citrate: (Moderate) Concurrent administration of high doses of alkalinizing agents may increase urine pH and decrease serum salicylate levels by decreasing renal tubular reabsorption of salicylic acid. (Moderate) Urinary alkalinizing agents, like potassium citrate, increase the excretion of salicylates by increasing renal clearance.
Potassium Phosphate: (Moderate) Agents that acidify the urine, like phosphate salts, should be avoided in patients receiving high-dose salicylates. Urine acidifying agents may increase renal tubular reabsorption of salicylic acid and possibly increase salicylic acid levels.
Potassium Phosphate; Sodium Phosphate: (Moderate) Agents that acidify the urine, like phosphate salts, should be avoided in patients receiving high-dose salicylates. Urine acidifying agents may increase renal tubular reabsorption of salicylic acid and possibly increase salicylic acid levels.
Pramipexole: (Major) Concomitant use of opioid agonists with pramipexole may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking pramipexole. Limit the use of opioid pain medications with pramipexole to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Dopaminergic agents like pramipexole have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment.
Pramlintide: (Major) Pramlintide slows gastric emptying and the rate of nutrient delivery to the small intestine. Medications with the potential to slow GI motility, such as opiate agonists, should be used with caution, if at all, with pramlintide until more data are available from the manufacturer. Monitor blood glucose. (Moderate) Salicylates can indirectly increase insulin secretion, and thus decrease blood glucose concentrations. In large doses, salicylates may cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Prasterone, Dehydroepiandrosterone, DHEA (Dietary Supplements): (Moderate) Prasterone, dehydroepiandrosterone, DHEA appears to have antiplatelet effects, which may prolong bleeding times. Because of these potential, varied effects on coagulation, patients receiving DHEA concurrently with aspirin, should be monitored for side effects or the need for dosage adjustments.
Prasterone, Dehydroepiandrosterone, DHEA (FDA-approved): (Moderate) Prasterone, dehydroepiandrosterone, DHEA appears to have antiplatelet effects, which may prolong bleeding times. Because of these potential, varied effects on coagulation, patients receiving DHEA concurrently with aspirin, should be monitored for side effects or the need for dosage adjustments.
Prasugrel: (Moderate) Although indicated for concomitant use, both prasugrel and aspirin are associated with bleeding. Aspirin 150 mg did not alter prasugrel-mediated inhibition of platelet aggregation; however, bleeding time was increased compared to either drug alone. Monitor for bleeding during concomitant therapy. (Moderate) Consider the use of a parenteral anti-platelet agent for patients with acute coronary syndrome who require concomitant opioid agonists. Coadministration of opioid agonists with prasugrel delays and reduces the absorption of prasugrel's active metabolite due to slowed gastric emptying.
Pregabalin: (Moderate) Concomitant use of opioid agonists with pregabalin may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking pregabalin. Limit the use of opioid pain medications with pregabalin to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Prilocaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Prilocaine; Epinephrine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Primidone: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) The metabolism of caffeine can be increased by concurrent use with barbiturates. The hypnotic effects of barbiturates can be reduced by caffeine administration.
Probenecid: (Severe) Concurrent use of probenecid and salicylates is contraindicated. The uricosuric actions of probenecid are inhibited by salicylates. When probenecid is used to treat hyperuricemia or gout, do not administer with salicylates.
Procaine: (Minor) Due to the CNS depression potential of all local anesthetics, they should be used with caution with other agents that can cause respiratory depression, such as opiate agonists.
Procarbazine: (Major) Ingestion of certain products should be minimized while receiving procarbazine therapy, as the drug has some MAO inhibiting actions. Caffeine may produce hypertension or hypertensive crisis or induce cardiac arrhythmias if administered to patients taking drugs with strong MAOI properties. All preparations containing caffeine should be used sparingly such as teas, coffee, chocolate, cola, guarana, or 'stay awake' products. Some non-prescription medicines also contain caffeine and should not be taken without health care professional advice. Following discontinuation of procarbazine, dietary restrictions should continue for at least 2 weeks due to the slow recovery from the enzyme-inhibiting effects. (Moderate) Opiate agonists may cause additive sedation or other CNS effects when given in combination with procarbazine.
Prochlorperazine: (Major) Concomitant use of opioid agonists with prochlorperazine may cause excessive sedation and somnolence. Concurrent administration of prochlorperazine is contraindicated in patients receiving large doses of opiate agonists. Avoid prescribing opioid cough medications in patients taking prochlorperazine. Limit the use of opioid pain medications with prochlorperazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Promethazine: (Major) Concomitant use of opioid agonists with promethazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking promethazine. Limit the use of opioid pain medications with promethazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce the opioid dose by one-quarter to one-half; use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Propafenone: (Moderate) Concomitant use of dihydrocodeine with propafenone may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of propafenone could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If propafenone is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Propafenone is a moderate inhibitor of CYP2D6.
Propantheline: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Propofol: (Major) Concomitant use of dihydrocodeine with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients receiving a general anesthetic. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Protriptyline: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation, somnolence, and increased risk of serotonin syndrome. The anticholinergic properties of tricyclic antidepressants may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Avoid prescribing opioid cough medications in patients taking tricyclic antidepressants. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and serotonin syndrome.
Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Psyllium: (Moderate) Psyllium can interfere with the absorption of certain oral drugs if administered concomitantly. For example, psyllium fiber can adsorb salicylates. Per the psyllium manufacturers, administration of other prescribed oral drugs should be separated from the administration of psyllium by at least 2 hours.
Quazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Quetiapine: (Moderate) Concomitant use of central nervous system (CNS) depressants like quetiapine can potentiate the effects of dihydrocodeine, which may potentially lead to respiratory depression, CNS depression, sedation, or hypotensive responses.
Quinapril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Quinidine: (Moderate) Concomitant use of dihydrocodeine with quinidine may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of quinidine could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If quinidine is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Quinidine is a strong inhibitor of CYP2D6.
Quinine: (Moderate) Concomitant use of dihydrocodeine with quinine may alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of dihydrocodeine until stable drug effects are achieved. Discontinuation of quinine could alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If quinine is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Quinine is a moderate inhibitor of CYP3A4 and CYP2D6. CYP3A4 inhibitors may increase dihydrocodeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Racepinephrine: (Moderate) Patients who are using racepinephrine inhalation are advised to avoid foods and beverages that contain caffeine. They should also avoid dietary supplements containing ingredients, such as caffeine, that are reported or claimed to have a stimulant effect. If a patient is taking prescribed medications containing caffeine, then they should seek health care professional advice prior to the use of racepinephrine. Additive adverse effects on the cardiovascular and nervous system are possible, some which may be undesirable. Side effects such as nausea, tremor, nervousness, difficulty with sleep, and increased heart rate may be additive. Consider alternatives to racepinephrine for the treatment of asthma.
Ramelteon: (Moderate) Concomitant use of opioid agonists with ramelteon may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking ramelteon. Limit the use of opioid pain medications with ramelteon to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Minor) Caffeine is a central nervous system (CNS) stimulant. Patients taking melatonin or the melatonin analogs (ramelteon, tasimelteon) for sleep should avoid caffeine-containing medications, dietary supplements, foods, and beverages close to bedtime. Patients should be encouraged to avoid excessive total daily caffeine intake, as part of proper sleep hygiene, since caffeine intake can interfere with proper sleep.
Ramipril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Ranolazine: (Moderate) Concomitant use of dihydrocodeine with ranolazine may alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of dihydrocodeine until stable drug effects are achieved. Discontinuation of ranolazine could alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If ranolazine is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Ranolazine is a moderate inhibitor of CYP2D6 and a weak inhibitor of CYP3A4. CYP3A4 inhibitors may increase dihydrocodeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Rapacuronium: (Moderate) Additive CNS depression may occur if dihydrocodeine is used concomitantly with other CNS depressants, including neuromuscular blockers.
Rasagiline: (Severe) Rasagiline is contraindicated for use with dihydrocodeine due to the risk of serotonin syndrome. Serotonin syndrome is characterized by the rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. At least 14 days should elapse between the discontinuation of rasagiline and the initiation of dihydrocodeine. (Moderate) Although sympathomimetics and psychostimulants are contraindicated for use with other monoamine oxidase inhibitors (MAOIs), hypertensive reactions generally are not expected to occur during concurrent use with rasagiline because of the selective monoamine oxidase-B (MAO-B) inhibition of rasagiline at manufacturer recommended doses.
Regadenoson: (Major) Caffeine is a non-specific adenosine receptor antagonist and can interfere with the efficacy of regadenoson. Patients should avoid consumption of any products containing caffeine (including caffeine from foods and beverages such as coffee, green tea, other teas, colas, and chocolate) for at least 12 hours before regadenoson administration.
Repaglinide: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar and may potentiate the effects of antidiabetic agents. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose or use of greater than maximum recommended daily dosages, salicylates can cause either hypoglycemia or hyperglycemia. Large doses of aspirin should be used cautiously in patients who receive antidiabetic agents.
Ribociclib: (Moderate) Concomitant use of dihydrocodeine with ribociclib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of ribociclib could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If ribociclib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Ribociclib is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Ribociclib; Letrozole: (Moderate) Concomitant use of dihydrocodeine with ribociclib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of ribociclib could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If ribociclib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Ribociclib is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Rifabutin: (Moderate) Concomitant use of dihydrocodeine with rifamycins can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If the rifamycin is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Rifamycins are inducers of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Rifampin: (Moderate) Concomitant use of dihydrocodeine with rifamycins can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If the rifamycin is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Rifamycins are inducers of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) Rifampin is a potent inducer of the cytochrome P450 hepatic enzyme system and can reduce the plasma concentrations and possibly the efficacy of caffeine, including caffeine found in green tea products.
Rifamycins: (Moderate) Concomitant use of dihydrocodeine with rifamycins can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If the rifamycin is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Rifamycins are inducers of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Rifapentine: (Moderate) Concomitant use of dihydrocodeine with rifamycins can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If the rifamycin is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Rifamycins are inducers of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Rifaximin: (Moderate) Concomitant use of dihydrocodeine with rifaximin can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If rifaximin is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Dihydrocodeine is partially metabolized by CYP3A4. Rifaximin is a moderate CYP3A4 inducer in vitro; however, in patients with normal liver function, rifaximin at the recommended dosing regimen is not expected to induce CYP3A4. It is unknown whether rifaximin can have a significant effect on the pharmacokinetics of concomitant CYP3A4 substrates in patients with reduced liver function who have elevated rifaximin concentrations.
Risperidone: (Moderate) Concomitant use of dihydrocodeine with other central nervous system (CNS) depressants, such as risperidone, can potentiate the effects of dihydrocodeine and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of dihydrocodeine in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If these agents are used together, a reduced dosage of dihydrocodeine and/or the CNS depressant is recommended. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Ritodrine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants.
Ritonavir: (Moderate) Concomitant use of dihydrocodeine with ritonavir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of ritonavir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If ritonavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Ritonavir is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Rituximab; Hyaluronidase: (Minor) Salicylates, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
Rivaroxaban: (Major) Salicylates such as aspirin are known to increase bleeding, and bleeding risk may be increased when these drugs are used concomitantly with rivaroxaban. The safety of long-term concomitant use of these drugs has not been studied. Promptly evaluate any signs or symptoms of bleeding or blood loss if patients are treated concomitantly with salicylates. In a single-dose drug interaction study, no pharmacokinetic interactions were observed after concomitant administration of acetylsalicylic acid (aspirin, ASA) with rivaroxaban.
Rocuronium: (Moderate) Additive CNS depression may occur if dihydrocodeine is used concomitantly with other CNS depressants, including neuromuscular blockers.
Rolapitant: (Moderate) Concomitant use of dihydrocodeine with rolapitant may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of rolapitant could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If rolapitant is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Rolapitant is a moderate inhibitor of CYP2D6.
Ropinirole: (Moderate) Concomitant use of opiate agonists with other central nervous system (CNS) depressants such as ropinirole can potentiate the effects of the opiate and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of an opiate in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If these agents are used together, a reduced dosage of the opiate and/or the CNS depressant is recommended. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Ropivacaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Rosiglitazone: (Moderate) Salicylates can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates can cause hyperglycemia and glycosuria.
Rotigotine: (Major) Concomitant use of opioid agonists with rotigotine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking rotigotine. Limit the use of opioid pain medications with rotigotine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Dopaminergic agents like rotigotine have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment.
Rucaparib: (Moderate) Concomitant use of dihydrocodeine with rucaparib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of rucaparib could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If rucaparib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Rucaparib is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Monitor for an increase in caffeine-related adverse reactions if coadministration with rucaparib is necessary. Some patients may need to reduce or limit their caffeine intake. Caffeine is a sensitive CYP1A2 substrate and rucaparib is a weak CYP1A2 inhibitor. Concomitant use increased the AUC of caffeine by 2.55-fold.
Safinamide: (Severe) Safinamide is contraindicated for use with dihydrocodeine due to the risk of serotonin syndrome. Serotonin syndrome is characterized by the rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. At least 14 days should elapse between the discontinuation of safinamide and the initiation of dihydrocodeine.
Salicylic Acid: (Moderate) Concomitant use of salicylic acid with other drugs which may contribute to elevated serum salicylate levels (e.g., oral aspirin or other oral salicylates and other salicylate containing medications, such as sports injury creams) should be avoided. Concurrent use may result in excessive exposure to salicylic acid. Consider replacing aspirin therapy with an alternative non-steroidal anti-inflammatory agent that is not salicylate based where appropriate.
Salmeterol: (Moderate) Sensitive patients may wish to limit or avoid excessive caffeine intake from foods, beverages, dietary supplements and medications during therapy with beta-agonists. Additive side effects may occur between caffeine and beta-agonists. Caffeine is a CNS-stimulant and beta-agonists are sympathomimetic agents. Sensitive patients might experience tremor, sleep difficulties, or mild increases in heart rate.
Saquinavir: (Moderate) Concomitant use of dihydrocodeine with saquinavir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of saquinavir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If saquinavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Saquinavir is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Saxagliptin: (Moderate) Salicylates can indirectly increase insulin secretion, decreasing blood glucose concentrations. In large doses, salicylates may cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving saxagliptin.
Scopolamine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Secobarbital: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) The metabolism of caffeine can be increased by concurrent use with barbiturates. The hypnotic effects of barbiturates can be reduced by caffeine administration.
Segesterone Acetate; Ethinyl Estradiol: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Selective serotonin reuptake inhibitors: (Moderate) The combined use of selective serotonin reuptake inhibitors and aspirin, ASA may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. Additionally, aspirin impairs the gastric mucosa defenses by inhibiting prostaglandin formation.
Selegiline: (Major) Excessive use of caffeine in any form should be avoided in patients receiving Monoamine oxidase inhibitors (MAOIs). Limit caffeine intake during MAOI use and for 1 to 2 weeks after discontinuation of any MAOI. the use of non-prescription medicines or dietary supplements containing caffeine should be avoided. Patients should try to avoid or limit the intake of all items containing caffeine such as tea, coffee, chocolate, and cola. Cardiac arrhythmias or severe hypertension may occur because of the potentiation of caffeine's sympathomimetic effects by MAOIs if caffeine intake is excessive. Ordinarily, selegiline may be an exception, it can only be used safely without dietary restrictions at doses where it presumably selectively inhibits MAO-B (e.g., 10 mg/day). At doses of 20 mg/day, selegiline can interact with foods and beverages. The precise dose at which selegiline becomes a non-selective inhibitor of all MAO is unknown, but may be in the range of 30 to 40 mg per day. Attention to the dose dependent nature of selegiline's selectivity is critical if it is to be used without elaborate restrictions being placed o
How Supplied

Aspirin, Caffeine, Dihydrocodeine Bitartrate/Synalgos-DC Oral Cap: 356.4-30-16mg

Maximum Dosage
Adults

8 capsules/24 hours PO.

Geriatric

8 capsules/24 hours PO.

Adolescents

Safety and efficacy have not been established.

Children

12 years: Safety and efficacy have not been established.
1 to 11 years: Use is contraindicated.

Infants

Use is contraindicated.

Mechanism Of Action

The roles and interactions of aspirin, caffeine, and dihydrocodeine in the treatment of headaches are not well understood.
•Aspirin, ASA: The analgesic activity of aspirin is due to its ability to inhibit cyclooxygenase (COX). Cyclooxygenase is responsible for the conversion of arachidonic acid to prostaglandin G2 (PGG2), which is the first step in prostaglandin synthesis. In vivo, aspirin is hydrolyzed to salicylic acid and acetate, and many of its properties are due to salicylic acid. However, hydrolysis is not required for aspirin activity. Aspirin irreversibly inhibits COX by acetylation of a specific serine moiety. Aspirin appears to inhibit COX through two pathways and seems to have a different mechanism of action than other salicylates. The anti-inflammatory action of aspirin is believed to be a result of peripheral inhibition of COX-1 and COX-2, but aspirin may also inhibit the action and synthesis of other mediators of inflammation. Salicylates are effective in cases where inflammation has caused sensitivity of pain receptors (hyperalgesia). It appears prostaglandins, specifically prostaglandins E and F, are responsible for sensitizing the pain receptors; therefore, salicylates have an indirect analgesic effect by inhibiting the production of further prostaglandins and does not directly affect hyperalgesia or the pain threshold.
•Caffeine: Caffeine is a central nervous system and cardiovascular stimulant. Caffeine causes cerebral vasoconstriction, which decreases blood flow and oxygen tension. In combination with aspirin, caffeine may provide a quicker onset of action and enhance pain relief allowing for lower doses of analgesics.
•Dihydrocodeine: Dihydrocodeine and its active metabolite dihydromorphine are µ-opiate receptor agonists. Dihydrocodeine is considered equipotent to codeine. However, it is still unclear which chemical compound (parent versus metabolite) is primarily responsible for the analgesic effects. Opiate analgesia is mediated through changes in the transmission and perception of pain at µ receptors in the peripheral nerves, spinal cord, brainstem, and midbrain. Opiate analgesics alter the emotional response to pain by producing euphoria, tranquility, and rewarding properties. Evidence suggests that the mood altering effects are due to interactions between opioids and dopaminergic pathways in the dorsal striatum. The stimulatory effects of opiates are the result of inhibitory neurotransmitter 'disinhibition' (e.g., blocking the release of GABA or acetylcholine).

Pharmacokinetics

Aspirin, ASA; caffeine; dihydrocodeine is administered orally. All three agents undergo hepatic metabolism.
Aspirin, ASA: Aspirin is partially hydrolyzed to salicylic acid on the first pass through the liver and is widely distributed into most body tissues. Aspirin is poorly bound to plasma proteins, but it should be used cautiously in patients already receiving other highly protein-bound drugs due to the high protein binding of salicylic acid. Aspirin is 99% metabolized to salicylic acid and other metabolites. The elimination half-life of aspirin in plasma is about 15 to 20 minutes. Salicylic acid, but not aspirin itself, undergoes saturable kinetics. At low doses, the elimination is first-order and the half-life remains constant at 2 to 3 hours; however, at higher doses, the enzymes responsible for metabolism become saturated and the apparent half-life can increase to 15 to 30 hours. Because of this, 5 to 7 days may be required before a steady-state concentration is reached. Salicylic acid and its metabolites are excreted primarily by the kidneys. The excretion of salicylic acid is enhanced by alkalinization of the urine.
Caffeine: Caffeine undergoes hepatic metabolism via CYP1A2 to paraxanthine, theobromine, and theophylline. Elimination of caffeine is renal as inactive metabolites. The elimination half-life of caffeine in adults ranges between 3 to 7 hours.
Dihydrocodeine: The bioavailability of dihydrocodeine is 12% to 34% due to significant first pass effect, and the half-life in patients with normal liver function is 3.3 to 4.5 hours. Dihydrocodeine is hepatically metabolized to 3 metabolites: nordihydrocodeine, dihydromorphine, and dihydrocodeine-6-glucuronide. The metabolism of dihydrocodeine to dihydromorphine (43% of dose) is mediated by CYP2D6. Regardless of CYP2D6 activity, approximately 30% of dihydrocodeine is excreted unchanged, 30% as conjugated dihydrocodeine, 6% as conjugated nordihydrocodeine, and 16% to 20% as unconjugated nordihydrocodeine in the urine of patients with normal renal function.

Oral Route

Aspirin, ASA; caffeine; dihydrocodeine is well absorbed from the GI tract. Although specific information is not available, time to onset of analgesia is generally expected to be about 1 to 2 hours based on data from similar products.

Pregnancy And Lactation
Pregnancy

Aspirin, caffeine, and dihydrocodeine cross the placenta. Avoid use of aspirin, ASA; caffeine; dihydrocodeine during pregnancy starting at 30 weeks of gestation (third trimester). Use of aspirin during this time period increases the risk of premature closure of the fetal ductus arteriosus resulting in pulmonary hypertension and increased fetal mortality. Aspirin use during pregnancy can also alter maternal and neonatal hemostasis mechanisms; therapeutic doses in women close to term may cause bleeding in the mother, fetus, or neonate. Use during the late stages of pregnancy may cause low birth weight, increased incidence of intracranial hemorrhage in premature infants, stillbirths, and neonatal death. Prolonged maternal use of opioids, such as dihydrocodeine, during pregnancy may result in neonatal opioid withdrawal syndrome (NOWS). This syndrome can be life-threatening. Severe symptoms may require pharmacologic therapy managed by clinicians familiar with neonatal opioid withdrawal. Monitor the newborn for withdrawal symptoms including irritability, hyperactivity, abnormal sleep pattern, high-pitched crying, tremor, vomiting, diarrhea, and failure to gain weight. Neonatal arrhythmias (e.g., tachycardia, premature atrial contractions) and tachypnea have been reported when caffeine was consumed during pregnancy in amounts more than 500 mg/day. Caffeine withdrawal in the neonate after birth may account for these symptoms. Fatal arrhythmias in neonates with caffeine use by the mother have also been reported. Caffeine containing medications should be limited to use only when absolutely necessary.