Utira-C

Browse PDR's full list of drug information

Utira-C

Classes

Miscellaneous Dietary Supplements
Other Urinary Antiseptics
Urinary Analgesics and Anesthetics

Administration
Oral Administration

Drink plenty of fluids after each dose.

Adverse Reactions
Moderate

sinus tachycardia / Rapid / Incidence not known
confusion / Early / Incidence not known
excitability / Early / Incidence not known
blurred vision / Early / Incidence not known
urinary retention / Early / Incidence not known
dyspnea / Early / Incidence not known

Mild

flushing / Rapid / Incidence not known
agitation / Early / Incidence not known
drowsiness / Early / Incidence not known
dizziness / Early / Incidence not known
vomiting / Early / Incidence not known
nausea / Early / Incidence not known
xerostomia / Early / Incidence not known
urine discoloration / Early / Incidence not known
stool discoloration / Delayed / Incidence not known
rash / Early / Incidence not known
pruritus / Rapid / Incidence not known

Common Brand Names

Azuphen MB, Darcalma, Hyolev MB, MD 20, Phosenamine, Phosphasal, UR N-C, Uramit, Urelle, Uretron DS, Uribel, Urimar-T, URNEVA, Uro-L, Uro-MP, Ustell, UTA, UTICAP, Utira-C, Utrona-C, VILAMIT MB

Dea Class

Rx

Description

Combination product used to relieve symptoms of urinary irritation or urinary tract infection.

Dosage And Indications
For the treatment of symptoms of irritative voiding including for the relief of local urinary symptoms such as inflammation, hypermotility, and mild pain, which accompany lower urinary tract infection (UTI); also for the relief of urinary tract symptoms caused by diagnostic procedures. Oral dosage Adults

1 tablet/capsule PO 4 times per day with liberal fluid intake after each dose.

Children and Adolescents 7 to 17 years

The manufacturer does not recommend a specific dosage and suggests that the dosage should be individualized by the prescriber. Do not exceed adult dosage.

Dosing Considerations
Hepatic Impairment

Specific guidelines for dosage adjustments in hepatic impairment are not available. However, methenamine is contraindicated in patients with severe hepatic disease.

Renal Impairment

Specific guidelines for dosage adjustments in renal impairment are not available. However, methenamine is contraindicated in patients with severe renal insufficiency or severe dehydration. Also, methylene blue's primary route of elimination is via the kidneys.

Drug Interactions

Acetaminophen; Aspirin, ASA; Caffeine: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic.
Acetaminophen; Aspirin: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic.
Acetaminophen; Aspirin; Diphenhydramine: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic.
Acetaminophen; Caffeine; Dihydrocodeine: (Contraindicated) Dihydrocodeine use in patients taking methylene blue or within 14 days of stopping such treatment is contraindicated due to the risk of serotonin syndrome or opioid toxicity. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of another opioid to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Acetaminophen; Chlorpheniramine; Dextromethorphan: (Major) Because of the potential risk and severity of serotonin syndrome, coadministration of dextromethorphan and IV methylene blue should be avoided if possible. Methylene blue has been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs). Dextromethorphan increases central serotonin effects. If methylene blue is judged to be indicated, all SRIs, including dextromethorphan, must be ceased prior to treatment/procedure/surgery. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Major) Because of the potential risk and severity of serotonin syndrome, coadministration of dextromethorphan and IV methylene blue should be avoided if possible. Methylene blue has been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs). Dextromethorphan increases central serotonin effects. If methylene blue is judged to be indicated, all SRIs, including dextromethorphan, must be ceased prior to treatment/procedure/surgery. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Major) Because of the potential risk and severity of serotonin syndrome, coadministration of dextromethorphan and IV methylene blue should be avoided if possible. Methylene blue has been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs). Dextromethorphan increases central serotonin effects. If methylene blue is judged to be indicated, all SRIs, including dextromethorphan, must be ceased prior to treatment/procedure/surgery. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Codeine: (Contraindicated) Codeine use in patients taking methylene blue or within 14 days of stopping such treatment is contraindicated due to the risk of serotonin syndrome or opioid toxicity. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of another opioid to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Acetaminophen; Dextromethorphan: (Major) Because of the potential risk and severity of serotonin syndrome, coadministration of dextromethorphan and IV methylene blue should be avoided if possible. Methylene blue has been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs). Dextromethorphan increases central serotonin effects. If methylene blue is judged to be indicated, all SRIs, including dextromethorphan, must be ceased prior to treatment/procedure/surgery. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Dextromethorphan; Doxylamine: (Major) Because of the potential risk and severity of serotonin syndrome, coadministration of dextromethorphan and IV methylene blue should be avoided if possible. Methylene blue has been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs). Dextromethorphan increases central serotonin effects. If methylene blue is judged to be indicated, all SRIs, including dextromethorphan, must be ceased prior to treatment/procedure/surgery. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine: (Major) Because of the potential risk and severity of serotonin syndrome, coadministration of dextromethorphan and IV methylene blue should be avoided if possible. Methylene blue has been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs). Dextromethorphan increases central serotonin effects. If methylene blue is judged to be indicated, all SRIs, including dextromethorphan, must be ceased prior to treatment/procedure/surgery. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Dextromethorphan; Guaifenesin; Pseudoephedrine: (Major) Because of the potential risk and severity of serotonin syndrome, coadministration of dextromethorphan and IV methylene blue should be avoided if possible. Methylene blue has been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs). Dextromethorphan increases central serotonin effects. If methylene blue is judged to be indicated, all SRIs, including dextromethorphan, must be ceased prior to treatment/procedure/surgery. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Dextromethorphan; Phenylephrine: (Major) Because of the potential risk and severity of serotonin syndrome, coadministration of dextromethorphan and IV methylene blue should be avoided if possible. Methylene blue has been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs). Dextromethorphan increases central serotonin effects. If methylene blue is judged to be indicated, all SRIs, including dextromethorphan, must be ceased prior to treatment/procedure/surgery. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Dextromethorphan; Pseudoephedrine: (Major) Because of the potential risk and severity of serotonin syndrome, coadministration of dextromethorphan and IV methylene blue should be avoided if possible. Methylene blue has been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs). Dextromethorphan increases central serotonin effects. If methylene blue is judged to be indicated, all SRIs, including dextromethorphan, must be ceased prior to treatment/procedure/surgery. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Hydrocodone: (Major) Avoid concomitant use of hydrocodone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant hydrocodone and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Acetaminophen; Ibuprofen: (Major) Avoid concomitant use of ibuprofen with phenyl salicylate due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
Acetaminophen; Oxycodone: (Major) Avoid concomitant use of oxycodone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Acetazolamide: (Major) Avoid the coadministration of high-dose salicylates and carbonic anhydrase inhibitors whenever possible. There were reports of anorexia, tachypnea, lethargy, metabolic acidosis, coma, and death with high-dose aspirin and acetazolamide. Two mechanisms could cause increased acetazolamide concentrations, resulting in CNS depression and metabolic acidosis: first, competition with aspirin for renal tubular secretion and, second, displacement by salicylates from plasma protein binding sites. Additionally, carbonic anhydrase inhibitors alkalinize urine and increase the excretion of normal doses of salicylates; decreased plasma salicylate concentrations may or may not be clinically significant. (Major) The therapeutic action of methenamine requires an acidic urine. Acetazolamide can alkalinize the urine, thereby decreasing the effectiveness of methenamine. Increased urine alkalinity also can inhibit the conversion of methenamine to formaldehyde, which is the active bacteriostatic form; concurrent use of methenamine and urinary alkalizers is not recommended.
Aclidinium: (Moderate) Although aclidinium is minimally absorbed into the systemic circulation after inhalation, there is the potential for aclidinium to have additive anticholinergic effects when administered with other anticholinergics or antimuscarinics. Per the manufacturer, avoid concomitant administration of aclidinium with other anticholinergic medications, when possible.
Aclidinium; Formoterol: (Moderate) Although aclidinium is minimally absorbed into the systemic circulation after inhalation, there is the potential for aclidinium to have additive anticholinergic effects when administered with other anticholinergics or antimuscarinics. Per the manufacturer, avoid concomitant administration of aclidinium with other anticholinergic medications, when possible.
Albuterol; Budesonide: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Alfentanil: (Major) Avoid concomitant use of methylene blue with alfentanil due to risk of serotonin syndrome or opioid toxicity. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. Monitor patients for hypertension and serotonin syndrome and ensure ready availability of vasodilators and beta-blockers for the treatment of hypertension, as needed, if alfentanil is administered to patients who have received methylene blue within 14 days. Do not administer alfentanil within 72 hours of the last dose of methylene blue. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when alfentanil is used concomitantly with an anticholinergic drug. The concomitant use of alfentanil and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Alkalinizing Agents: (Major) Avoid the administration of Alkalinizing agents to patients who are being treated with methenamine, as an acidic urine is required for methenamine therapeutic efficacy. Alkalinized urine decreases methenamine efficacy by increasing the amount of non-ionized drug available for renal tubular reabsorption and inhibits the conversion of methenamine to formaldehyde, which is the active bacteriostatic form.
Alogliptin: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Alogliptin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Alogliptin; Pioglitazone: (Moderate) Monitor blood glucose during concomitant thiazolidinedione and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Alosetron: (Major) Concomitant use of alosetron and anticholinergics, which can decrease GI motility, may seriously worsen constipation, leading to events such as GI obstuction, impaction, or paralytic ileus. Although specific recommendations are not available from the manufacturer, it would be prudent to avoid anticholinergics in patients taking alosetron.
Alpha-glucosidase Inhibitors: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Aluminum Hydroxide: (Major) Antacids may interact with urinary acidifiers by alkalinizing the urine. Frequent use of these high dose antacids should be avoided in patients receiving urinary acidifiers. (Major) The therapeutic action of methenamine requires an acidic urine. Antacids containing alkalinizing agents such as sodium bicarbonate can alkalinize the urine, thereby decreasing the effectiveness of methenamine by increasing the amount of non-ionized drug available for renal tubular reabsorption. Increased urine alkalinity also can inhibit the conversion of methenamine to formaldehyde, which is the active bacteriostatic form; concurrent use of methenamine and urinary alkalizers is not recommended. (Moderate) Antacids may inhibit the oral absorption of anticholinergics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
Aluminum Hydroxide; Magnesium Carbonate: (Major) Antacids may interact with urinary acidifiers by alkalinizing the urine. Frequent use of these high dose antacids should be avoided in patients receiving urinary acidifiers. (Major) The therapeutic action of methenamine requires an acidic urine. Antacids containing alkalinizing agents such as sodium bicarbonate can alkalinize the urine, thereby decreasing the effectiveness of methenamine by increasing the amount of non-ionized drug available for renal tubular reabsorption. Increased urine alkalinity also can inhibit the conversion of methenamine to formaldehyde, which is the active bacteriostatic form; concurrent use of methenamine and urinary alkalizers is not recommended. (Moderate) Antacids may inhibit the oral absorption of anticholinergics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
Aluminum Hydroxide; Magnesium Hydroxide: (Major) Antacids may interact with urinary acidifiers by alkalinizing the urine. Frequent use of these high dose antacids should be avoided in patients receiving urinary acidifiers. (Major) The therapeutic action of methenamine requires an acidic urine. Antacids containing alkalinizing agents such as sodium bicarbonate can alkalinize the urine, thereby decreasing the effectiveness of methenamine by increasing the amount of non-ionized drug available for renal tubular reabsorption. Increased urine alkalinity also can inhibit the conversion of methenamine to formaldehyde, which is the active bacteriostatic form; concurrent use of methenamine and urinary alkalizers is not recommended. (Moderate) Antacids may inhibit the oral absorption of anticholinergics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
Aluminum Hydroxide; Magnesium Hydroxide; Simethicone: (Major) Antacids may interact with urinary acidifiers by alkalinizing the urine. Frequent use of these high dose antacids should be avoided in patients receiving urinary acidifiers. (Major) The therapeutic action of methenamine requires an acidic urine. Antacids containing alkalinizing agents such as sodium bicarbonate can alkalinize the urine, thereby decreasing the effectiveness of methenamine by increasing the amount of non-ionized drug available for renal tubular reabsorption. Increased urine alkalinity also can inhibit the conversion of methenamine to formaldehyde, which is the active bacteriostatic form; concurrent use of methenamine and urinary alkalizers is not recommended. (Moderate) Antacids may inhibit the oral absorption of anticholinergics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
Aluminum Hydroxide; Magnesium Trisilicate: (Major) Antacids may interact with urinary acidifiers by alkalinizing the urine. Frequent use of these high dose antacids should be avoided in patients receiving urinary acidifiers. (Major) The therapeutic action of methenamine requires an acidic urine. Antacids containing alkalinizing agents such as sodium bicarbonate can alkalinize the urine, thereby decreasing the effectiveness of methenamine by increasing the amount of non-ionized drug available for renal tubular reabsorption. Increased urine alkalinity also can inhibit the conversion of methenamine to formaldehyde, which is the active bacteriostatic form; concurrent use of methenamine and urinary alkalizers is not recommended. (Moderate) Antacids may inhibit the oral absorption of anticholinergics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
Amantadine: (Major) Additive anticholinergic effects may be seen when hyoscyamine is used concomitantly with other drugs that possess antimuscarinic effects.
Amiloride: (Moderate) Salicylates can increase the risk of renal insufficiency in patients receiving diuretics, secondary to effects on renal blood flow. Salicylates inhibit renal prostaglandin production, which causes salt and water retention and decreased renal blood flow. Coadministration may cause hyperkalemia.
Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Salicylates can increase the risk of renal insufficiency in patients receiving diuretics, secondary to effects on renal blood flow. Salicylates inhibit renal prostaglandin production, which causes salt and water retention and decreased renal blood flow. Coadministration may cause hyperkalemia. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Aminoglycosides: (Minor) Due to the inhibition of renal prostaglandins by salicylates, concurrent use of salicylates and other nephrotoxic agents like the aminoglycosides may lead to additive nephrotoxicity.
Amitriptyline: (Contraindicated) Per the manufacturer, treatment initiation with amitriptyline is contraindicated in patients currently receiving intravenous (IV) methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than amitriptyline (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving amitriptyline and requiring urgent treatment with IV methylene blue, amitriptyline should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits outweigh the risks. The patient should be monitored for serotonin syndrome for 2 weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Amitriptyline may be re-initiated 24 hours after the last dose of methylene blue. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent, in patients receiving serotonergic agents. It is not known if patients receiving other serotonergic psychiatric agents with IV methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between IV methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma.
Amlodipine; Benazepril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Amlodipine; Celecoxib: (Major) Concurrent use of phenyl salicylate and celecoxib is generally not recommended due to the increased risks of bleeding and nephrotoxicity. Concurrent use of phenyl salicylate and NSAIDs does not produce greater therapeutic effect compared to the use of NSAIDs alone.
Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Amoxapine: (Moderate) Amoxapine should be used cautiously with intravenous methylene blue. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin and norepinephrine in the brain (MAO-A). Amoxapine primarily increases the activity of norepinephrine, with in vitro data suggesting an insignificant binding affinity for serotonin. Therefore, the potential for serotonin syndrome during coadministration of amoxapine and methylene blue is unclear. Monitoring for potential increases in blood pressure is advised due to the potential for additive noradrenergic activity. (Moderate) Depending on the specific agent, additive anticholinergic effects may be seen when amoxapine is used concomitantly with other anticholinergic agents. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive CNS effects are also possible when these drugs are combined with amoxapine.
Amphetamine: (Contraindicated) Amphetamines should not be administered during or within 14 days after the use of methylene blue. Methylene blue is a potent, reversible monoamine oxidase inhibitor (MAOI) which can prolong and intensify the cardiac stimulation and vasopressor effects of amphetamines, potentially resulting in hypertensive crisis. Methylene blue also has the potential to interact with serotonergic agents, such as amphetamines, which may increase the risk for serotonin syndrome. Serotonin syndrome is characterized by mental status changes (e.g., agitation, hallucinations, delirium, and coma), autonomic instability (e.g., tachycardia, labile blood pressure, dizziness, diaphoresis, flushing, hyperthermia), neuromuscular symptoms (e.g., tremor, rigidity, myoclonus, hyperreflexia, incoordination), seizures, gastrointestinal symptoms (e.g., nausea, vomiting, diarrhea), and in rare instances, death. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents, such as amphetamines, with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma.
Amphetamine; Dextroamphetamine Salts: (Major) Urinary acidifying agents, such as ammonium chloride, phosphorus salts, and methenamine salts (e.g., methenamine; sodium acid phosphate), reduce the tubular reabsorption of amphetamines. As a result, amphetamine clearance is accelerated and the duration of effect is reduced. Combination therapy should be avoided if possible.
Amphetamine; Dextroamphetamine: (Contraindicated) Amphetamines should not be administered during or within 14 days after the use of methylene blue. Methylene blue is a potent, reversible monoamine oxidase inhibitor (MAOI) which can prolong and intensify the cardiac stimulation and vasopressor effects of amphetamines, potentially resulting in hypertensive crisis. Methylene blue also has the potential to interact with serotonergic agents, such as amphetamines, which may increase the risk for serotonin syndrome. Serotonin syndrome is characterized by mental status changes (e.g., agitation, hallucinations, delirium, and coma), autonomic instability (e.g., tachycardia, labile blood pressure, dizziness, diaphoresis, flushing, hyperthermia), neuromuscular symptoms (e.g., tremor, rigidity, myoclonus, hyperreflexia, incoordination), seizures, gastrointestinal symptoms (e.g., nausea, vomiting, diarrhea), and in rare instances, death. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents, such as amphetamines, with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma.
Amphetamines: (Contraindicated) Amphetamines should not be administered during or within 14 days after the use of methylene blue. Methylene blue is a potent, reversible monoamine oxidase inhibitor (MAOI) which can prolong and intensify the cardiac stimulation and vasopressor effects of amphetamines, potentially resulting in hypertensive crisis. Methylene blue also has the potential to interact with serotonergic agents, such as amphetamines, which may increase the risk for serotonin syndrome. Serotonin syndrome is characterized by mental status changes (e.g., agitation, hallucinations, delirium, and coma), autonomic instability (e.g., tachycardia, labile blood pressure, dizziness, diaphoresis, flushing, hyperthermia), neuromuscular symptoms (e.g., tremor, rigidity, myoclonus, hyperreflexia, incoordination), seizures, gastrointestinal symptoms (e.g., nausea, vomiting, diarrhea), and in rare instances, death. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents, such as amphetamines, with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma.
Amphotericin B lipid complex (ABLC): (Minor) Concurrent use of amphotericin B and other potentially nephrotoxic medications, like the salicylates, may enhance the potential for drug-induced renal toxicity.
Amphotericin B liposomal (LAmB): (Minor) Concurrent use of amphotericin B and other potentially nephrotoxic medications, like the salicylates, may enhance the potential for drug-induced renal toxicity.
Amphotericin B: (Minor) Concurrent use of amphotericin B and other potentially nephrotoxic medications, like the salicylates, may enhance the potential for drug-induced renal toxicity.
Angiotensin-converting enzyme inhibitors: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Antacids: (Major) Antacids may interact with urinary acidifiers by alkalinizing the urine. Frequent use of these high dose antacids should be avoided in patients receiving urinary acidifiers. (Major) The therapeutic action of methenamine requires an acidic urine. Antacids containing alkalinizing agents such as sodium bicarbonate can alkalinize the urine, thereby decreasing the effectiveness of methenamine by increasing the amount of non-ionized drug available for renal tubular reabsorption. Increased urine alkalinity also can inhibit the conversion of methenamine to formaldehyde, which is the active bacteriostatic form; concurrent use of methenamine and urinary alkalizers is not recommended. (Moderate) Antacids may inhibit the oral absorption of anticholinergics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
Antithrombin III: (Moderate) Large doses of salicylates (more than 3 to 4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Patients taking large doses of salicylates and antithrombin III should be monitored closely for bleeding.
Apixaban: (Major) Large doses of salicylates (3 to 4 g/day or more) can cause hypoprothrombinemia, an additional risk factor for bleeding. Patients taking large doses of salicylates and apixaban should be monitored closely for bleeding.
Ascorbic Acid, Vitamin C: (Moderate) The therapeutic action of methenamine requires an acidic urine. Ascorbic acid, vitamin C can produce unpredictable changes in urine pH and should be avoided as a urinary acidifier. In addition, orange juice also should be avoided because citric acid ultimately may raise urine pH. (Minor) Agents that acidify the urine should be avoided in patients receiving high-dose salicylates. Urinary pH changes can decrease salicylate excretion. If the urine is acidic prior to administration of an acidifying agent, the interaction should be minimal.
Aspirin, ASA: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic.
Aspirin, ASA; Butalbital; Caffeine: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic.
Aspirin, ASA; Caffeine: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic.
Aspirin, ASA; Caffeine; Orphenadrine: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic. (Moderate) Additive anticholinergic effects may be seen when hyoscyamine is used concomitantly with other drugs with moderate to significant anticholinergic effects including orphenadrine.
Aspirin, ASA; Carisoprodol: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic.
Aspirin, ASA; Carisoprodol; Codeine: (Contraindicated) Codeine use in patients taking methylene blue or within 14 days of stopping such treatment is contraindicated due to the risk of serotonin syndrome or opioid toxicity. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of another opioid to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Aspirin, ASA; Citric Acid; Sodium Bicarbonate: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic. (Moderate) Antacids may inhibit the oral absorption of antimuscarinics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
Aspirin, ASA; Dipyridamole: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic.
Aspirin, ASA; Omeprazole: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic.
Aspirin, ASA; Oxycodone: (Major) Avoid concomitant use of oxycodone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Atenolol; Chlorthalidone: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Atropine; Difenoxin: (Moderate) Diphenoxylate is a synthetic opiate derivative that appears to exert its effect locally and centrally on the smooth mucle cells of the GI tract to inhibit GI motility and slow excess GI propulsion. The effects can be additive to antimuscarinic agents, such as hyoscyamine. In some cases, constipation might occur, and effects on the CNS or bladder function may also be additive.
Azelastine; Fluticasone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Azilsartan; Chlorthalidone: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Bacitracin: (Minor) Additive nephrotoxicity may occur with concurrent use of systemic bacitracin and other nephrotoxic agents, including salicylates. Topical administration of any preparation containing bacitracin, especially when applied to large surface areas, also should not be given with other drugs that have a nephrotoxic potential.
Barbiturates: (Moderate) Due to high protein binding, salicylates could be displaced from binding sites, or could displace other highly protein-bound drugs such as barbiturates. An enhanced effect of the displaced drug may occur.
Beclomethasone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Belladonna; Opium: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when opium is used concomitantly with an anticholinergic drug. The concomitant use of opium and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Benazepril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Benzhydrocodone; Acetaminophen: (Major) The use of benzhydrocodone is not recommended in patients who have received a monoamine oxidase inhibitor (MAOI) within 14 days. Methylene blue is a reversible inhibitor of MAO. Concomitant use of benzhydrocodone with other serotonergic drugs such as MAOIs may result in serious adverse effects including serotonin syndrome. MAOIs may cause additive CNS depression, respiratory depression, drowsiness, dizziness, or hypotension when used with opiate agonists such as benzhydrocodone. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when benzhydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of benzhydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Benzphetamine: (Contraindicated) Amphetamines should not be administered during or within 14 days after the use of methylene blue. Methylene blue is a potent, reversible monoamine oxidase inhibitor (MAOI) which can prolong and intensify the cardiac stimulation and vasopressor effects of amphetamines, potentially resulting in hypertensive crisis. Methylene blue also has the potential to interact with serotonergic agents, such as amphetamines, which may increase the risk for serotonin syndrome. Serotonin syndrome is characterized by mental status changes (e.g., agitation, hallucinations, delirium, and coma), autonomic instability (e.g., tachycardia, labile blood pressure, dizziness, diaphoresis, flushing, hyperthermia), neuromuscular symptoms (e.g., tremor, rigidity, myoclonus, hyperreflexia, incoordination), seizures, gastrointestinal symptoms (e.g., nausea, vomiting, diarrhea), and in rare instances, death. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents, such as amphetamines, with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. (Major) Urinary acidifying agents, such as ammonium chloride, phosphorus salts, and methenamine salts (e.g., methenamine; sodium acid phosphate), reduce the tubular reabsorption of amphetamines. As a result, amphetamine clearance is accelerated and the duration of effect is reduced. Combination therapy should be avoided if possible.
Betamethasone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Bismuth Subsalicylate: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic.
Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic.
Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Botulinum Toxins: (Moderate) The use of systemic antimuscarinic/anticholinergic agents following the administration of botulinum toxins may result in a potentiation of systemic anticholinergic effects (e.g., blurred vision, dry mouth, constipation, or urinary retention).
Bromocriptine: (Moderate) Theoretically, concurrent use of methylene blue and ergot alkaloid derivatives such as bromocriptine may increase the risk of serotonin syndrome. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A) and ergot alkaloids increase central serotonin effects. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Serotonin syndrome is characterized by rapid development of various symptoms such as hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death. (Minor) Bromocriptine is highly bound (more than 90%) to serum proteins. Therefore, it may increase the unbound fraction of other highly protein-bound medications (e.g., aspirin and other salicylates), which may alter their effectiveness and risk for side effects.
Brompheniramine; Dextromethorphan; Phenylephrine: (Major) Because of the potential risk and severity of serotonin syndrome, coadministration of dextromethorphan and IV methylene blue should be avoided if possible. Methylene blue has been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs). Dextromethorphan increases central serotonin effects. If methylene blue is judged to be indicated, all SRIs, including dextromethorphan, must be ceased prior to treatment/procedure/surgery. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Brompheniramine; Pseudoephedrine; Dextromethorphan: (Major) Because of the potential risk and severity of serotonin syndrome, coadministration of dextromethorphan and IV methylene blue should be avoided if possible. Methylene blue has been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs). Dextromethorphan increases central serotonin effects. If methylene blue is judged to be indicated, all SRIs, including dextromethorphan, must be ceased prior to treatment/procedure/surgery. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Budesonide: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Budesonide; Formoterol: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Budesonide; Glycopyrrolate; Formoterol: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Bumetanide: (Moderate) Salicylates may decrease the diuretic, natriuretic, and antihypertensive actions of diuretics, possibly through inhibition of renal prostaglandin synthesis. Patients receiving loop diuretics and salicylates should be monitored for changes in the effectiveness of their diuretic therapy.
Bupivacaine; Meloxicam: (Major) Avoid concomitant use of meloxicam with phenyl salicylate due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
Buprenorphine: (Major) Avoid concomitant use of buprenorphine in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant buprenorphine and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Buprenorphine; Naloxone: (Major) Avoid concomitant use of buprenorphine in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant buprenorphine and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Bupropion: (Contraindicated) Due to an increased risk of hypertensive reactions, treatment initiation with bupropion is contraindicated in patients currently receiving intravenous methylene blue. If urgent psychiatric treatment is required, interventions other than bupropion (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving bupropion and requiring urgent treatment with intravenous methylene blue, bupropion should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits of methylene blue outweigh the risks. The patient should be monitored for hypertensive reactions for two weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Bupropion may be re-initiated 24 hours after the last dose of methylene blue. It is not known if administration of methylene blue by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. (Moderate) Additive anticholinergic effects may be seen when hyoscyamine is used concomitantly with bupropion. Additive drowsiness may occur. Clinicians should note that antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation.
Bupropion; Naltrexone: (Contraindicated) Due to an increased risk of hypertensive reactions, treatment initiation with bupropion is contraindicated in patients currently receiving intravenous methylene blue. If urgent psychiatric treatment is required, interventions other than bupropion (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving bupropion and requiring urgent treatment with intravenous methylene blue, bupropion should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits of methylene blue outweigh the risks. The patient should be monitored for hypertensive reactions for two weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Bupropion may be re-initiated 24 hours after the last dose of methylene blue. It is not known if administration of methylene blue by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. (Moderate) Additive anticholinergic effects may be seen when hyoscyamine is used concomitantly with bupropion. Additive drowsiness may occur. Clinicians should note that antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation.
Buspirone: (Moderate) Theoretically, concurrent use of methylene blue and buspirone may increase the risk of serotonin syndrome. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A) and buspirone increases central serotonin effects. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Serotonin syndrome is characterized by rapid development of various symptoms such as

hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death.
Butalbital; Acetaminophen; Caffeine; Codeine: (Contraindicated) Codeine use in patients taking methylene blue or within 14 days of stopping such treatment is contraindicated due to the risk of serotonin syndrome or opioid toxicity. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of another opioid to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Butalbital; Aspirin; Caffeine; Codeine: (Contraindicated) Codeine use in patients taking methylene blue or within 14 days of stopping such treatment is contraindicated due to the risk of serotonin syndrome or opioid toxicity. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of another opioid to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Butorphanol: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when butorphanol is used concomitantly with an anticholinergic drug. The concomitant use of butorphanol and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Caffeine: (Major) Sodium phosphates should be used with caution in patients using concomitant medications that lower the seizure threshold like psychostimulants.
Calcium Carbonate: (Major) Avoid concomitant use of calcium carbonate and anticholinergics. Antacids may interfere with the absorption of anticholinergics. (Major) Avoid the concomitant use of calcium carbonate and methenamine. Calcium carbonate may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Calcium Carbonate; Famotidine; Magnesium Hydroxide: (Major) Avoid concomitant use of calcium carbonate and anticholinergics. Antacids may interfere with the absorption of anticholinergics. (Major) Avoid the concomitant use of calcium carbonate and methenamine. Calcium carbonate may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Calcium Carbonate; Magnesium Hydroxide: (Major) Avoid concomitant use of calcium carbonate and anticholinergics. Antacids may interfere with the absorption of anticholinergics. (Major) Avoid the concomitant use of calcium carbonate and methenamine. Calcium carbonate may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Calcium Carbonate; Magnesium Hydroxide; Simethicone: (Major) Avoid concomitant use of calcium carbonate and anticholinergics. Antacids may interfere with the absorption of anticholinergics. (Major) Avoid the concomitant use of calcium carbonate and methenamine. Calcium carbonate may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Calcium Carbonate; Simethicone: (Major) Avoid concomitant use of calcium carbonate and anticholinergics. Antacids may interfere with the absorption of anticholinergics. (Major) Avoid the concomitant use of calcium carbonate and methenamine. Calcium carbonate may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Calcium; Vitamin D: (Major) Avoid concomitant use of calcium carbonate and anticholinergics. Antacids may interfere with the absorption of anticholinergics. (Major) Avoid the concomitant use of calcium carbonate and methenamine. Calcium carbonate may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Canagliflozin: (Moderate) Monitor blood glucose during concomitant canagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Canagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant canagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Capreomycin: (Major) Since capreomycin is eliminated by the kidney, coadministration with other potentially nephrotoxic drugs, including salicylates, may increase serum concentrations of either drug. Theoretically, the chronic coadministration of these drugs may increase the risk of developing nephrotoxicity, even in patients who have normal renal function. Monitor patients for changes in renal function if these drugs are coadministered.
Capsaicin; Metaxalone: (Moderate) Concomitant use of IV methylene blue and metaxalone may increase the risk for serotonin syndrome. Consult the IV methylene blue product label for management. Monitor patients for serotonin syndrome if concomitant use is necessary.
Captopril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Captopril; Hydrochlorothiazide, HCTZ: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Carbidopa; Levodopa: (Minor) Through its central antimuscarinic actions, hyoscyamine can potentiate the dopaminergic effects of levodopa. Clinicians should be ready to decrease doses of levodopa if hyoscyamine is added.
Carbidopa; Levodopa; Entacapone: (Minor) Through its central antimuscarinic actions, hyoscyamine can potentiate the dopaminergic effects of levodopa. Clinicians should be ready to decrease doses of levodopa if hyoscyamine is added.
Cefixime: (Minor) In vitro, salicylates have displaced cefixime from its protein-binding sites, resulting in a 50% increase in free cefixime levels. The clinical significance of this effect is unclear at this time.
Cefotetan: (Minor) Cefotetan has been associated with hypoprothrombinemia and may cause additive effects when given concurrently with salicylates.
Celecoxib: (Major) Concurrent use of phenyl salicylate and celecoxib is generally not recommended due to the increased risks of bleeding and nephrotoxicity. Concurrent use of phenyl salicylate and NSAIDs does not produce greater therapeutic effect compared to the use of NSAIDs alone.
Celecoxib; Tramadol: (Contraindicated) Tramadol use is contraindicated in patients who are receiving or who have received monoamine oxidase inhibitors (MAOIs) within the previous 14 days. Methylene blue is a reversible inhibitor of MAO. Concomitant use of tramadol with other serotonergic drugs such as MAOIs may result in serious adverse effects including serotonin syndrome or seizures. MAOIs may cause additive CNS depression, respiratory depression, drowsiness, dizziness, or hypotension when used with opiate agonists such as tramadol. (Major) Concurrent use of phenyl salicylate and celecoxib is generally not recommended due to the increased risks of bleeding and nephrotoxicity. Concurrent use of phenyl salicylate and NSAIDs does not produce greater therapeutic effect compared to the use of NSAIDs alone. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant tramadol and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Cetirizine: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant cetirizine and hyoscyamine use. Concomitant use may result in additive anticholinergic adverse effects.
Cetirizine; Pseudoephedrine: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant cetirizine and hyoscyamine use. Concomitant use may result in additive anticholinergic adverse effects.
Chlordiazepoxide; Amitriptyline: (Contraindicated) Per the manufacturer, treatment initiation with amitriptyline is contraindicated in patients currently receiving intravenous (IV) methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than amitriptyline (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving amitriptyline and requiring urgent treatment with IV methylene blue, amitriptyline should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits outweigh the risks. The patient should be monitored for serotonin syndrome for 2 weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Amitriptyline may be re-initiated 24 hours after the last dose of methylene blue. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent, in patients receiving serotonergic agents. It is not known if patients receiving other serotonergic psychiatric agents with IV methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between IV methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma.
Chlorothiazide: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Chlorpheniramine; Codeine: (Contraindicated) Codeine use in patients taking methylene blue or within 14 days of stopping such treatment is contraindicated due to the risk of serotonin syndrome or opioid toxicity. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of another opioid to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Chlorpheniramine; Dextromethorphan: (Major) Because of the potential risk and severity of serotonin syndrome, coadministration of dextromethorphan and IV methylene blue should be avoided if possible. Methylene blue has been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs). Dextromethorphan increases central serotonin effects. If methylene blue is judged to be indicated, all SRIs, including dextromethorphan, must be ceased prior to treatment/procedure/surgery. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Chlorpheniramine; Dextromethorphan; Phenylephrine: (Major) Because of the potential risk and severity of serotonin syndrome, coadministration of dextromethorphan and IV methylene blue should be avoided if possible. Methylene blue has been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs). Dextromethorphan increases central serotonin effects. If methylene blue is judged to be indicated, all SRIs, including dextromethorphan, must be ceased prior to treatment/procedure/surgery. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Major) Because of the potential risk and severity of serotonin syndrome, coadministration of dextromethorphan and IV methylene blue should be avoided if possible. Methylene blue has been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs). Dextromethorphan increases central serotonin effects. If methylene blue is judged to be indicated, all SRIs, including dextromethorphan, must be ceased prior to treatment/procedure/surgery. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Contraindicated) Dihydrocodeine use in patients taking methylene blue or within 14 days of stopping such treatment is contraindicated due to the risk of serotonin syndrome or opioid toxicity. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of another opioid to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Chlorpheniramine; Hydrocodone: (Major) Avoid concomitant use of hydrocodone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant hydrocodone and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Major) Avoid concomitant use of ibuprofen with phenyl salicylate due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
Chlorpromazine: (Moderate) Additive anticholinergic effects may be seen when anticholinergics are used concomitantly with phenothiazines, including chlorpromazine. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other additive CNS effects may also occur.
Chlorthalidone: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Chlorthalidone; Clonidine: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Choline Salicylate; Magnesium Salicylate: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic.
Cholinergic agonists: (Major) The muscarinic actions of drugs known as parasympathomimetics, including both direct cholinergic receptor agonists and cholinesterase inhibitors, can antagonize the antimuscarinic actions of anticholinergic drugs, and vice versa.
Ciclesonide: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Cisapride: (Moderate) The use of drugs that decrease GI motility, such as hyoscyamine, may pharmacodynamically oppose the effects of cisapride.
Citalopram: (Contraindicated) According to the manufacturer of citalopram, treatment initiation with citalopram is contraindicated in patients currently receiving intravenous (IV) methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than citalopram (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving citalopram and requiring urgent treatment with IV methylene blue, citalopram should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits outweigh the risks. The patient should be monitored for serotonin syndrome for 2 weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Citalopram may be re-initiated 24 hours after the last dose of methylene blue. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin; therefore, concurrent use of an MAO-A inhibitor with a serotonergic agent may result in a clinically significant interaction. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent, in patients receiving SSRIs, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with IV methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. One case describes a patient receiving citalopram who experienced agitation, restlessness, pupil dilation with sluggish response to light, myoclonic movements of the lower limbs, and brisk reflexes following an infusion of methylene blue, while another patient receiving paroxetine developed tachycardia, agitation, dystonia and abnormal eye movements. During a retrospective study of 193 surgical patients who had received a methylene blue injection, it was found that all 12 of the patients who experienced postoperative neurological sequelae had been taking a serotonin reuptake inhibitor preoperatively. One of the 12 patients experienced cardiopulmonary arrest and died. Of the remaining 181 patients who did not experience neurological sequelae, 8.8% were taking a serotonin reuptake inhibitor. Published interaction reports between IV methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma. (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and aspirin, ASA or other salicylates which affect hemostasis may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin.
Citric Acid; Potassium Citrate; Sodium Citrate: (Major) The therapeutic action of methenamine requires an acidic urine. Alkalinizing agents, such as citrate salts, can alkalinize the urine, thereby decreasing the effectiveness of methenamine by increasing the amount of non-ionized drug available for renal tubular reabsorption. Increased urine alkalinity also can inhibit the conversion of methenamine to formaldehyde, which is the active bacteriostatic form; concurrent use of methenamine and urinary alkalizers is not recommended. (Moderate) Urinary alkalinizing agents, like potassium citrate, increase the excretion of salicylates by increasing renal clearance.
Clomipramine: (Contraindicated) According to the manufacturer of clomipramine, treatment initiation with clomipramine is contraindicated in patients currently receiving intravenous methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than clomipramine (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving clomipramine and requiring urgent treatment with intravenous methylene blue, clomipramine should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits of methylene blue outweigh the risks. The patient should be monitored for serotonin syndrome for two weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Clomipramine may be re-initiated 24 hours after the last dose of methylene blue. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin; therefore, concurrent use of an MAO-A inhibitor with a serotonergic agent may result in a clinically significant interaction. Clomipramine, a tricyclic antidepressant, is the most selective and potent inhibitor of serotonin within its class. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. One case report describes a patient receiving clomipramine who experienced jerky movements in all four limbs, as well as confusion and agitation after intravenous administration of methylene blue, with a return to her pre-operative state by day 4. Although the authors attribute this reaction to methylene blue toxicity, they did not exclude the possibility of a drug interaction based upon previous reports of an interaction between injectable methylene blue and selective serotonin reuptake inhibitors (SSRIs). Published interaction reports between intravenousely administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma.
Clozapine: (Major) Avoid co-prescribing clozapine with other anticholinergic medicines that can cause gastrointestinal hypomotility, due to a potential to increase serious constipation, ileus, and other potentially serious bowel conditions that may result in hospitalization. Clozapine exhibits potent anticholinergic effects. Additive anticholinergic effects may be seen when clozapine is used concomitantly with anticholinergic agents. Adverse effects may be seen not only on GI smooth muscle, but also on bladder function, the CNS, the eye, and temperature regulation. Additive drowsiness may also occur, depending on the anticholinergic agent used.
Cocaine: (Moderate) Theoretically, concurrent use of methylene blue and cocaine may increase the risk of serotonin syndrome. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A) and cocaine increases central serotonin effects. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic agents, like cocaine, with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Serotonin syndrome is characterized by rapid development of various symptoms such as hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death.
Codeine: (Contraindicated) Codeine use in patients taking methylene blue or within 14 days of stopping such treatment is contraindicated due to the risk of serotonin syndrome or opioid toxicity. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of another opioid to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Codeine; Guaifenesin: (Contraindicated) Codeine use in patients taking methylene blue or within 14 days of stopping such treatment is contraindicated due to the risk of serotonin syndrome or opioid toxicity. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of another opioid to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Codeine; Guaifenesin; Pseudoephedrine: (Contraindicated) Codeine use in patients taking methylene blue or within 14 days of stopping such treatment is contraindicated due to the risk of serotonin syndrome or opioid toxicity. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of another opioid to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Codeine; Phenylephrine; Promethazine: (Contraindicated) Codeine use in patients taking methylene blue or within 14 days of stopping such treatment is contraindicated due to the risk of serotonin syndrome or opioid toxicity. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of another opioid to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant promethazine and hyoscyamine use. Concomitant use may result in additive anticholinergic adverse effects.
Codeine; Promethazine: (Contraindicated) Codeine use in patients taking methylene blue or within 14 days of stopping such treatment is contraindicated due to the risk of serotonin syndrome or opioid toxicity. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of another opioid to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant promethazine and hyoscyamine use. Concomitant use may result in additive anticholinergic adverse effects.
Colchicine: (Moderate) Colchicine is an alkaloid that is inhibited by acidifying agents. The colchicine dose may need adjustment.
Colistimethate, Colistin, Polymyxin E: (Major) Theoretically, the chronic coadministration of these drugs may increase the risk of developing nephrotoxicity, even in patients who have normal renal function. Monitor patients for changes in renal function if these drugs are coadministered. Since colistimethate sodium is eliminated by the kidney, coadministration with other potentially nephrotoxic drugs, including salicylates, may increase serum concentrations of either drug.
Colistin: (Major) Theoretically, the chronic coadministration of these drugs may increase the risk of developing nephrotoxicity, even in patients who have normal renal function. Monitor patients for changes in renal function if these drugs are coadministered. Since colistimethate sodium is eliminated by the kidney, coadministration with other potentially nephrotoxic drugs, including salicylates, may increase serum concentrations of either drug.
Corticosteroids: (Moderate) Monitor for gastrointestinal toxicity during concurrent corticosteroid and salicylate use. Concomitant use increases the risk of GI bleeding. In patients receiving concomitant corticosteroids and chronic use of salicylates, withdrawal of corticosteroids may result in salicylism because corticosteroids enhance renal clearance of salicylates and their withdrawal is followed by return to normal rates of renal clearance. (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Cortisone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Crofelemer: (Moderate) Pharmacodynamic interactions between crofelemer and antimuscarinics are theoretically possible. Crofelemer does not affect GI motility mechanisms, but does have antidiarrheal effects. Patients taking medications that decrease GI motility, such as antimuscarinics, may be at greater risk for serious complications from crofelemer, such as constipation with chronic use. Use caution and monitor GI symptoms during coadministration.
Cyclobenzaprine: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant cyclobenzaprine and hyoscyamine use. Concomitant use may result in additive anticholinergic adverse effects.
Cyclosporine: (Minor) Due to the inhibition of renal prostaglandins by salicylates, concurrent use of salicylates and other nephrotoxic agents like cyclosporine may lead to additive nephrotoxicity.
Dabigatran: (Major) Educate patients about the signs of increased bleeding and the need to report these signs to a healthcare provider immediately if coadministration of dabigatran and aspirin or another salicylate is necessary. Dabigatran can cause significant and, sometimes, fatal bleeding. This risk may be increased by concurrent use of chronic salicylate therapy.
Dalteparin: (Moderate) An additive risk of bleeding may be seen in patients receiving a low molecular weight heparin in combination with other agents known to increase the risk of bleeding such as salicylates. Monitor clinical and laboratory response closely during concurrent use.
Dapagliflozin: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Dapagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Dapagliflozin; Saxagliptin: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Daratumumab; Hyaluronidase: (Minor) Salicylates, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
Dasiglucagon: (Major) The concomitant use of intravenous glucagon and anticholinergics increases the risk of gastrointestinal adverse reactions due to additive effects on inhibition of gastrointestinal motility. Concomitant use is not recommended.
Deferasirox: (Moderate) Because gastric ulceration and GI bleeding have been reported in patients taking deferasirox, use caution when coadministering with other drugs known to increase the risk of peptic ulcers or gastric hemorrhage including salicylates.
Deflazacort: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Desipramine: (Contraindicated) According to the manufacturer, treatment initiation with desipramine is contraindicated in patients currently receiving intravenous (IV) methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than desipramine (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving desipramine and requiring urgent treatment with IV methylene blue, desipramine should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits outweigh the risks. The patient should be monitored for serotonin syndrome for 2 weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Desipramine may be re-initiated 24 hours after the last dose of methylene blue. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent, in patients receiving serotonergic agents. It is not known if patients receiving other serotonergic psychiatric agents with IV methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between IV methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma.
Desvenlafaxine: (Contraindicated) Concurrent use of methylene blue and serotonin norepinephrine reuptake inhibitors (SNRIs) (e.g., venlafaxine, duloxetine, desvenlafaxine, milnacipran) should generally be avoided due to the potential for serotonin syndrome. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin; therefore, concurrent use of an MAO-A inhibitor with serotonergic agents such as SNRIs may result in a clinically significant interaction. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, SNRIs, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. One case report suggests that serotonin toxicity may have occurred post-operatively following administration of standard infusions of methylene blue in a patient receiving duloxetine. The patient experienced disorientation, a mildly elevated temperature, tachycardia, elevated blood pressure, mild agitation, and nystagmus. In a separate case, a patient who had been receiving venlafaxine developed expressive aphasia, confusion, and disinhibition following a methylene blue infusion. The authors concluded that methylene blue toxicity had occurred; however, they did not exclude the possibility of a drug interaction based upon previous reports of an interaction between injectable methylene blue and selective serotonin reuptake inhibitors (SSRIs). Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma. If emergent treatment with methylene blue is required in a patient receiving an SNRI, the SNRI must be stopped immediately and the patient should be monitored for symptoms of CNS toxicity for two weeks or until 24 hours after the last dose of methylene blue, whichever comes first. During non-emergent use of methylene blue, the SNRI should be stopped at least 2 weeks prior to methylene blue treatment, but also taking into consideration the half-life of the SNRI being discontinued.
Dexamethasone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Major) Because of the potential risk and severity of serotonin syndrome, coadministration of dextromethorphan and IV methylene blue should be avoided if possible. Methylene blue has been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs). Dextromethorphan increases central serotonin effects. If methylene blue is judged to be indicated, all SRIs, including dextromethorphan, must be ceased prior to treatment/procedure/surgery. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Dextroamphetamine: (Contraindicated) Amphetamines should not be administered during or within 14 days after the use of methylene blue. Methylene blue is a potent, reversible monoamine oxidase inhibitor (MAOI) which can prolong and intensify the cardiac stimulation and vasopressor effects of amphetamines, potentially resulting in hypertensive crisis. Methylene blue also has the potential to interact with serotonergic agents, such as amphetamines, which may increase the risk for serotonin syndrome. Serotonin syndrome is characterized by mental status changes (e.g., agitation, hallucinations, delirium, and coma), autonomic instability (e.g., tachycardia, labile blood pressure, dizziness, diaphoresis, flushing, hyperthermia), neuromuscular symptoms (e.g., tremor, rigidity, myoclonus, hyperreflexia, incoordination), seizures, gastrointestinal symptoms (e.g., nausea, vomiting, diarrhea), and in rare instances, death. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents, such as amphetamines, with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma.
Dextromethorphan: (Major) Because of the potential risk and severity of serotonin syndrome, coadministration of dextromethorphan and IV methylene blue should be avoided if possible. Methylene blue has been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs). Dextromethorphan increases central serotonin effects. If methylene blue is judged to be indicated, all SRIs, including dextromethorphan, must be ceased prior to treatment/procedure/surgery. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Dextromethorphan; Bupropion: (Contraindicated) Due to an increased risk of hypertensive reactions, treatment initiation with bupropion is contraindicated in patients currently receiving intravenous methylene blue. If urgent psychiatric treatment is required, interventions other than bupropion (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving bupropion and requiring urgent treatment with intravenous methylene blue, bupropion should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits of methylene blue outweigh the risks. The patient should be monitored for hypertensive reactions for two weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Bupropion may be re-initiated 24 hours after the last dose of methylene blue. It is not known if administration of methylene blue by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. (Major) Because of the potential risk and severity of serotonin syndrome, coadministration of dextromethorphan and IV methylene blue should be avoided if possible. Methylene blue has been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs). Dextromethorphan increases central serotonin effects. If methylene blue is judged to be indicated, all SRIs, including dextromethorphan, must be ceased prior to treatment/procedure/surgery. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) Additive anticholinergic effects may be seen when hyoscyamine is used concomitantly with bupropion. Additive drowsiness may occur. Clinicians should note that antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation.
Dextromethorphan; Diphenhydramine; Phenylephrine: (Major) Because of the potential risk and severity of serotonin syndrome, coadministration of dextromethorphan and IV methylene blue should be avoided if possible. Methylene blue has been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs). Dextromethorphan increases central serotonin effects. If methylene blue is judged to be indicated, all SRIs, including dextromethorphan, must be ceased prior to treatment/procedure/surgery. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Dextromethorphan; Guaifenesin: (Major) Because of the potential risk and severity of serotonin syndrome, coadministration of dextromethorphan and IV methylene blue should be avoided if possible. Methylene blue has been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs). Dextromethorphan increases central serotonin effects. If methylene blue is judged to be indicated, all SRIs, including dextromethorphan, must be ceased prior to treatment/procedure/surgery. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Dextromethorphan; Guaifenesin; Phenylephrine: (Major) Because of the potential risk and severity of serotonin syndrome, coadministration of dextromethorphan and IV methylene blue should be avoided if possible. Methylene blue has been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs). Dextromethorphan increases central serotonin effects. If methylene blue is judged to be indicated, all SRIs, including dextromethorphan, must be ceased prior to treatment/procedure/surgery. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Dextromethorphan; Guaifenesin; Potassium Guaiacolsulfonate: (Major) Because of the potential risk and severity of serotonin syndrome, coadministration of dextromethorphan and IV methylene blue should be avoided if possible. Methylene blue has been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs). Dextromethorphan increases central serotonin effects. If methylene blue is judged to be indicated, all SRIs, including dextromethorphan, must be ceased prior to treatment/procedure/surgery. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Dextromethorphan; Guaifenesin; Pseudoephedrine: (Major) Because of the potential risk and severity of serotonin syndrome, coadministration of dextromethorphan and IV methylene blue should be avoided if possible. Methylene blue has been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs). Dextromethorphan increases central serotonin effects. If methylene blue is judged to be indicated, all SRIs, including dextromethorphan, must be ceased prior to treatment/procedure/surgery. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Dextromethorphan; Quinidine: (Major) Because of the potential risk and severity of serotonin syndrome, coadministration of dextromethorphan and IV methylene blue should be avoided if possible. Methylene blue has been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs). Dextromethorphan increases central serotonin effects. If methylene blue is judged to be indicated, all SRIs, including dextromethorphan, must be ceased prior to treatment/procedure/surgery. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Major) Hyoscyamine may increase the absorption of quinidine by decreasing GI motility and thereby enhancing absorption with possible toxicity. Increased monitoring is advised in patients receiving a combination of these drugs.
Diazoxide: (Moderate) Use sodium phosphates cautiously with diazoxide, as concurrent use can cause hypernatremia.
Dichlorphenamide: (Moderate) Use dichlorphenamide and sodium phosphate monobasic monohydrate; sodium phosphate dibasic anhydrous together with caution. Dichlorphenamide increases potassium excretion and can cause hypokalemia and should be used cautiously with other drugs that may cause hypokalemia including laxatives. Measure potassium concentrations at baseline and periodically during dichlorphenamide treatment. If hypokalemia occurs or persists, consider reducing the dichlorphenamide dose or discontinuing dichlorphenamide therapy.
Diclofenac: (Major) Avoid concomitant use of diclofenac with phenyl salicylate due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
Diclofenac; Misoprostol: (Major) Avoid concomitant use of diclofenac with phenyl salicylate due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
Diflunisal: (Major) The concurrent use of diflunisal and salicylates is not recommended due to the increased risk of gastrointestinal toxicity with little or no increase in anti-inflammatory efficacy.
Digoxin: (Moderate) Anticholinergics, because of their ability to cause tachycardia, can antagonize the beneficial actions of digoxin in atrial fibrillation/flutter. Routine therapeutic monitoring should be continued when an antimuscarinic agent is prescribed with digoxin until the effects of combined use are known.
Dihydroergotamine: (Moderate) Theoretically, concurrent use of methylene blue and ergot alkaloids may increase the risk of serotonin syndrome. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A) and ergot alkaloids increase central serotonin effects. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Serotonin syndrome is characterized by rapid development of various symptoms such as hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death.
Diphenhydramine; Ibuprofen: (Major) Avoid concomitant use of ibuprofen with phenyl salicylate due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
Diphenhydramine; Naproxen: (Major) Avoid concomitant use of naproxen with phenyl salicylate due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
Diphenoxylate; Atropine: (Moderate) Diphenoxylate is a synthetic opiate derivative that appears to exert its effect locally and centrally on the smooth mucle cells of the GI tract to inhibit GI motility and slow excess GI propulsion. The effects can be additive to antimuscarinic agents, such as hyoscyamine. In some cases, constipation might occur, and effects on the CNS or bladder function may also be additive.
Disopyramide: (Moderate) In addition to its electrophysiologic effects, disopyramide exhibits clinically significant anticholinergic properties. These can be additive with other anticholinergics. Clinicians should be aware that urinary retention, particularly in males, and aggravation of glaucoma are realistic possibilities of using disopyramide with other anticholinergic agents.
Dolasetron: (Major) Because of the potential risk and severity of serotonin syndrome, use caution when administering dolasetron with other drugs that have serotonergic properties such as methylene blue. If serotonin syndrome is suspected, discontinue dolasetron and concurrent serotonergic agents and initiate appropriate medical treatment. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death.
Donepezil: (Moderate) The therapeutic benefits of donepezil, a cholinesterase inhibitor, may be diminished during chronic co-administration with antimuscarinics or medications with potent anticholinergic activity. When concurrent use is not avoidable, the patient should be monitored for cognitive decline and anticholinergic side effects. Clinicians should generally avoid multiple medications with anticholinergic activity in the patient with dementia. Some of the common selective antimuscarinic drugs for bladder problems, (such as oxybutynin, darifenacin, trospium, fesoterodine, tolerodine, or solifenacin), do not routinely cause problems with medications used for dementia, but may cause anticholinergic side effects in some patients. Atropine may be used to offset bradycardia in cholinesterase inhibitor overdose.
Donepezil; Memantine: (Moderate) The adverse effects of anticholinergics, such as dry mouth, urinary hesitancy or blurred vision may be enhanced with use of memantine; dosage adjustments of the anticholinergic drug may be required when memantine is coadministered. In addition, preliminary evidence indicates that chronic anticholinergic use in patients with Alzheimer's Disease may possibly have an adverse effect on cognitive function. Therefore, the effectiveness of drugs used in the treatment of Alzheimer's such as memantine, may be adversely affected by chronic antimuscarinic therapy. (Moderate) The therapeutic benefits of donepezil, a cholinesterase inhibitor, may be diminished during chronic co-administration with antimuscarinics or medications with potent anticholinergic activity. When concurrent use is not avoidable, the patient should be monitored for cognitive decline and anticholinergic side effects. Clinicians should generally avoid multiple medications with anticholinergic activity in the patient with dementia. Some of the common selective antimuscarinic drugs for bladder problems, (such as oxybutynin, darifenacin, trospium, fesoterodine, tolerodine, or solifenacin), do not routinely cause problems with medications used for dementia, but may cause anticholinergic side effects in some patients. Atropine may be used to offset bradycardia in cholinesterase inhibitor overdose.
Doravirine; Lamivudine; Tenofovir disoproxil fumarate: (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patien ts receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus.
Doxepin: (Contraindicated) According to the manufacturer, treatment initiation with doxepin is contraindicated in patients currently receiving intravenous (IV) methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than doxepin (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving doxepin and requiring urgent treatment with IV methylene blue, doxepin should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits outweigh the risks. The patient should be monitored for serotonin syndrome for 2 weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Doxepin may be re-initiated 24 hours after the last dose of methylene blue. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent, in patients receiving serotonergic agents. It is not known if patients receiving other serotonergic psychiatric agents with IV methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between IV methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma.
Dronabinol: (Moderate) Use caution if coadministration of dronabinol with anticholinergics is necessary. Concurrent use of dronabinol, THC with anticholinergics may result in additive drowsiness, hypertension, tachycardia, and possibly cardiotoxicity.
Duloxetine: (Contraindicated) Concurrent use of methylene blue and serotonin norepinephrine reuptake inhibitors (SNRIs) (e.g., venlafaxine, duloxetine, desvenlafaxine, milnacipran) should generally be avoided due to the potential for serotonin syndrome. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin; therefore, concurrent use of an MAO-A inhibitor with serotonergic agents such as SNRIs may result in a clinically significant interaction. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, SNRIs, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. One case report suggests that serotonin toxicity may have occurred post-operatively following administration of standard infusions of methylene blue in a patient receiving duloxetine. The patient experienced disorientation, a mildly elevated temperature, tachycardia, elevated blood pressure, mild agitation, and nystagmus. In a separate case, a patient who had been receiving venlafaxine developed expressive aphasia, confusion, and disinhibition following a methylene blue infusion. The authors concluded that methylene blue toxicity had occurred; however, they did not exclude the possibility of a drug interaction based upon previous reports of an interaction between injectable methylene blue and selective serotonin reuptake inhibitors (SSRIs). Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma. If emergent treatment with methylene blue is required in a patient receiving an SNRI, the SNRI must be stopped immediately and the patient should be monitored for symptoms of CNS toxicity for two weeks or until 24 hours after the last dose of methylene blue, whichever comes first. During non-emergent use of methylene blue, the SNRI should be stopped at least 2 weeks prior to methylene blue treatment, but also taking into consideration the half-life of the SNRI being discontinued.
Edoxaban: (Moderate) Patients taking large doses of salicylates and edoxaban should be monitored closely for bleeding. Large doses of salicylates (3 g to 4 g/day or more) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Efavirenz; Emtricitabine; Tenofovir Disoproxil Fumarate: (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus.
Efavirenz; Lamivudine; Tenofovir Disoproxil Fumarate: (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus.
Efgartigimod Alfa; Hyaluronidase: (Minor) Salicylates, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
Eluxadoline: (Major) Avoid use of eluxadoline with medications that may cause constipation, such as anticholinergics. Discontinue use of eluxadoline in patients who develop severe constipation lasting more than 4 days.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus.
Empagliflozin: (Moderate) Monitor blood glucose during concomitant empagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Empagliflozin; Linagliptin: (Moderate) Monitor blood glucose during concomitant empagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant linagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Empagliflozin; Linagliptin; Metformin: (Moderate) Monitor blood glucose during concomitant empagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant linagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Empagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant empagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Emtricitabine; Rilpivirine; Tenofovir Disoproxil Fumarate: (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus.
Emtricitabine; Tenofovir Disoproxil Fumarate: (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus.
Enalapril, Enalaprilat: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Enoxaparin: (Moderate) An additive risk of bleeding may be seen in patients receiving a low molecular weight heparin in combination with other agents known to increase the risk of bleeding such as salicylates. Monitor clinical and laboratory response closely during concurrent use.
Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Erdafitinib: (Major) Avoid coadministration of sodium phosphates with erdafitinib before the initial dose increase period (days 14 to 21) which is based on serum phosphate levels. Sodium phosphates increase serum phosphate levels. Erdafitinib causes hyperphosphatemia as a consequence of FGFR inhibition. Changes in serum phosphate levels by sodium phosphate may interfere with the determination of this initial dose increase and may cause additive hyperphosphatemia.
Ergoloid Mesylates: (Moderate) Theoretically, concurrent use of methylene blue and ergot alkaloids may increase the risk of serotonin syndrome. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A) and ergot alkaloids increase central serotonin effects. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Serotonin syndrome is characterized by rapid development of various symptoms such as hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death.
Ergot alkaloids: (Moderate) Theoretically, concurrent use of methylene blue and ergot alkaloids may increase the risk of serotonin syndrome. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A) and ergot alkaloids increase central serotonin effects. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Serotonin syndrome is characterized by rapid development of various symptoms such as hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death.
Ergotamine: (Moderate) Theoretically, concurrent use of methylene blue and ergot alkaloids may increase the risk of serotonin syndrome. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A) and ergot alkaloids increase central serotonin effects. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Serotonin syndrome is characterized by rapid development of various symptoms such as hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death.
Ergotamine; Caffeine: (Moderate) Theoretically, concurrent use of methylene blue and ergot alkaloids may increase the risk of serotonin syndrome. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A) and ergot alkaloids increase central serotonin effects. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Serotonin syndrome is characterized by rapid development of various symptoms such as hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death.
Ertugliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Ertugliflozin; Sitagliptin: (Moderate) Monitor blood glucose during concomitant sitagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Escitalopram: (Contraindicated) According to the manufacturer of escitalopram, treatment initiation with escitalopram is contraindicated in patients currently receiving intravenous (IV) methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than escitalopram (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving escitalopram and requiring urgent treatment with IV methylene blue, escitalopram should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits outweigh the risks. The patient should be monitored for serotonin syndrome for 2 weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Escitalopram may be re-initiated 24 hours after the last dose of methylene blue. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin; therefore, concurrent use of an MAO-A inhibitor with a serotonergic agent may result in a clinically significant interaction. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent, in patients receiving SSRIs, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with IV methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. One case describes a patient receiving citalopram who experienced agitation, restlessness, pupil dilation with sluggish response to light, myoclonic movements of the lower limbs, and brisk reflexes following an infusion of methylene blue, while another patient receiving paroxetine developed tachycardia, agitation, dystonia and abnormal eye movements. During a retrospective study of 193 surgical patients who had received a methylene blue injection, it was found that all 12 of the patients who experienced postoperative neurological sequelae had been taking a serotonin reuptake inhibitor preoperatively. One of the 12 patients experienced cardiopulmonary arrest and died. Of the remaining 181 patients who did not experience neurological sequelae, 8.8% were taking a serotonin reuptake inhibitor. Published interaction reports between IV methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma. (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and aspirin, ASA or other salicylates which affect hemostasis may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin.
Ethacrynic Acid: (Moderate) Salicylates may decrease the diuretic, natriuretic, and antihypertensive actions of diuretics, possibly through inhibition of renal prostaglandin synthesis. Patients receiving loop diuretics and salicylates should be monitored for changes in the effectiveness of their diuretic therapy.
Ethanol: (Major) Concomitant ingestion of alcohol with salicylates, especially aspirin, ASA, increases the risk of developing gastric irritation and GI mucosal bleeding. Alcohol and salicylates are mucosal irritants and aspirin decreases platelet aggregation. Routine ingestion of alcohol and aspirin can cause significant GI bleeding, which may or may not be overt. Even occasional concomitant use of salicylates and alcohol should be avoided. Chronic ingestion of alcohol is often associated with hypoprothrombinemia and this condition increases the risk of salicylate-induced bleeding. Patients should be warned regarding the potential for increased risk of GI bleeding if alcohol-containing beverages are taken concurrently with salicylates.
Ethotoin: (Minor) Large doses of salicylates can displace hydantoins from plasma protein-binding sites. Although increased serum concentrations of unbound phenytoin may lead to phenytoin toxicity, the liver may also more rapidly clear unbound drug.
Etodolac: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
Fenfluramine: (Contraindicated) Coadministration of fenfluramine with monoamine oxidase inhibitors (MAOIs), such as methylene blue, or within 14 days after discontinuation of treatment with methylene blue is contraindicated due to the risk of serotonin syndrome.
Fenoprofen: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
Fentanyl: (Major) Avoid concomitant use of fentanyl in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant fentanyl and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Fludrocortisone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Flunisolide: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Fluoxetine: (Contraindicated) According to the manufacturer of fluoxetine, treatment initiation with fluoxetine is contraindicated in patients currently receiving intravenous (IV) methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than fluoxetine (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving fluoxetine and requiring urgent treatment with IV methylene blue, fluoxetine should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits outweigh the risks. The patient should be monitored for serotonin syndrome for 5 weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Fluoxetine may be re-initiated 24 hours after the last dose of methylene blue. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin; therefore, concurrent use of an MAO-A inhibitor with a serotonergic agent may result in a clinically significant interaction. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent, in patients receiving SSRIs, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with IV methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. One case describes a patient receiving citalopram who experienced agitation, restlessness, pupil dilation with sluggish response to light, myoclonic movements of the lower limbs, and brisk reflexes following an infusion of methylene blue, while another patient receiving paroxetine developed tachycardia, agitation, dystonia and abnormal eye movements. During a retrospective study of 193 surgical patients who had received a methylene blue injection, it was found that all 12 of the patients who experienced postoperative neurological sequelae had been taking a serotonin reuptake inhibitor preoperatively. One of the 12 patients experienced cardiopulmonary arrest and died. Of the remaining 181 patients who did not experience neurological sequelae, 8.8% were taking a serotonin reuptake inhibitor. Published interaction reports between IV methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma. (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and aspirin, ASA or other salicylates which affect hemostasis may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin.
Fluphenazine: (Moderate) Additive anticholinergic effects may be seen when anticholinergics are used concomitantly with phenothiazines, including fluphenazine. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other additive CNS effects may also occur.
Flurbiprofen: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
Fluticasone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Fluticasone; Salmeterol: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Fluticasone; Umeclidinium; Vilanterol: (Moderate) There is the potential for umeclidinium to have additive anticholinergic effects when administered with other anticholinergics or antimuscarinics. Per the manufaturer, avoid concomitant administration of umeclidinium with other anticholinergic medications when possible. (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Fluticasone; Vilanterol: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Fluvoxamine: (Contraindicated) According to the manufacturer of fluvoxamine, treatment initiation with fluvoxamine is contraindicated in patients currently receiving intravenous (IV) methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than fluvoxamine (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving fluvoxamine and requiring urgent treatment with IV methylene blue, fluvoxamine should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits outweigh the risks. The patient should be monitored for serotonin syndrome for 2 weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Fluvoxamine may be re-initiated 24 hours after the last dose of methylene blue. MAO-A is responsible for the metabolism of serotonin; therefore, concurrent use of an MAO-A inhibitor with a serotonergic agent may result in a clinically significant interaction. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving SSRIs, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with IV methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. One case describes a patient receiving citalopram who experienced agitation, restlessness, pupil dilation with sluggish response to light, myoclonic movements of the lower limbs, and brisk reflexes following an infusion of methylene blue, while another patient receiving paroxetine developed tachycardia, agitation, dystonia and abnormal eye movements. During a retrospective study of 193 surgical patients who had received a methylene blue injection, it was found that all 12 of the patients who experienced postoperative neurological sequelae had been taking a serotonin reuptake inhibitor preoperatively. One of the 12 patients experienced cardiopulmonary arrest and died. Of the remaining 181 patients who did not experience neurological sequelae, 8.8% were taking a serotonin reuptake inhibitor. Published interaction reports between IV methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma. (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and aspirin, ASA or other salicylates which affect hemostasis may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin.
Fondaparinux: (Moderate) An additive risk of bleeding may be seen in patients receiving platelet inhibitors (e.g., aspirin, ASA) in combination with fondaparinux. Data on the concomitant use of fondaparinux with aspirin are lacking; however, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Food: (Moderate) Methenamine should theoretically not be administered concurrently with food or beverages that may alter urinary pH, such as milk products and most fruits. These agents may cause the urine to become alkaline and reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde. Orange juice is not a reliable urinary acidifier and should not be used to ensure urine acidification; citric acid may actually raise urine pH if taken in large amounts.
Formoterol; Mometasone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Foscarnet: (Minor) Due to the inhibition of renal prostaglandins by salicylates, concurrent use of salicylates and other nephrotoxic agents, such as foscarnet, may lead to additive nephrotoxicity.
Fosinopril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Fosphenytoin: (Minor) Large doses of salicylates can displace phenytoin from plasma protein-binding sites. Although increased serum concentrations of unbound phenytoin may lead to phenytoin toxicity, the liver may also more rapidly clear unbound drug. Fosphenytoin is converted to phenytoin in vivo, so this interaction may also occur with fosphenytoin.
Furosemide: (Moderate) Salicylates may decrease the diuretic, natriuretic, and antihypertensive actions of diuretics, possibly through inhibition of renal prostaglandin synthesis. Patients receiving loop diuretics and salicylates should be monitored for changes in the effectiveness of their diuretic therapy.
Galantamine: (Moderate) The therapeutic benefits of galantamine, a cholinesterase inhibitor, may be diminished during chronic co-administration with antimuscarinics or medications with potent anticholinergic activity. When concurrent use is not avoidable, the patient should be monitored for cognitive decline and anticholinergic side effects. Clinicians should generally avoid multiple medications with anticholinergic activity in the patient with dementia. Some of the common selective antimuscarinic drugs for bladder problems, (such as oxybutynin, darifenacin, trospium, fesoterodine, tolerodine, or solifenacin), do not routinely cause problems with medications used for dementia, but may cause anticholinergic side effects in some patients. Atropine may be used to offset bradycardia in cholinesterase inhibitor overdose.
Glipizide; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Glucagon: (Major) The concomitant use of intravenous glucagon and anticholinergics increases the risk of gastrointestinal adverse reactions due to additive effects on inhibition of gastrointestinal motility. Concomitant use is not recommended.
Glyburide; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Glycopyrronium: (Moderate) Although glycopyrronium is minimally absorbed into the systemic circulation after topical application, there is the potential for glycopyrronium to have additive anticholinergic effects when administered with other antimuscarinics. Per the manufaturer, avoid concomitant administration of glycopyrronium with other anticholinergic medications.
Granisetron: (Major) Because of the potential risk and severity of serotonin syndrome, use caution when administering granisetron with other drugs that have serotonergic properties such as methylene blue. If serotonin syndrome is suspected, discontinue granisetron and concurrent serotonergic agents and initiate appropriate medical treatment. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death.
Griseofulvin: (Moderate) Concurrent administration of griseofulvin with salicylates may result in decreased salicylate serum concentrations. Caution and close monitoring for changes in the effectiveness of the salicylate are recommended.
Guaifenesin; Hydrocodone: (Major) Avoid concomitant use of hydrocodone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant hydrocodone and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Haloperidol: (Moderate) Additive adverse effects resulting from cholinergic blockade may occur when hyoscyamine is administered concomitantly with haloperidol.
Heparin: (Moderate) An additive risk of bleeding may be seen in patients receiving platelet inhibitors (e.g., aspirin, ASA). Despite the potential drug-drug interaction between aspirin and heparin, heparin is frequently administered in combination with low-dose aspirin therapy to patients who have had an acute myocardial infarction and in other disease states. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Homatropine; Hydrocodone: (Major) Avoid concomitant use of hydrocodone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant hydrocodone and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Hyaluronidase, Recombinant; Immune Globulin: (Moderate) Immune Globulin (IG) products have been reported to be associated with renal dysfunction, acute renal failure, osmotic nephrosis, and death. Patients predisposed to acute renal failure include patients receiving known nephrotoxic drugs like nonsteroidal anti-inflammatory drugs (NSAIDs) and salicylates. Coadminister IG products at the minimum concentration available and the minimum rate of infusion practicable. Also, closely monitor renal function. (Minor) Salicylates, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
Hyaluronidase: (Minor) Salicylates, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
Hydralazine: (Moderate) Use sodium phosphates cautiously with hydralazine as concurrent use can cause hypernatremia.
Hydralazine; Isosorbide Dinitrate, ISDN: (Moderate) Use sodium phosphates cautiously with hydralazine as concurrent use can cause hypernatremia.
Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Hydrochlorothiazide, HCTZ; Methyldopa: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde. (Moderate) Use sodium phosphates cautiously with methyldopa, as concurrent use can cause hypernatremia.
Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Hydrocodone: (Major) Avoid concomitant use of hydrocodone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant hydrocodone and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Hydrocodone; Ibuprofen: (Major) Avoid concomitant use of hydrocodone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Major) Avoid concomitant use of ibuprofen with phenyl salicylate due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant hydrocodone and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Hydrocodone; Pseudoephedrine: (Major) Avoid concomitant use of hydrocodone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant hydrocodone and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Hydrocortisone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Hydromorphone: (Major) Avoid concomitant use of hydromorphone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydromorphone is used concomitantly with an anticholinergic drug. The concomitant use of hydromorphone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Ibritumomab Tiuxetan: (Moderate) Use anticholinergics, such as hyoscyamine, and concomitant solid oral dosage forms of potassium chloride with caution due to risk for gastrointestinal mucosal injury. Anticholinergics may decrease gastric motility and increase the transit time of solid oral dosage forms of potassium chloride leading to prolonged contact with the gastrointestinal mucosa.
Ibuprofen: (Major) Avoid concomitant use of ibuprofen with phenyl salicylate due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
Ibuprofen; Famotidine: (Major) Avoid concomitant use of ibuprofen with phenyl salicylate due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
Ibuprofen; Oxycodone: (Major) Avoid concomitant use of ibuprofen with phenyl salicylate due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy. (Major) Avoid concomitant use of oxycodone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Ibuprofen; Pseudoephedrine: (Major) Avoid concomitant use of ibuprofen with phenyl salicylate due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
Imipramine: (Contraindicated) According to the manufacturer, treatment initiation with imipramine is contraindicated in patients currently receiving intravenous (IV) methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than imipramine (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving imipramine and requiring urgent treatment with IV methylene blue, imipramine should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits outweigh the risks. The patient should be monitored for serotonin syndrome for 2 weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Imipramine may be re-initiated 24 hours after the last dose of methylene blue. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent, in patients receiving serotonergic agents. It is not known if patients receiving other serotonergic psychiatric agents with IV methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between IV methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma.
Immune Globulin IV, IVIG, IGIV: (Moderate) Immune Globulin (IG) products have been reported to be associated with renal dysfunction, acute renal failure, osmotic nephrosis, and death. Patients predisposed to acute renal failure include patients receiving known nephrotoxic drugs like nonsteroidal anti-inflammatory drugs (NSAIDs) and salicylates. Coadminister IG products at the minimum concentration available and the minimum rate of infusion practicable. Also, closely monitor renal function.
Incretin Mimetics: (Moderate) Monitor blood glucose during concomitant incretin mimetic and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Indapamide: (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics because salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance.
Indomethacin: (Major) The concurrent use of salicylates and indomethacin is not recommended. Combined use does not produce any greater therapeutic effect than indomethacin monotherapy. Also, a significantly greater incidence of gastrointestinal adverse effects with concurrent use has been observed. Because NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time, additive effects may be seen in patients receiving platelet inhibitors (e.g., aspirin), anticoagulants, or thrombolytic agents.
Inotersen: (Moderate) Use caution with concomitant use of inotersen and salicylates due to the risk of glomerulonephritis and nephrotoxicity as well as the potential risk of bleeding from thrombocytopenia. Consider discontinuation of salicylates in a patient taking inotersen with a platelet count of less than 50,000 per microliter.
Insulins: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Ipratropium: (Moderate) Although ipratropium is minimally absorbed into the systemic circulation after inhalation, there is the potential for additive anticholinergic effects when administered with other antimuscarinic or anticholinergic medications. Per the manufacturer, avoid coadministration.
Ipratropium; Albuterol: (Moderate) Although ipratropium is minimally absorbed into the systemic circulation after inhalation, there is the potential for additive anticholinergic effects when administered with other antimuscarinic or anticholinergic medications. Per the manufacturer, avoid coadministration.
Irbesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Isocarboxazid: (Contraindicated) Avoid concomitant use with monoamine oxidase inhibitors (MAOIs); Methylene Blue injection may cause serious or fatal serotonergic syndrome when used in combination with serotonergic drugs. Methylene blue has been demonstrated to be a potent MAOI. Whenever possible, a washout period should elapse between the use of the MAOI and Methylene Blue injection. Patients treated with Methylene Blue injection should be monitored for serotonin syndrome. If symptoms of serotonin syndrome occur, discontinue use, and initiate supportive treatment. Inform patients of the increased risk of serotonin syndrome and advise them to not to take any serotonergic drugs within 72 hours after the last dose of Methylene Blue. If the IV use of Methylene Blue cannot be avoided, choose the lowest possible dose and closely observe the patient for CNS and serotonin-related effects for up to 4 hours after Methylene Blue is given.
Isoniazid, INH: (Major) Concurrent use of methylene blue and drugs that possess MAOI-like activity (e.g., isoniazid, INH) should generally be avoided due to the potential for serotonin syndrome. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A). Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving serotonergic agents such as selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clompiramine. It is not known if patients receiving intravenous methylene blue with other serotonergic psychiatric agents are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Serotonin syndrome is characterized by rapid development of various symptoms such as hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death.
Isoniazid, INH; Pyrazinamide, PZA; Rifampin: (Major) Concurrent use of methylene blue and drugs that possess MAOI-like activity (e.g., isoniazid, INH) should generally be avoided due to the potential for serotonin syndrome. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A). Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving serotonergic agents such as selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clompiramine. It is not known if patients receiving intravenous methylene blue with other serotonergic psychiatric agents are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Serotonin syndrome is characterized by rapid development of various symptoms such as hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death.
Isoniazid, INH; Rifampin: (Major) Concurrent use of methylene blue and drugs that possess MAOI-like activity (e.g., isoniaz id, INH) should generally be avoided due to the potential for serotonin syndrome. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A). Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving serotonergic agents such as selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clompiramine. It is not known if patients receiving intravenous methylene blue with other serotonergic psychiatric agents are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Serotonin syndrome is characterized by rapid development of various symptoms such as hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death.
Itraconazole: (Moderate) Antimuscarinics can raise intragastric pH. This effect may decrease the oral bioavailability of itraconazole; antimuscarinics should be used cautiously in patients receiving itraconazole.
Ketoprofen: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
Ketorolac: (Contraindicated) Ketorolac is contraindicated in patients currently receiving salicylates due to increased risk of serious NSAID-related adverse events, including gastrointestinal bleeding, ulceration, and perforation.
Lamivudine; Tenofovir Disoproxil Fumarate: (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus.
Lasmiditan: (Moderate) Serotonin syndrome may occur during coadministration of lasmiditan and methylene blue. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly after a dose increase or the addition of other serotonergic medications to an existing regimen. Discontinue all serotonergic agents if serotonin syndrome occurs and implement appropriate medical management.
Levocetirizine: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant cetirizine and hyoscyamine use. Concomitant use may result in additive anticholinergic adverse effects.
Levodopa: (Minor) Through its central antimuscarinic actions, hyoscyamine can potentiate the dopaminergic effects of levodopa. Clinicians should be ready to decrease doses of levodopa if hyoscyamine is added.
Levomilnacipran: (Contraindicated) Concurrent use of methylene blue and serotonin norepinephrine reuptake inhibitors (SNRIs) (e.g., venlafaxine, duloxetine, desvenlafaxine, milnacipran) should generally be avoided due to the potential for serotonin syndrome. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin; therefore, concurrent use of an MAO-A inhibitor with serotonergic agents such as SNRIs may result in a clinically significant interaction. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, SNRIs, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. One case report suggests that serotonin toxicity may have occurred post-operatively following administration of standard infusions of methylene blue in a patient receiving duloxetine. The patient experienced disorientation, a mildly elevated temperature, tachycardia, elevated blood pressure, mild agitation, and nystagmus. In a separate case, a patient who had been receiving venlafaxine developed expressive aphasia, confusion, and disinhibition following a methylene blue infusion. The authors concluded that methylene blue toxicity had occurred; however, they did not exclude the possibility of a drug interaction based upon previous reports of an interaction between injectable methylene blue and selective serotonin reuptake inhibitors (SSRIs). Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma. If emergent treatment with methylene blue is required in a patient receiving an SNRI, the SNRI must be stopped immediately and the patient should be monitored for symptoms of CNS toxicity for two weeks or until 24 hours after the last dose of methylene blue, whichever comes first. During non-emergent use of methylene blue, the SNRI should be stopped at least 2 weeks prior to methylene blue treatment, but also taking into consideration the half-life of the SNRI being discontinued.
Levorphanol: (Major) Avoid concomitant use of methylene blue with levorphanol due to risk of serotonin syndrome. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. Do not administer levorphanol within 72 hours of the last dose of methylene blue. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when levorphanol is used concomitantly with an anticholinergic drug. The concomitant use of levorphanol and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Linaclotide: (Moderate) Anticholinergics can promote constipation and pharmacodynamically oppose the action of drugs used for the treatment of constipation or constipation-associated irritable bowel syndrome, such as linaclotide.
Linagliptin: (Moderate) Monitor blood glucose during concomitant linagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Linagliptin; Metformin: (Moderate) Monitor blood glucose during concomitant linagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Linezolid: (Major) Concurrent use of methylene blue and medications with serotonergic effects, such as linezolid, should be avoided if possible. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A) and linezolid is an antibiotic with reversible, non-selective MAO inhibitor activity. Since MAO type A deaminates serotonin, administration of linezolid concurrently with another agent with MAO-A inhibiting activity can potentially increase serotonin. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonergic agents. It is not known if patients receiving intravenous methylene blue with linezolid are at a comparable risk. Serotonin syndrome is characterized by rapid development of various symptoms such as hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death.
Lisdexamfetamine: (Contraindicated) Amphetamines should not be administered during or within 14 days after the use of methylene blue. Methylene blue is a potent, reversible monoamine oxidase inhibitor (MAOI) which can prolong and intensify the cardiac stimulation and vasopressor effects of amphetamines, potentially resulting in hypertensive crisis. Methylene blue also has the potential to interact with serotonergic agents, such as amphetamines, which may increase the risk for serotonin syndrome. Serotonin syndrome is characterized by mental status changes (e.g., agitation, hallucinations, delirium, and coma), autonomic instability (e.g., tachycardia, labile blood pressure, dizziness, diaphoresis, flushing, hyperthermia), neuromuscular symptoms (e.g., tremor, rigidity, myoclonus, hyperreflexia, incoordination), seizures, gastrointestinal symptoms (e.g., nausea, vomiting, diarrhea), and in rare instances, death. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents, such as amphetamines, with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. (Major) Concurrent use of urinary acidifying agents, such as methenamine salts (e.g., methenamine containing urinary products) and lisdexamfetamine should be avoided if possible. Urinary acidifying agents reduce the tubular reabsorption of amphetamines. As a result, amphetamine clearance is accelerated and the duration of effect is reduced. If combination therapy is necessary, adjust the lisdexamfetamine dose according to clinical response as needed.
Lisinopril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Lisinopril; Hydrochlorothiazide, HCTZ: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Lithium: (Major) Theoretically, concurrent use of methylene blue and lithium may increase the risk of serotonin syndrome. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A) and lithium is thought to increase central serotonin effects by various mechanisms. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other psychiatric serotonergic agents with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Serotonin syndrome is characterized by rapid development of various symptoms such as hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death. If serotonin syndrome is suspected, serotonergic agents should be discontinued and appropriate medical treatment should be implemented.
Loop diuretics: (Moderate) Salicylates may decrease the diuretic, natriuretic, and antihypertensive actions of diuretics, possibly through inhibition of renal prostaglandin synthesis. Patients receiving loop diuretics and salicylates should be monitored for changes in the effectiveness of their diuretic therapy.
Lorcaserin: (Major) Theoretically, concurrent use of methylene blue and lorcaserin may increase the risk of serotonin syndrome. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A) and lorcaserin increases central serotonin effects). Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Serotonin syndrome is characterized by rapid development of various symptoms such as hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death.
Losartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Low Molecular Weight Heparins: (Moderate) An additive risk of bleeding may be seen in patients receiving a low molecular weight heparin in combination with other agents known to increase the risk of bleeding such as salicylates. Monitor clinical and laboratory response closely during concurrent use.
Loxapine: (Moderate) Loxapine has anticholinergic activity. The concomitant use of loxapine and other anticholinergic drugs can increase the risk of anticholinergic adverse reactions including exacerbation of glaucoma, constipation, and urinary retention. Depending on the agent used, additive drowsiness/dizziness may also occur.
Lubiprostone: (Moderate) Antimuscarinic drugs can promote constipation and pharmacodynamically oppose the action of drugs used for the treatment of constipation, such as lubiprostone. The clinical significance of these potential interactions is uncertain.
Lurasidone: (Moderate) Antipsychotic agents may disrupt core temperature regulation; therefore, caution is recommended during concurrent use of lurasidone and medications with anticholinergic activity such as antimuscarinics. Concurrent use of lurasidone and medications with anticholinergic activity may contribute to heat-related disorders. Monitor patients for heat intolerance, decreased sweating, or increased body temperature if lurasidone is used with antimuscarinics.
Macimorelin: (Major) Avoid use of macimorelin with drugs that directly affect pituitary growth hormone secretion, such as salicylates. Healthcare providers are advised to discontinue salicylate therapy and observe a sufficient washout period before administering macimorelin. Use of these medications together may impact the accuracy of the macimorelin growth hormone test. (Major) Avoid use of macimorelin with drugs that may blunt the growth hormone response to macimorelin, such as antimuscarinic anticholinergic agents. Healthcare providers are advised to discontinue anticholinergics at least 1 week before administering macimorelin. Use of these medications together may impact the accuracy of the macimorelin growth hormone test.
Mafenide: (Major) Sulfonamides can crystallize in an acidic urine. Because methenamine salts produce an acidic urine, these agents should not be used concomitantly.
Magnesium Hydroxide: (Major) Antacids may interact with urinary acidifiers by alkalinizing the urine. Frequent use of these high dose antacids should be avoided in patients receiving urinary acidifiers. (Major) The therapeutic action of methenamine requires an acidic urine. Antacids containing alkalinizing agents such as sodium bicarbonate can alkalinize the urine, thereby decreasing the effectiveness of methenamine by increasing the amount of non-ionized drug available for renal tubular reabsorption. Increased urine alkalinity also can inhibit the conversion of methenamine to formaldehyde, which is the active bacteriostatic form; concurrent use of methenamine and urinary alkalizers is not recommended. (Moderate) Antacids may inhibit the oral absorption of anticholinergics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
Magnesium Salicylate: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic.
Mannitol: (Major) In general, avoid use of mannitol and salicylates. Concomitant administration of nephrotoxic drugs, such as the salicylates, increases the risk of renal failure after administration of mannitol. However, mannitol promotes the urinary excretion of salicylates, and may be used as an adjunct in salicylate intoxication.
Maprotiline: (Moderate) Additive anticholinergic effects may be seen when hyoscyamine is used concomitantly with other drugs with moderate to significant anticholinergic effects including maprotiline. Clinicians should note that antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Maprotiline should be used cautiously with intravenous methylene blue. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin and norepinephrine in the brain (MAO-A). Maprotiline is a selective norepinephrine reuptake inhibitor. Therefore, the potential for serotonin syndrome during coadministration of maprotiline and methylene blue is unclear. Monitoring for potential increases in blood pressure is advised.
Measles Virus; Mumps Virus; Rubella Virus; Varicella Virus Vaccine, Live: (Major) No adverse events associated with the use of salicylates after varicella vaccination have been reported. However, the manufacturer of varicella virus vaccine live recommends the avoidance of salicylates or aspirin, ASA use for 6 weeks after vaccination. Reye's syndrome, which exclusively affects children under 15 years old, has been associated with aspirin use following active varicella infection. Vaccination with close clinical monitoring is recommended for children who require therapeutic aspirin, ASA therapy; according to the CDC the use of attenuated, live varicella virus vaccine is thought to present less risk than natural varicella disease to such children.
Meclofenamate Sodium: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
Mefenamic Acid: (Major) Increased adverse gastrointestinal (GI) effects are possible if mefenamic acid is used with salicylates. In addition, concomitant administration of salicylates and mefenamic acid may result in an increase in unbound plasma concentrations of either drug, which could result in greater adverse effects. In general, concomitant use of aspirin and mefenamic acid is not recommended.
Meglitinides: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar and may potentiate the effects of antidiabetic agents. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose or use of greater than maximum recommended daily dosages, salicylates can cause either hypoglycemia or hyperglycemia. Large doses of aspirin should be used cautiously in patients who receive antidiabetic agents.
Meloxicam: (Major) Avoid concomitant use of meloxicam with phenyl salicylate due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
Memantine: (Moderate) The adverse effects of anticholinergics, such as dry mouth, urinary hesitancy or blurred vision may be enhanced with use of memantine; dosage adjustments of the anticholinergic drug may be required when memantine is coadministered. In addition, preliminary evidence indicates that chronic anticholinergic use in patients with Alzheimer's Disease may possibly have an adverse effect on cognitive function. Therefore, the effectiveness of drugs used in the treatment of Alzheimer's such as memantine, may be adversely affected by chronic antimuscarinic therapy.
Meperidine: (Contraindicated) Meperidine use in patients taking methylene blue or within 14 days of stopping such treatment is contraindicated due to the risk of serotonin syndrome or precipitation of other unpredictable, severe, and occasionally fatal reactions, possibly related to preexisting hyperphenylalaninemia. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when meperidine is used concomitantly with an anticholinergic drug. The concomitant use of meperidine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Metaxalone: (Moderate) Concomitant use of IV methylene blue and metaxalone may increase the risk for serotonin syndrome. Consult the IV methylene blue product label for management. Monitor patients for serotonin syndrome if concomitant use is necessary.
Metformin: (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Metformin; Repaglinide: (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar and may potentiate the effects of antidiabetic agents. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose or use of greater than maximum recommended daily dosages, salicylates can cause either hypoglycemia or hyperglycemia. Large doses of aspirin should be used cautiously in patients who receive antidiabetic agents.
Metformin; Rosiglitazone: (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant thiazolidinedione and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Metformin; Saxagliptin: (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Metformin; Sitagliptin: (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant sitagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Methadone: (Major) Avoid concomitant use of methadone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when methadone is used concomitantly with an anticholinergic drug. The concomitant use of methadone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. (Minor) As methadone is a weak base, the renal elimination of methadone is increased by urine acidification. Thus acidifying agents may lower the serum methadone concentration. The limited amounts of circulating methadone that undergo glomerular filtration are partially reabsorbed by the kidney tubules, and this reabsorption is pH-dependent. Several studies have demonstrated that methadone is cleared faster from the body with an acidic urinary pH as compared with a more basic pH.
Methamphetamine: (Contraindicated) Amphetamines should not be administered during or within 14 days after the use of methylene blue. Methylene blue is a potent, reversible monoamine oxidase inhibitor (MAOI) which can prolong and intensify the cardiac stimulation and vasopressor effects of amphetamines, potentially resulting in hypertensive crisis. Methylene blue also has the potential to interact with serotonergic agents, such as amphetamines, which may increase the risk for serotonin syndrome. Serotonin syndrome is characterized by mental status changes (e.g., agitation, hallucinations, delirium, and coma), autonomic instability (e.g., tachycardia, labile blood pressure, dizziness, diaphoresis, flushing, hyperthermia), neuromuscular symptoms (e.g., tremor, rigidity, myoclonus, hyperreflexia, incoordination), seizures, gastrointestinal symptoms (e.g., nausea, vomiting, diarrhea), and in rare instances, death. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents, such as amphetamines, with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. (Major) Methenamine and methenamine salts (e.g., methenamine; sodium acid phosphate) are urinary acidifiers, and acidic urine will significantly decrease the half-life of methamphetamine. Urinary acidifying agents increase the concentration of the ionized species of the amphetamine molecule, which increases urinary excretion.
Methazolamide: (Major) Avoid the coadministration of high-dose salicylates and carbonic anhydrase inhibitors, like methazolamide, whenever possible. The combination yielded reports of anorexia, tachypnea, lethargy, metabolic acidosis, coma, and death. The mechanism appears to be accumulation of the carbonic anhydrase inhibitor, resulting in increased CNS depression and metabolic acidosis. The acidosis may allow greater CNS penetration of the salicylate. (Major) The therapeutic action of methenamine requires an acidic urine. Methazolamide can alkalinize the urine, thereby decreasing the effectiveness of methenamine by increasing the amount of non-ionized drug available for renal tubular reabsorption. Increased urine alkalinity also can inhibit the conversion of methenamine to formaldehyde, which is the active bacteriostatic form; concurrent use of methenamine and urinary alkalizers is not recommended.
Methotrexate: (Major) Do not administer salicylates before or concomitantly with high doses of methotrexate, such as used in the treatment of osteosarcoma. Concomitant administration of some NSAIDs with high dose methotrexate therapy has been reported to elevate and prolong serum methotrexate concentrations, resulting in deaths from severe hematologic and gastrointestinal toxicity. Use caution when salicylates are administered concomitantly with lower doses of methotrexate. Salicylates have been reported to reduce the tubular secretion of methotrexate in an animal model and may enhance its toxicity. Methotrexate is partially bound to serum albumin, and toxicity may be increased because of displacement by salicylates.
Methoxsalen: (Moderate) Use methoxsalen and methylene blue together with caution; the risk of severe burns/photosensitivity may be additive. If concurrent use is necessary, closely monitor patients for signs or symptoms of skin toxicity.
Methyclothiazide: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Methyldopa: (Moderate) Use sodium phosphates cautiously with methyldopa, as concurrent use can cause hypernatremia.
Methylergonovine: (Moderate) Theoretically, concurrent use of methylene blue and ergot alkaloids may increase the risk of serotonin syndrome. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A) and ergot alkaloids increase central serotonin effects. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Serotonin syndrome is characterized by rapid development of various symptoms such as hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death.
Methylphenidate Derivatives: (Moderate) Theoretically, concurrent use of methylene blue and methylphenidate derivatives may increase the risk of serotonin syndrome. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A) and methylphenidate increases central serotonin effects. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Serotonin syndrome is characterized by the rapid development of various symptoms such as hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death. If serotonin syndrome occurs, all serotonergic agents should be discontinued and appropriate medical management should be implemented.
Methylprednisolone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Metoclopramide: (Moderate) Drugs with significant antimuscarinic activity, such as anticholinergics and antimuscarinics, may slow GI motility and thus may reduce the prokinetic actions of metoclopramide. Monitor patients for an increase in gastrointestinal complaints, such as reflux or constipation. Additive drowsiness may occur as well. The clinical significance is uncertain.
Metolazone: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Milnacipran: (Contraindicated) Concurrent use of methylene blue and serotonin norepinephrine reuptake inhibitors (SNRIs) (e.g., venlafaxine, duloxetine, desvenlafaxine, milnacipran) should generally be avoided due to the potential for serotonin syndrome. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin; therefore, concurrent use of an MAO-A inhibitor with serotonergic agents such as SNRIs may result in a clinically significant interaction. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, SNRIs, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. One case report suggests that serotonin toxicity may have occurred post-operatively following administration of standard infusions of methylene blue in a patient receiving duloxetine. The patient experienced disorientation, a mildly elevated temperature, tachycardia, elevated blood pressure, mild agitation, and nystagmus. In a separate case, a patient who had been receiving venlafaxine developed expressive aphasia, confusion, and disinhibition following a methylene blue infusion. The authors concluded that methylene blue toxicity had occurred; however, they did not exclude the possibility of a drug interaction based upon previous reports of an interaction between injectable methylene blue and selective serotonin reuptake inhibitors (SSRIs). Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma. If emergent treatment with methylene blue is required in a patient receiving an SNRI, the SNRI must be stopped immediately and the patient should be monitored for symptoms of CNS toxicity for two weeks or until 24 hours after the last dose of methylene blue, whichever comes first. During non-emergent use of methylene blue, the SNRI should be stopped at least 2 weeks prior to methylene blue treatment, but also taking into consideration the half-life of the SNRI being discontinued.
Mirtazapine: (Contraindicated) According to the manufacturer of mirtazapine, treatment initiation with mirtazapine is contraindicated in patients currently receiving intravenous methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than mirtazapine (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving mirtazapine and requiring urgent treatment with intravenous methylene blue, mirtazapine should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits of methylene blue outweigh the risks. The patient should be monitored for serotonin syndrome for 2 weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Mirtazapine may be re-initiated 24 hours after the last dose of methylene blue Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A) and mirtazapine increases central serotonin effects. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving serotonergic agents such as selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving intravenous methylene blue with other serotonergic psychiatric agents are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Serotonin syndrome is characterized by rapid development of various symptoms such as hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death.
Moexipril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Molindone: (Moderate) Antipsychotics are associated with anticholinergic effects; therefore, additive effects may be seen during concurrent use of molindone and other drugs having anticholinergic activity such as antimuscarinics. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other CNS effects may also occur.
Mometasone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Monoamine oxidase inhibitors: (Contraindicated) Avoid concomitant use with monoamine oxidase inhibitors (MAOIs); Methylene Blue injection may cause serious or fatal serotonergic syndrome when used in combination with serotonergic drugs. Methylene blue has been demonstrated to be a potent MAOI. Whenever possible, a washout period should elapse between the use of the MAOI and Methylene Blue injection. Patients treated with Methylene Blue injection should be monitored for serotonin syndrome. If symptoms of serotonin syndrome occur, discontinue use, and initiate supportive treatment. Inform patients of the increased risk of serotonin syndrome and advise them to not to take any serotonergic drugs within 72 hours after the last dose of Methylene Blue. If the IV use of Methylene Blue cannot be avoided, choose the lowest possible dose and closely observe the patient for CNS and serotonin-related effects for up to 4 hours after Methylene Blue is given.
Morphine: (Contraindicated) Morphine use in patients taking methylene blue or within 14 days of stopping such treatment is contraindicated due to the risk of serotonin syndrome or opioid toxicity. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant morphine and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Morphine; Naltrexone: (Contraindicated) Morphine use in patients taking methylene blue or within 14 days of stopping such treatment is contraindicated due to the risk of serotonin syndrome or opioid toxicity. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant morphine and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Mycophenolate: (Moderate) Mycophenolic acid is more than 98% bound to albumin. Concurrent use of mycophenolate with salicylates can decrease the protein binding of mycophenolic acid resulting in an increase in the free fraction of MPA. Patients should be observed for increased clinical effects from mycophenolate as well as additive adverse effects.
Nabilone: (Moderate) Concurrent use of nabilone with anticholinergics may result in pronounced tachycardia and drowsiness.
Nabumetone: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
Nalbuphine: (Major) Avoid concomitant use of nalbuphine in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when nalbuphine is used concomitantly with an anticholinergic drug. The concomitant use of nalbuphine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Naproxen: (Major) Avoid concomitant use of naproxen with phenyl salicylate due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
Naproxen; Esomeprazole: (Major) Avoid concomitant use of naproxen with phenyl salicylate due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
Naproxen; Pseudoephedrine: (Major) Avoid concomitant use of naproxen with phenyl salicylate due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
Nateglinide: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar and may potentiate the effects of antidiabetic agents. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose or use of greater than maximum recommended daily dosages, salicylates can cause either hypoglycemia or hyperglycemia. Large doses of aspirin should be used cautiously in patients who receive antidiabetic agents.
Nefazodone: (Major) Concurrent use of intravenous methylene blue with nefazodone may increase the risk of serotonin syndrome. Methylene blue is a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A) and nefazodone increases central serotonin effects. Cases of serotonin syndrome have been reported with IV methylene blue given as a visualizing agent in patients receiving serotonergic agents like SSRIs, SNRIs, and clomipramine. It is not known if patients receiving other serotonergic psychiatric agents are at a comparable risk. Serotonin syndrome is characterized by rapid development of various symptoms such as hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death. For patients requiring urgent treatment with IV methylene blue, it may be wise to discontinue nefazodone and monitor the patient until 24 hours after the last dose of methylene blue IV; nefazodone can then be re-initiated 24 hours after the last dose of methylene blue.
Neostigmine: (Major) The muscarinic actions of neostigmine can antagonize the antimuscarinic actions of hyoscyamine.
Neostigmine; Glycopyrrolate: (Major) The muscarinic actions of neostigmine can antagonize the antimuscarinic actions of hyoscyamine.
Netupitant, Fosnetupitant; Palonosetron: (Major) Because of the potential risk and severity of serotonin syndrome, use caution when administering palonosetron with other drugs that have serotonergic properties such as methylene blue. If serotonin syndrome is suspected, discontinue palonosetron and concurrent serotonergic agents and initiate appropriate medical treatment. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death.
Nitazoxanide: (Moderate) The active metabolite of nitazoxanide, tizoxanide, is highly bound to plasma proteins. Caution should be exercised when administering nitazoxanide concurrently with other highly plasma protein-bound drugs with narrow therapeutic indices because competition for binding sites may occur.
Nortriptyline: (Contraindicated) According to the manufacturer of nortriptyline, treatment initiation with nortriptyline is contraindicated in patients currently receiving intravenous (IV) methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than nortriptyline (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving nortriptyline and requiring urgent treatment with IV methylene blue, nortriptyline should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits outweigh the risks. The patient should be monitored for serotonin syndrome for 2 weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Nortriptyline may be re-initiated 24 hours after the last dose of methylene blue. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent, in patients receiving serotonergic agents. It is not known if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between IV methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma.
Olanzapine: (Moderate) Additive anticholinergic effects may be seen when olanzapine and anticholinergics are used concomitantly; use with caution. Use of olanzapine and other drugs with anticholinergic activity can increase the risk for severe gastrointestinal adverse reactions related to hypomotility. Olanzapine exhibits anticholinergic activity. Adverse effects may be seen not only on GI smooth muscle, but also on bladder function, the CNS, the eye, and temperature regulation. Additive drowsiness may also occur, depending on the anticholinergic agent used.
Olanzapine; Fluoxetine: (Contraindicated) According to the manufacturer of fluoxetine, treatment initiation with fluoxetine is contraindicated in patients currently receiving intravenous (IV) methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than fluoxetine (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving fluoxetine and requiring urgent treatment with IV methylene blue, fluoxetine should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits outweigh the risks. The patient should be monitored for serotonin syndrome for 5 weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Fluoxetine may be re-initiated 24 hours after the last dose of methylene blue. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin; therefore, concurrent use of an MAO-A inhibitor with a serotonergic agent may result in a clinically significant interaction. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent, in patients receiving SSRIs, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with IV methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. One case describes a patient receiving citalopram who experienced agitation, restlessness, pupil dilation with sluggish response to light, myoclonic movements of the lower limbs, and brisk reflexes following an infusion of methylene blue, while another patient receiving paroxetine developed tachycardia, agitation, dystonia and abnormal eye movements. During a retrospective study of 193 surgical patients who had received a methylene blue injection, it was found that all 12 of the patients who experienced postoperative neurological sequelae had been taking a serotonin reuptake inhibitor preoperatively. One of the 12 patients experienced cardiopulmonary arrest and died. Of the remaining 181 patients who did not experience neurological sequelae, 8.8% were taking a serotonin reuptake inhibitor. Published interaction reports between IV methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma. (Moderate) Additive anticholinergic effects may be seen when olanzapine and anticholinergics are used concomitantly; use with caution. Use of olanzapine and other drugs with anticholinergic activity can increase the risk for severe gastrointestinal adverse reactions related to hypomotility. Olanzapine exhibits anticholinergic activity. Adverse effects may be seen not only on GI smooth muscle, but also on bladder function, the CNS, the eye, and temperature regulation. Additive drowsiness may also occur, depending on the anticholinergic agent used. (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and aspirin, ASA or other salicylates which affect hemostasis may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin.
Olanzapine; Samidorphan: (Moderate) Additive anticholinergic effects may be seen when olanzapine and anticholinergics are used concomitantly; use with caution. Use of olanzapine and other drugs with anticholinergic activity can increase the risk for severe gastrointestinal adverse reactions related to hypomotility. Olanzapine exhibits anticholinergic activity. Adverse effects may be seen not only on GI smooth muscle, but also on bladder function, the CNS, the eye, and temperature regulation. Additive drowsiness may also occur, depending on the anticholinergic agent used.
Oliceridine: (Moderate) If concomitant use of oliceridine and methylene blue is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when oliceridine is used with hyoscyamine. Use of anticholinergics may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Olmesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Olopatadine; Mometasone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Omeprazole; Sodium Bicarbonate: (Moderate) Antacids may inhibit the oral absorption of antimuscarinics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
Ondansetron: (Major) Because of the potential risk and severity of serotonin syndrome, use caution when administering ondansetron with other drugs that have serotonergic properties such as methylene blue. If serotonin syndrome is suspected, discontinue ondansetron and concurrent serotonergic agents and initiate appropriate medical treatment. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death.
Orphenadrine: (Moderate) Additive anticholinergic effects may be seen when hyoscyamine is used concomitantly with other drugs with moderate to significant anticholinergic effects including orphenadrine.
Oxaprozin: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
Oxycodone: (Major) Avoid concomitant use of oxycodone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Oxymorphone: (Major) Avoid concomitant use of oxymorphone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when oxymorphone is used concomitantly with an anticholinergic drug. The concomitant use of oxymorphone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Ozanimod: (Major) Concurrent use of intravenous (IV) methylene blue and drugs with selective MAOI activity, such as ozanimod, should generally be avoided due to the potential for serotonin syndrome. If emergent treatment with methylene blue is required in a patient receiving an MAOI it is advisable to discontinue the MAOI and monitor the patient for symptoms of CNS toxicity for two weeks or until 24 hours after the last dose of methylene blue, whichever comes first. During non-emergent use of methylene blue, it is advisable to discontinue ozanimod at least 2 weeks prior to methylene blue treatment, taking into consideration the half-life of ozanimod. Because the metabolites of ozanimod inhibit primarily monoamine oxidase-B (MAO-B), an interaction may be less likely to occur than with other traditional MAOIs. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A). Cases of serotonin syndrome have been reported, primarily following administration of IV methylene blue (1 to 8 mg/kg) as a visualizing agent in patients receiving serotonergic agents.
Palonosetron: (Major) Because of the potential risk and severity of serotonin syndrome, use caution when administering palonosetron with other drugs that have serotonergic properties such as methylene blue. If serotonin syndrome is suspected, discontinue palonosetron and concurrent serotonergic agents and initiate appropriate medical treatment. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death.
Paroxetine: (Contraindicated) According to the manufacturer of paroxetine, treatment initiation with paroxetine is contraindicated in patients currently receiving intravenous (IV) methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than paroxetine (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving paroxetine and requiring urgent treatment with IV methylene blue, paroxetine should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits outweigh the risks. The patient should be monitored for serotonin syndrome for 2 weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Paroxetine may be re-initiated 24 hours after the last dose of methylene blue. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin; therefore, concurrent use of an MAO-A inhibitor with a serotonergic agent may result in a clinically significant interaction. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent, in patients receiving SSRIs, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with IV methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. One case describes a patient receiving citalopram who experienced agitation, restlessness, pupil dilation with sluggish response to light, myoclonic movements of the lower limbs, and brisk reflexes following an infusion of methylene blue, while another patient receiving paroxetine developed tachycardia, agitation, dystonia and abnormal eye movements. During a retrospective study of 193 surgical patients who had received a methylene blue injection, it was found that all 12 of the patients who experienced postoperative neurological sequelae had been taking a serotonin reuptake inhibitor preoperatively. One of the 12 patients experienced cardiopulmonary arrest and died. Of the remaining 181 patients who did not experience neurological sequelae, 8.8% were taking a serotonin reuptake inhibitor. Published interaction reports between IV methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma. (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant anticholinergic medication and paroxetine use. Concomitant use may result in additive anticholinergic adverse effects. (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and aspirin, ASA or other salicylates which affect hemostasis may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin.
Pentazocine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when pentazocine is used concomitantly with an anticholinergic drug. The concomitant use of pentazocine and anticholinergic medications may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. (Moderate) Theoretically, concurrent use of methylene blue and pentazocine may increase the risk of serotonin syndrome. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A) and pentazocine increases central serotonin effects. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Serotonin syndrome is characterized by rapid development of various symptoms such as hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death.
Pentazocine; Naloxone: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when pentazocine is used concomitantly with an anticholinergic drug. The concomitant use of pentazocine and anticholinergic medications may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. (Moderate) Theoretically, concurrent use of methylene blue and pentazocine may increase the risk of serotonin syndrome. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A) and pentazocine increases central serotonin effects. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Serotonin syndrome is characterized by rapid development of various symptoms such as hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death.
Pentosan: (Moderate) Pentosan is a weak anticoagulant. Pentosan has 1/15 the anticoagulant activity of heparin. An additive risk of bleeding may be seen in patients receiving other platelet inhibitors (e.g., aspirin, ASA) in combination with pentosan. Also, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Perindopril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Perindopril; Amlodipine: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Perphenazine: (Moderate) Additive anticholinergic effects may be seen when anticholinergics are used concomitantly with phenothiazines, including perphenazine. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other additive CNS effects may also occur.
Perphenazine; Amitriptyline: (Contraindicated) Per the manufacturer, treatment initiation with amitriptyline is contraindicated in patients currently receiving intravenous (IV) methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than amitriptyline (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving amitriptyline and requiring urgent treatment with IV methylene blue, amitriptyline should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits outweigh the risks. The patient should be monitored for serotonin syndrome for 2 weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Amitriptyline may be re-initiated 24 hours after the last dose of methylene blue. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent, in patients receiving serotonergic agents. It is not known if patients receiving other serotonergic psychiatric agents with IV methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between IV methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma. (Moderate) Additive anticholinergic effects may be seen when anticholinergics are used concomitantly with phenothiazines, including perphenazine. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other additive CNS effects may also occur.
Pertuzumab; Trastuzumab; Hyaluronidase: (Minor) Salicylates, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
Phenelzine: (Contraindicated) Avoid concomitant use with monoamine oxidase inhibitors (MAOIs); Methylene Blue injection may cause serious or fatal serotonergic syndrome when used in combination with serotonergic drugs. Methylene blue has been demonstrated to be a potent MAOI. Whenever possible, a washout period should elapse between the use of the MAOI and Methylene Blue injection. Patients treated with Methylene Blue injection should be monitored for serotonin syndrome. If symptoms of serotonin syndrome occur, discontinue use, and initiate supportive treatment. Inform patients of the increased risk of serotonin syndrome and advise them to not to take any serotonergic drugs within 72 hours after the last dose of Methylene Blue. If the IV use of Methylene Blue cannot be avoided, choose the lowest possible dose and closely observe the patient for CNS and serotonin-related effects for up to 4 hours after Methylene Blue is given.
Phentermine; Topiramate: (Moderate) Carbonic anhydrase inhibiting drugs, such as topiramate (a weak carbonic anhydrase inhibitor) can alkalinize the urine, thereby decreasing the effectiveness of methenamine by inhibiting the conversion of methenamine to formaldehyde. (Moderate) Monitor for decreased sweating and increased body temperature, especially in hot weather, during concomitant use of topiramate and other drugs that predispose persons to heat-related disorders, such as anticholinergic medications. Concomitant use increases the risk for oligohidrosis and hyperthermia.
Phenytoin: (Minor) Large doses of salicylates can displace phenytoin from plasma protein-binding sites. Although increased serum concentrations of unbound phenytoin may lead to phenytoin toxicity, the liver may also more rapidly clear unbound drug. Displacement of phenytoin from binding sites can lead to a decrease in the total phenytoin serum concentration. Close monitoring for excessive phenytoin toxicity or decreased phenytoin efficacy is recommended.
Photosensitizing agents (topical): (Minor) Preclinical data suggest that agents that affect platelet function and inhibit prostaglandin synthesis could decrease the efficacy of photosensitizing agents used during photodynamic therapy.
Physostigmine: (Major) The muscarinic actions of physostigmine can antagonize the antimuscarinic actions of hyoscyamine.
Pioglitazone: (Moderate) Monitor blood glucose during concomitant thiazolidinedione and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Pioglitazone; Glimepiride: (Moderate) Monitor blood glucose during concomitant thiazolidinedione and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Pioglitazone; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant thiazolidinedione and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Piroxicam: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
Porfimer: (Major) Avoid coadministration of porfimer with methylene blue due to the risk of increased photosensitivity. All patients treated with porfimer will be photosensitive. Concomitant use of other photosensitizing agents like methylene blue may increase the risk of a photosensitivity reaction.
Potassium Bicarbonate: (Major) The therapeutic action of methenamine requires an acidic urine. Alkalinizing agents, such as citrate salts, can alkalinize the urine, thereby decreasing the effectiveness of methenamine by increasing the amount of non-ionized drug available for renal tubular reabsorption. Increased urine alkalinity also can inhibit the conversion of methenamine to formaldehyde, which is the active bacteriostatic form; concurrent use of methenamine and urinary alkalizers is not recommended. (Moderate) Urinary alkalinizing agents, like potassium citrate, increase the excretion of salicylates by increasing renal clearance. (Moderate) Use anticholinergics, such as hyoscyamine, and concomitant solid oral dosage forms of potassium chloride with caution due to risk for gastrointestinal mucosal injury. Anticholinergics may decrease gastric motility and increase the transit time of solid oral dosage forms of potassium chloride leading to prolonged contact with the gastrointestinal mucosa.
Potassium Chloride: (Major) The therapeutic action of methenamine requires an acidic urine. Alkalinizing agents, such as citrate salts, can alkalinize the urine, thereby decreasing the effectiveness of methenamine by increasing the amount of non-ionized drug available for renal tubular reabsorption. Increased urine alkalinity also can inhibit the conversion of methenamine to formaldehyde, which is the active bacteriostatic form; concurrent use of methenamine and urinary alkalizers is not recommended. (Moderate) Urinary alkalinizing agents, like potassium citrate, increase the excretion of salicylates by increasing renal clearance. (Moderate) Use anticholinergics, such as hyoscyamine, and concomitant solid oral dosage forms of potassium chloride with caution due to risk for gastrointestinal mucosal injury. Anticholinergics may decrease gastric motility and increase the transit time of solid oral dosage forms of potassium chloride leading to prolonged contact with the gastrointestinal mucosa.
Potassium Citrate: (Major) The therapeutic action of methenamine requires an acidic urine. Alkalinizing agents, such as citrate salts, can alkalinize the urine, thereby decreasing the effectiveness of methenamine by increasing the amount of non-ionized drug available for renal tubular reabsorption. Increased urine alkalinity also can inhibit the conversion of methenamine to formaldehyde, which is the active bacteriostatic form; concurrent use of methenamine and urinary alkalizers is not recommended. (Moderate) Urinary alkalinizing agents, like potassium citrate, increase the excretion of salicylates by increasing renal clearance.
Potassium Citrate; Citric Acid: (Major) The therapeutic action of methenamine requires an acidic urine. Alkalinizing agents, such as citrate salts, can alkalinize the urine, thereby decreasing the effectiveness of methenamine by increasing the amount of non-ionized drug available for renal tubular reabsorption. Increased urine alkalinity also can inhibit the conversion of methenamine to formaldehyde, which is the active bacteriostatic form; concurrent use of methenamine and urinary alkalizers is not recommended. (Moderate) Urinary alkalinizing agents, like potassium citrate, increase the excretion of salicylates by increasing renal clearance.
Pramlintide: (Major) Pramlintide therapy should not be considered in patients taking medications that alter gastric motility, such as anticholinergics. Pramlintide slows gastric emptying and the rate of nutrient delivery to the small intestine. Medications that have depressive effects on GI could potentiate the actions of pramlintide. (Moderate) Salicylates can indirectly increase insulin secretion, and thus decrease blood glucose concentrations. In large doses, salicylates may cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Prednisolone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Prednisone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Probenecid: (Contraindicated) Concurrent use of probenecid and salicylates is contraindicated. The uricosuric actions of probenecid are inhibited by salicylates. When probenecid is used to treat hyperuricemia or gout, do not administer with salicylates.
Probenecid; Colchicine: (Contraindicated) Concurrent use of probenecid and salicylates is contraindicated. The uricosuric actions of probenecid are inhibited by salicylates. When probenecid is used to treat hyperuricemia or gout, do not administer with salicylates. (Moderate) Colchicine is an alkaloid that is inhibited by acidifying agents. The colchicine dose may need adjustment.
Procainamide: (Moderate) The anticholinergic effects of procainamide may be significant and may be enhanced when combined with anticholinergics. Anticholinergic agents administered concurrently with procainamide may produce additive antivagal effects on AV nodal conduction, although this is not as well documented for procainamide as for quinidine.
Procarbazine: (Major) Concurrent use of methylene blue and MAOIs or drugs that possess MAOI-like activity (e.g., procarbazine) should generally be avoided due to the potential for serotonin syndrome. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A). Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving serotonergic agents such as selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clompiramine. It is not known if patients receiving intravenous methylene blue with other serotonergic psychiatric agents are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Serotonin syndrome is characterized by rapid development of various symptoms such as hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death.
Prochlorperazine: (Moderate) Additive anticholinergic effects may be seen when anticholinergics are used concomitantly with phenothiazines, including prochlorperazine. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other additive CNS effects may also occur.
Promethazine: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant promethazine and hyoscyamine use. Concomitant use may result in additive anticholinergic adverse effects.
Promethazine; Dextromethorphan: (Major) Because of the potential risk and severity of serotonin syndrome, coadministration of dextromethorphan and IV methylene blue should be avoided if possible. Methylene blue has been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs). Dextromethorphan increases central serotonin effects. If methylene blue is judged to be indicated, all SRIs, including dextromethorphan, must be ceased prior to treatment/procedure/surgery. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant promethazine and hyoscyamine use. Concomitant use may result in additive anticholinergic adverse effects.
Promethazine; Phenylephrine: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant promethazine and hyoscyamine use. Concomitant use may result in additive anticholinergic adverse effects.
Propranolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Protriptyline: (Contraindicated) According to the manufacturer, treatment initiation with protriptyline is contraindicated in patients currently receiving intravenous (IV) methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than protriptyline (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving protriptyline and requiring urgent treatment with IV methylene blue, protriptyline should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits outweigh the risks. The patient should be monitored for serotonin syndrome for 2 weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Protriptyline may be re-initiated 24 hours after the last dose of methylene blue. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent, in patients receiving serotonergic agents. It is not known if patients receiving other serotonergic psychiatric agents with IV methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between IV methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma.
Psyllium: (Moderate) Psyllium can interfere with the absorption of certain oral drugs if administered concomitantly. For example, psyllium fiber can adsorb salicylates. Per the psyllium manufacturers, administration of other prescribed oral drugs should be separated from the administration of psyllium by at least 2 hours.
Pyridostigmine: (Major) The muscarinic actions of pyridostigmine can antagonize the antimuscarinic actions of hyoscyamine.
Quetiapine: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant quetiapine and hyoscyamine use. Concomitant use may result in additive anticholinergic adverse effects.
Quinapril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Quinapril; Hydrochlorothiazide, HCTZ: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Quinidine: (Major) Hyoscyamine may increase the absorption of quinidine by decreasing GI motility and thereby enhancing absorption with possible toxicity. Increased monitoring is advised in patients receiving a combination of these drugs.
Ramipril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Rasagiline: (Major) Concurrent use of intravenous (IV) methylene blue and MAOIs such as rasagiline should generally be avoided due to the potential for serotonin syndrome. If emergent treatment with methylene blue is required in a patient receiving an MAOI it is advisable to discontinue the MAOI and monitor the patient for symptoms of CNS toxicity for two weeks or until 24 hours after the last dose of methylene blue, whichever comes first. During non-emergent use of methylene blue, it is advisable to discontinue the MAOI at least 2 weeks prior to methylene blue treatment, but also taking into consideration the half-life of the MAOI being discontinued. Because rasagiline is a selective monoamine oxidase-B (MAO-B) inhibitor at manufacturer recommended doses, an interaction may be less likely to occur than with other traditional MAOIs. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A). Cases of serotonin syndrome have been reported, primarily following administration of IV methylene blue (1 to 8 mg/kg) as a visualizing agent in patients receiving serotonergic agents. (Moderate) MAOIs exhibit secondary anticholinergic actions. Additive anticholinergic effects may be seen when MAOIs are used concomitantly with antimuscarinics. Clinicians should note that antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive CNS effects are also possible when many of these drugs are combined with MAOIs.
Remifentanil: (Major) Avoid concomitant use of remifentanil in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when remifentanil is used concomitantly with an anticholinergic drug. The concomitant use of remifentanil and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Repaglinide: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar and may potentiate the effects of antidiabetic agents. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose or use of greater than maximum recommended daily dosages, salicylates can cause either hypoglycemia or hyperglycemia. Large doses of aspirin should be used cautiously in patients who receive antidiabetic agents.
Revefenacin: (Moderate) Although revefenacin is minimally absorbed into the systemic circulation after inhalation, there is the potential for additive anticholinergic effects when administered with other antimuscarinics. Avoid concomitant administration with other anticholinergic and antimucarinic medications.
Rituximab; Hyaluronidase: (Minor) Salicylates, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
Rivaroxaban: (Major) Salicylates such as aspirin are known to increase bleeding, and bleeding risk may be increased when these drugs are used concomitantly with rivaroxaban. The safety of long-term concomitant use of these drugs has not been studied. Promptly evaluate any signs or symptoms of bleeding or blood loss if patients are treated concomitantly with salicylates. In a single-dose drug interaction study, no pharmacokinetic interactions were observed after concomitant administration of acetylsalicylic acid (aspirin, ASA) with rivaroxaban.
Rivastigmine: (Moderate) The therapeutic benefits of rivastigmine, a cholinesterase inhibitor, may be diminished during chronic co-administration with antimuscarinics or medications with potent anticholinergic activity. When concurrent use is not avoidable, the patient should be monitored for cognitive decline and anticholinergic side effects. Clinicians should generally avoid multiple medications with anticholinergic activity in the patient with dementia. Some of the common selective antimuscarinic drugs for bladder problems, (such as oxybutynin, darifenacin, trospium, fesoterodine, tolerodine, or solifenacin), do not routinely cause problems with medications used for dementia, but may cause anticholinergic side effects in some patients. Atropine may be used to offset bradycardia in cholinesterase inhibitor overdose.
Rosiglitazone: (Moderate) Monitor blood glucose during concomitant thiazolidinedione and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Safinamide: (Major) Concurrent use of intravenous (IV) methylene blue and MAOIs such as safinamide should generally be avoided due to the potential for serotonin syndrome. If emergent treatment with methylene blue is required in a patient receiving an MAOI it is advisable to discontinue the MAOI and monitor the patient for symptoms of CNS toxicity for two weeks or until 24 hours after the last dose of methylene blue, whichever comes first. During non-emergent use of methylene blue, it is advisable to discontinue the MAOI at least 2 weeks prior to methylene blue treatment, but also taking into consideration the half-life of the MAOI being discontinued. Because safinamide is a selective monoamine oxidase-B (MAO-B) inhibitor at manufacturer recommended doses, an interaction may be less likely to occur than with other traditional MAOIs. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A). Cases of serotonin syndrome have been reported, primarily following administration of IV methylene blue (1 to 8 mg/kg) as a visualizing agent in patients receiving serotonergic agents.
Salicylic Acid: (Moderate) Concomitant use of salicylic acid with other drugs which may contribute to elevated serum salicylate levels (e.g., oral aspirin or other oral salicylates and other salicylate containing medications, such as sports injury creams) should be avoided. Concurrent use may result in excessive exposure to salicylic acid. Consider replacing aspirin therapy with an alternative non-steroidal anti-inflammatory agent that is not salicylate based where appropriate.
Salsalate: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic.
Saxagliptin: (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Secretin: (Major) Discontinue anticholinergic medications at least 5 half-lives before administering secretin. Patients who are receiving anticholinergics at the time of stimulation testing may be hyporesponsive to secretin stimulation and produce a false result. Consider additional testing and clinical assessments for aid in diagnosis.
Sedating H1-blockers: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant sedating H1-blocker and hyoscyamine use. Concomitant use may result in additive anticholinergic adverse effects.
Selective serotonin reuptake inhibitors: (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and aspirin, ASA or other salicylates which affect hemostasis may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin.
Selegiline: (Major) Concurrent use of intravenous (IV) methylene blue and MAOIs such as selegiline should generally be avoided due to the potential for serotonin syndrome. If emergent treatment with methylene blue is required in a patient receiving an MAOI, it is advisable to discontinue the MAOI and monitor the patient for symptoms of CNS toxicity for two weeks or until 24 hours after the last dose of methylene blue, whichever comes first. During non-emergent use of methylene blue, it is advisable to discontinue the MAOI at least 2 weeks prior to methylene blue treatment, but also taking into consideration the half-life of selegiline. Because selegiline is a selective monoamine oxidase-B (MAO-B) inhibitor, an interaction may be less likely to occur than with other traditional MAOIs. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A). Cases of serotonin syndrome have been reported, primarily following administration of IV methylene blue (1 to 8 mg/kg) as a visualizing agent in patients receiving serotonergic agents.
Serotonin norepinephrine reuptake inhibitors: (Contraindicated) Concurrent use of methylene blue and serotonin norepinephrine reuptake inhibitors (SNRIs) (e.g., venlafaxine, duloxetine, desvenlafaxine, milnacipran) should generally be avoided due to the potential for serotonin syndrome. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin; therefore, concurrent use of an MAO-A inhibitor with serotonergic agents such as SNRIs may result in a clinically significant interaction. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, SNRIs, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. One case report suggests that serotonin toxicity may have occurred post-operatively following administration of standard infusions of methylene blue in a patient receiving duloxetine. The patient experienced disorientation, a mildly elevated temperature, tachycardia, elevated blood pressure, mild agitation, and nystagmus. In a separate case, a patient who had been receiving venlafaxine developed expressive aphasia, confusion, and disinhibition following a methylene blue infusion. The authors concluded that methylene blue toxicity had occurred; however, they did not exclude the possibility of a drug interaction based upon previous reports of an interaction between injectable methylene blue and selective serotonin reuptake inhibitors (SSRIs). Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma. If emergent treatment with methylene blue is required in a patient receiving an SNRI, the SNRI must be stopped immediately and the patient should be monitored for symptoms of CNS toxicity for two weeks or until 24 hours after the last dose of methylene blue, whichever comes first. During non-emergent use of methylene blue, the SNRI should be stopped at least 2 weeks prior to methylene blue treatment, but also taking into consideration the half-life of the SNRI being discontinued. (Moderate) Platelet aggregation may be impaired by serotonin norepinephrine reuptake inhibitors (SNRIs) due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving aspirin, ASA or other salicylates which affect hemostasis. Patients should be instructed to monitor for signs and symptoms of bleeding while taking an SNRI with medications which impair platelet function and to promptly report any bleeding events to the practitioner.
Serotonin-Receptor Agonists: (Major) Theoretically, concurrent use of methylene blue and serotonin-receptor agonists may increase the risk of serotonin syndrome. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A) and serotonin-receptor agonists increase central serotonin effects. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic agents with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Serotonin syndrome is characterized by rapid development of various symptoms such as hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death.
Sertraline: (Contraindicated) According to the manufacturer of sertraline, treatment initiation with sertraline is contraindicated in patients currently receiving intravenous (IV) methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than sertraline (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving sertraline and requiring urgent treatment with IV methylene blue, sertraline should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits outweigh the risks. The patient should be monitored for serotonin syndrome for 2 weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Sertraline may be re-initiated 24 hours after the last dose of methylene blue. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin; therefore, concurrent use of an MAO-A inhibitor with a serotonergic agent may result in a clinically significant interaction. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent, in patients receiving SSRIs, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with IV methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. One case describes a patient receiving citalopram who experienced agitation, restlessness, pupil dilation with sluggish response to light, myoclonic movements of the lower limbs, and brisk reflexes following an infusion of methylene blue, while another patient receiving paroxetine developed tachycardia, agitation, dystonia and abnormal eye movements. During a retrospective study of 193 surgical patients who had received a methylene blue injection, it was found that all 12 of the patients who experienced postoperative neurological sequelae had been taking a serotonin reuptake inhibitor preoperatively. One of the 12 patients experienced cardiopulmonary arrest and died. Of the remaining 181 patients who did not experience neurological sequelae, 8.8% were taking a serotonin reuptake inhibitor. Published interaction reports between IV methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma. (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and aspirin, ASA or other salicylates which affect hemostasis may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin.
Sincalide: (Moderate) Sincalide-induced gallbladder ejection fraction may be affected by anticholinergics. False study results are possible in patients with drug-induced hyper- or hypo-responsiveness; thorough patient history is important in the interpretation of procedure results.
Sitagliptin: (Moderate) Monitor blood glucose during concomitant sitagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Sodium Bicarbonate: (Moderate) Antacids may inhibit the oral absorption of antimuscarinics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
Sodium Sulfate; Magnesium Sulfate; Potassium Chloride: (Moderate) Use anticholinergics, such as hyoscyamine, and concomitant solid oral dosage forms of potassium chloride with caution due to risk for gastrointestinal mucosal injury. Anticholinergics may decrease gastric motility and increase the transit time of solid oral dosage forms of potassium chloride leading to prolonged contact with the gastrointestinal mucosa.
Sodium Thiosulfate; Salicylic Acid: (Moderate) Concomitant use of salicylic acid with other drugs which may contribute to elevated serum salicylate levels (e.g., oral aspirin or other oral salicylates and other salicylate containing medications, such as sports injury creams) should be avoided. Concurrent use may result in excessive exposure to salicylic acid. Consider replacing aspirin therapy with an alternative non-steroidal anti-inflammatory agent that is not salicylate based where appropriate.
Solifenacin: (Moderate) Additive anticholinergic effects may be seen when drugs with antimuscarinic properties like solifenacin are used concomitantly with other antimuscarinics. Blurred vision and dry mouth would be common effects. Clinicians should note that additive antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the CNS, the eye, and temperature regulation. Additive drowsiness may also occur.
Spironolactone: (Moderate) Salicylates can increase the risk of renal insufficiency in patients receiving diuretics, secondary to effects on renal blood flow. Salicylates inhibit renal prostaglandin production, which causes salt and water retention and decreased renal blood flow. Coadministration may cause hyperkalemia.
Spironolactone; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Salicylates can increase the risk of renal insufficiency in patients receiving diuretics, secondary to effects on renal blood flow. Salicylates inhibit renal prostaglandin production, which causes salt and water retention and decreased renal blood flow. Coadministration may cause hyperkalemia. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
St. John's Wort, Hypericum perforatum: (Contraindicated) Concurrent use of methylene blue and St. John's Wort, hypericum perforatum should generally be avoided due to the potential for serotonin syndrome. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A) and St. John's Wort increases central serotonin effects. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Serotonin syndrome is characterized by rapid development of various symptoms such as hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death. If emergent treatment with methylene blue is required in a patient receiving St. John's Wort, it is advisable to discontinue the St. John's Wort and monitor the patient for symptoms of CNS toxicity for two weeks or until 24 hours after the last dose of methylene blue, whichever comes first. During non-emergent use of methylene blue, it is advisable to stop the St. John's Wort for at least 2 weeks prior to methylene blue treatment.
Sufentanil: (Major) Avoid concomitant use of sufentanil in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when sufentanil is used concomitantly with an anticholinergic drug. The concomitant use of sufentanil and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Sulfadiazine: (Major) Sulfonamides can crystallize in an acidic urine. Because methenamine salts produce an acidic urine, these agents should not be used concomitantly.
Sulfamethoxazole; Trimethoprim, SMX-TMP, Cotrimoxazole: (Major) Sulfonamides can crystallize in an acidic urine. Because methenamine salts produce an acidic urine, these agents should not be used concomitantly.
Sulfasalazine: (Major) Sulfonamides can crystallize in an acidic urine. Because methenamine salts produce an acidic urine, these agents should not be used concomitantly.
Sulfonamides: (Major) Sulfonamides can crystallize in an acidic urine. Because methenamine salts produce an acidic urine, these agents should not be used concomitantly. (Minor) Due to high protein binding, salicylates could be displaced from binding sites, or could displace other highly protein-bound drugs such as sulfonamides. An enhanced effect of the displaced drug may occur.
Sulindac: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
Sumatriptan; Naproxen: (Major) Avoid concomitant use of naproxen with phenyl salicylate due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
Tacrolimus: (Moderate) Tacrolimus, in the absence of overt renal impairment, may adversely affect renal function. Care should be taken in using tacrolimus with other nephrotoxic drugs, such as salicylates.
Tapentadol: (Contraindicated) Tapentadol use in patients taking methylene blue or within 14 days of stopping such treatment is contraindicated due to the risk of serotonin syndrome or opioid toxicity. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of another opioid to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Moderate) Tapentadol should be used cautiously with anticholinergic medications since additive depressive effects on GI motility or bladder function may occur. Monitor patients for signs of urinary retention or reduced gastric motility. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. Opiate analgesics combined with antimuscarinics can cause severe constipation or paralytic ileus, especially with chronic use. Additive CNS effects like drowsiness or dizziness may also occur.
Tegaserod: (Major) Drugs that exert significant anticholinergic properties such as ant imuscarinics may pharmacodynamically oppose the effects of prokinetic agents such as tegaserod. Avoid administering antimuscarinics along with tegaserod under most circumstances. Inhaled respiratory antimuscarinics, such as ipratropium, are unlikely to interact with tegaserod. Ophthalmic anticholinergics may interact if sufficient systemic absorption of the eye medication occurs.
Telavancin: (Minor) Concurrent or sequential use of telavancin with drugs that inhibit renal prostaglandins such as salicylates may lead to additive nephrotoxicity. Closely monitor renal function and adjust telavancin doses based on calculated creatinine clearance.
Telmisartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Tenapanor: (Moderate) Anticholinergics can promote constipation and pharmacodynamically oppose the action of drugs used for the treatment of constipation or constipation-associated irritable bowel syndrome, such as tenapanor.
Tenofovir Alafenamide: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as salicylates. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
Tenofovir Disoproxil Fumarate: (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus.
Thiazide diuretics: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde. (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Thiazolidinediones: (Moderate) Monitor blood glucose during concomitant thiazolidinedione and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Thioridazine: (Moderate) Additive anticholinergic effects may be seen when drugs with anticholinergic properties like thioridazine are used concomitantly with anticholinergic agents. Adverse effects may be seen not only on GI smooth muscle, but also on bladder function, the CNS, the eye, and temperature regulation. Additive drowsiness may also occur, depending on the interacting agent.
Thiothixene: (Moderate) Anticholinergics may have additive effects with thiothixene, an antipsychotic with the potential for anticholinergic activity. Monitor for anticholinergic-related adverse effects such as xerostomia, blurred vision, constipation, and urinary retention during concurrent use.
Thrombin Inhibitors: (Moderate) An additive risk of bleeding may be seen in patients receiving salicylates (e.g., aspirin, ASA) in combination with thrombin inhibitors. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Nonsteroidal antiinflammatory drugs (NSAIDs) may also increase bleeding risk when given with argatroban because of their potential to cause GI bleeding or inhibit platelet aggregation.
Thrombolytic Agents: (Moderate) Concurrent administration of thrombolytic agents and salicylates may further increase the serious risk of bleeding.
Tiotropium: (Major) Avoid concomitant use of anticholinergic medications and tiotropium due to increased risk for anticholinergic adverse effects.
Tiotropium; Olodaterol: (Major) Avoid concomitant use of anticholinergic medications and tiotropium due to increased risk for anticholinergic adverse effects.
Tolmetin: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
Tolterodine: (Moderate) Additive anticholinergic effects may be seen when tolterodine is used concomitantly with other antimuscarinics. When possible, avoid concurrent use, especially in the elderly, who are more susceptible to the anticholinergic effects. Consider alternatives to these other medications, if available. Clinicians should note that antimuscarinic effects might be seen not only on bladder smooth muscle, but also on GI function, the eye, and temperature regulation. Blurred vision, constipation, and dry mouth may be more prominent additive effects. With many of the listed agents, additive drowsiness may also occur when combined.
Topiramate: (Moderate) Carbonic anhydrase inhibiting drugs, such as topiramate (a weak carbonic anhydrase inhibitor) can alkalinize the urine, thereby decreasing the effectiveness of methenamine by inhibiting the conversion of methenamine to formaldehyde. (Moderate) Monitor for decreased sweating and increased body temperature, especially in hot weather, during concomitant use of topiramate and other drugs that predispose persons to heat-related disorders, such as anticholinergic medications. Concomitant use increases the risk for oligohidrosis and hyperthermia.
Torsemide: (Moderate) Salicylates may decrease the diuretic, natriuretic, and antihypertensive actions of diuretics, possibly through inhibition of renal prostaglandin synthesis. Patients receiving loop diuretics and salicylates should be monitored for changes in the effectiveness of their diuretic therapy.
Tramadol: (Contraindicated) Tramadol use is contraindicated in patients who are receiving or who have received monoamine oxidase inhibitors (MAOIs) within the previous 14 days. Methylene blue is a reversible inhibitor of MAO. Concomitant use of tramadol with other serotonergic drugs such as MAOIs may result in serious adverse effects including serotonin syndrome or seizures. MAOIs may cause additive CNS depression, respiratory depression, drowsiness, dizziness, or hypotension when used with opiate agonists such as tramadol. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant tramadol and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Tramadol; Acetaminophen: (Contraindicated) Tramadol use is contraindicated in patients who are receiving or who have received monoamine oxidase inhibitors (MAOIs) within the previous 14 days. Methylene blue is a reversible inhibitor of MAO. Concomitant use of tramadol with other serotonergic drugs such as MAOIs may result in serious adverse effects including serotonin syndrome or seizures. MAOIs may cause additive CNS depression, respiratory depression, drowsiness, dizziness, or hypotension when used with opiate agonists such as tramadol. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant tramadol and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Trandolapril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Trandolapril; Verapamil: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Tranylcypromine: (Contraindicated) Avoid concomitant use with monoamine oxidase inhibitors (MAOIs); Methylene Blue injection may cause serious or fatal serotonergic syndrome when used in combination with serotonergic drugs. Methylene blue has been demonstrated to be a potent MAOI. Whenever possible, a washout period should elapse between the use of the MAOI and Methylene Blue injection. Patients treated with Methylene Blue injection should be monitored for serotonin syndrome. If symptoms of serotonin syndrome occur, discontinue use, and initiate supportive treatment. Inform patients of the increased risk of serotonin syndrome and advise them to not to take any serotonergic drugs within 72 hours after the last dose of Methylene Blue. If the IV use of Methylene Blue cannot be avoided, choose the lowest possible dose and closely observe the patient for CNS and serotonin-related effects for up to 4 hours after Methylene Blue is given.
Trastuzumab; Hyaluronidase: (Minor) Salicylates, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
Trazodone: (Contraindicated) According to the manufacturer of trazodone, treatment initiation with trazodone is contraindicated in patients currently receiving intravenous methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than trazodone (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving trazodone and requiring urgent treatment with intravenous methylene blue, trazodone should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits of methylene blue outweigh the risks. The patient should be monitored for serotonin syndrome for 2 weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Trazodone may be re-initiated 24 hours after the last dose of methylene blue. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A) and trazodone increases central serotonin effects. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving serotonergic agents such as selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving intravenous methylene blue with other serotonergic psychiatric agents are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Serotonin syndrome is characterized by rapid development of various symptoms such as hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death. (Moderate) Monitor for signs and symptoms of bleeding during concomitant trazodone and salicylate use due to increased risk for bleeding. Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding. Altered anticoagulant effects, including increased bleeding, have been reported when serotonin norepinephrine reuptake inhibitors are coadministered with another anticoagulant.
Treprostinil: (Moderate) When used concurrently with anticoagulants or platelet inhibitors, treprostinil may increase the risk of bleeding.
Triamcinolone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Triamterene: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant triamterene and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
Triamterene; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant triamterene and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Tricyclic antidepressants: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant tricyclic antidepressant and hyoscyamine use. Concomitant use may result in additive anticholinergic adverse effects.
Trientine: (Major) In general, oral mineral supplements should not be given since they may block the oral absorption of trientine. However, iron deficiency may develop, especially in children and menstruating or pregnant women, or as a result of the low copper diet recommended for Wilson's disease. If necessary, iron may be given in short courses, but since iron and trientine each inhibit oral absorption of the other, 2 hours should elapse between administration of trientine and iron doses.
Trifluoperazine: (Moderate) Additive anticholinergic effects may be seen when anticholinergics are used concomitantly with phenothiazines, including trifluoperazine. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other additive CNS effects may also occur.
Trimethobenzamide: (Moderate) Trimethobenzamide has CNS depressant effects and may cause drowsiness. The concurrent use of trimethobenzamide with other medications that cause CNS depression, like the anticholinergics, may potentiate the effects of either trimethobenzamide or the anticholinergic.
Trimipramine: (Contraindicated) According to the manufacturer, treatment initiation with trimipramine is contraindicated in patients currently receiving intravenous (IV) methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than trimipramine (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving trimipramine and requiring urgent treatment with IV methylene blue, trimipramine should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits outweigh the risks. The patient should be monitored for serotonin syndrome for 2 weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Trimipramine may be re-initiated 24 hours after the last dose of methylene blue. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent, in patients receiving serotonergic agents. It is not known if patients receiving other serotonergic psychiatric agents with IV methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between IV methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma.
Trospium: (Moderate) Additive anticholinergic effects may be seen when trospium is used concomitantly with other antimuscarinics. When possible, avoid concurrent use, especially in the elderly, who are more susceptible to the anticholinergic effects. Consider alternatives to these other medications, if available. Clinicians should note that antimuscarinic effects might be seen not only on bladder smooth muscle, but also on GI function, the eye, and temperature regulation. Blurred vision, constipation, and dry mouth may be more prominent additive effects. With many of the listed agents, additive drowsiness may also occur when combined with trospium.
Tryptophan, 5-Hydroxytryptophan: (Major) Concurrent use of intravenous (IV) methylene blue and dietary supplements of tryptophan should be avoided if possible due to a risk for serotonin syndrome. Although the mechanism is not clearly understood, literature reports suggest inhibition of MAO by methylene blue may be involved in increasing a risk for serotonin syndrome when methylene blue is combined with serotonergic agents. Tryptophan is a serotonin precursor. If co-use of methylene blue and a serotonergic agent cannot be avoided, choose the lowest possible dose and monitor the patient for CNS effects for up to 4 hours after administration of IV methylene blue.
Umeclidinium: (Moderate) There is the potential for umeclidinium to have additive anticholinergic effects when administered with other anticholinergics or antimuscarinics. Per the manufaturer, avoid concomitant administration of umeclidinium with other anticholinergic medications when possible.
Umeclidinium; Vilanterol: (Moderate) There is the potential for umeclidinium to have additive anticholinergic effects when administered with other anticholinergics or antimuscarinics. Per the manufaturer, avoid concomitant administration of umeclidinium with other anticholinergic medications when possible.
Valproic Acid, Divalproex Sodium: (Moderate) Concurrent salicylate therapy can increase the free-fraction of valproic acid, causing possible valproic acid toxicity. Valproic acid levels should be monitored when these agents are used concomitantly.
Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Vancomycin: (Minor) Due to the inhibition of renal prostaglandins by salicylates, concurrent use of salicylates and other nephrotoxic agents, such as vancomycin, may lead to additive nephrotoxicity.
Varicella-Zoster Virus Vaccine, Live: (Major) No adverse events associated with the use of salicylates after varicella vaccination have been reported. However, the manufacturer of varicella virus vaccine live recommends the avoidance of salicylates or aspirin, ASA use for 6 weeks after vaccination. Reye's syndrome, which exclusively affects children under 15 years old, has been associated with aspirin use following active varicella infection. Vaccination with close clinical monitoring is recommended for children who require therapeutic aspirin, ASA therapy; according to the CDC the use of attenuated, live varicella virus vaccine is thought to present less risk than natural varicella disease to such children.
Venlafaxine: (Contraindicated) Concurrent use of methylene blue and serotonin norepinephrine reuptake inhibitors (SNRIs) (e.g., venlafaxine, duloxetine, desvenlafaxine, milnacipran) should generally be avoided due to the potential for serotonin syndrome. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin; therefore, concurrent use of an MAO-A inhibitor with serotonergic agents such as SNRIs may result in a clinically significant interaction. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, SNRIs, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. One case report suggests that serotonin toxicity may have occurred post-operatively following administration of standard infusions of methylene blue in a patient receiving duloxetine. The patient experienced disorientation, a mildly elevated temperature, tachycardia, elevated blood pressure, mild agitation, and nystagmus. In a separate case, a patient who had been receiving venlafaxine developed expressive aphasia, confusion, and disinhibition following a methylene blue infusion. The authors concluded that methylene blue toxicity had occurred; however, they did not exclude the possibility of a drug interaction based upon previous reports of an interaction between injectable methylene blue and selective serotonin reuptake inhibitors (SSRIs). Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma. If emergent treatment with methylene blue is required in a patient receiving an SNRI, the SNRI must be stopped immediately and the patient should be monitored for symptoms of CNS toxicity for two weeks or until 24 hours after the last dose of methylene blue, whichever comes first. During non-emergent use of methylene blue, the SNRI should be stopped at least 2 weeks prior to methylene blue treatment, but also taking into consideration the half-life of the SNRI being discontinued.
Verteporfin: (Moderate) Use caution if coadministration of verteporfin with methylene blue is necessary due to the risk of increased photosensitivity. Verteporfin is a light-activated drug used in photodynamic therapy; all patients treated with verteporfin will be photosensitive. Concomitant use of other photosensitizing agents like methylene blue may increase the risk of a photosensitivity reaction.
Vibegron: (Moderate) Vibegron should be administered with caution in patients taking anticholinergics because of potential for an increased risk of urinary retention. Monitor for symptoms of urinary difficulties or urinary retention. Patients may note constipation or dry mouth with use of these drugs together.
Vilazodone: (Contraindicated) According to the manufacturer of vilazodone, treatment initiation with vilazodone is contraindicated in patients currently receiving intravenous (IV) methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than vilazodone (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients requiring urgent treatment with IV methylene blue, vilazodone should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits outweigh the risks. The patient should be monitored for serotonin syndrome for 2 weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Vilazodone may be re-initiated 24 hours after the last dose of methylene blue. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A) and vilazodone is a selective serotonin reuptake inhibitor and partial 5-HT1 agonist. Concurrent use of an MAO-A inhibitor with a serotonergic agent may result in a clinically significant interaction. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving serotonin-augmenting agents. It is not known if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between IV methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Serotonin syndrome is characterized by rapid development of various symptoms such as hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. (Moderate) Patients should be instructed to monitor for signs and symptoms of bleeding while taking vilazodone concurrently with salicylates or other platelet inhibitors and to promptly report any bleeding events to the practitioner. Platelet aggregation may be impaired by vilazodone due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving platelet inhibitors (e.g., aspirin, cilostazol, clopidogrel, dipyridamole, ticlopidine, platelet glycoprotein IIb/IIIa inhibitors).
Vortioxetine: (Contraindicated) Treatment initiation with vortioxetine is contraindicated in patients currently receiving intravenous methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than vortioxetine (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving vortioxetine and requiring urgent treatment with intravenous methylene blue, vortioxetine should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits of methylene blue outweigh the risks. The patient should be monitored for serotonin syndrome for 21 days or until 24 hours after the last dose of methylene blue, whichever comes first. Vortioxetine may be re-initiated 24 hours after the last dose of methylene blue. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin; therefore, concurrent use of an MAO-A inhibitor with a serotonergic agent may result in a clinically significant interaction. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving SSRIs, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. One case describes a patient receiving citalopram who experienced agitation, restlessness, pupil dilation with sluggish response to light, myoclonic movements of the lower limbs, and brisk reflexes following an infusion of methylene blue, while another patient receiving paroxetine developed tachycardia, agitation, dystonia and abnormal eye movements During a retrospective study of 193 surgical patients who had received a methylene blue injection, it was found that all 12 of the patients who experienced postoperative neurological sequelae had been taking a serotonin reuptake inhibitor preoperatively. One of the 12 patients experienced cardiopulmonary arrest and died. Of the remaining 181 patients who did not experience neurological sequelae, 8.8% were taking a serotonin reuptake inhibitor. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), and hyperreflexia. (Moderate) Platelet aggregation may be impaired by vortioxetine due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving aspirin, ASA or other salicylates. Bleeding events related to drugs that inhibit serotonin reuptake have ranged from ecchymosis to life-threatening hemorrhages. Patients should be instructed to monitor for signs and symptoms of bleeding while taking vortioxetine concurrently with aspirin products and to promptly report any bleeding events to the practitioner.
Zonisamide: (Moderate) Zonisamide use is associated with case reports of decreased sweating, hyperthermia, heat intolerance, or heat stroke and should be used with caution in combination with other drugs that may also predispose patients to heat-related disorders like anticholinergics.

How Supplied

Azuphen MB/Hyoscyamine Sulfate, Methenamine, Methylene Blue, Phenyl Salicylate, Sodium Phosphate, Monobasic/Phosenamine/Uramit/Uribel/URNEVA/Uro-MP/Ustell/UTA/UTICAP/VILAMIT MB Oral Cap
Darcalma/Hyolev MB/Hyoscyamine Sulfate, Methenamine, Methylene Blue, Phenyl Salicylate, Sodium Phosphate, Monobasic/MD 20/Phosphasal/UR N-C/Urelle/Uretron DS/Urimar-T/Uro-L/Utira-C/Utrona-C Oral Tab

Maximum Dosage
Adults

4 tablets/capsules per day PO.

Geriatric

4 tablets/capsules per day PO.

Adolescents

Dosage not specified; do not exceed adult max of 4 tablets/capsules per day PO.

Children

7 to 12 years: Dosage not specified; do not exceed adult max of 4 tablets/capsules per day PO.
6 years or less: Safety and efficacy have not been established; use not recommended.

Infants

Safety and efficacy have not been established.

Neonates

Safety and efficacy have not been established.

Mechanism Of Action

NOTE: This monograph discusses the use of hyoscyamine; methenamine; methylene blue; phenyl salicylate; sodium biphosphate combination products. Clinicians may wish to consult the individual monographs for more information about each agent.
Hyoscyamine: Hyoscyamine is a parasympatholytic agent that relaxes smooth muscles and produces an antispasmodic effect.
Methenamine: Methenamine degrades in an acidic urine environment releasing formaldehyde that provides some bactericidal or bacteriostatic action.
Methylene Blue: Methylene blue possesses weak antiseptic properties.
Phenyl Salicylate: Phenyl salicylate releases salicylate, a mild analgesic for pain.
Sodium Biphosphate: Sodium biphosphate is used as an acidifier to help maintain an acid urinary pH necessary for the degradation of methenamine.

Pharmacokinetics

Hyoscyamine; methenamine; methylene blue; phenyl salicylate; sodium biphosphate is administered orally.
Hyoscyamine: Hyoscyamine's protein binding is moderate; its biotransformation is hepatic. Most of hyoscyamine is excreted in the urine within 12 hours with 13% to 50% excreted unchanged.
Methenamine: Methenamine is freely distributed to systemic body tissues and fluids, but the amounts are not clinically significant as the drug does not hydrolyze at a pH greater than 6.8. Approximately 70% to 90% of methenamine reaches the urine unchanged where it is hydrolyzed in the urine if the urine is acidic. Within 24 hours it is almost completely (90%) excreted. At a urinary pH of 5, approximately 20% is excreted as formaldehyde. Some formaldehyde is bound to substances in the urine and surrounding tissues.
Methylene Blue: Methylene blue is rapidly reduced to leukomethylene blue, which is stabilized in some combination form in the urine. Roughly 75% is excreted unchanged.
 
Affected cytochrome P450 isoenzymes and drug transporters: None

Oral Route

After oral administration, hyoscyamine, methenamine, and methylene blue are all well absorbed from the GI tract.

Pregnancy And Lactation
Pregnancy

Hyoscyamine and methenamine cross the placenta; however, no studies concerning the effect on the fetus have been done. It is unknown whether hyoscyamine; methenamine; methylene blue; phenyl salicylate; sodium biphosphate can cause fetal harm or affect reproduction capacity if administered to a pregnant woman. Hyoscyamine; methenamine; methylene blue; phenyl salicylate; sodium biphosphate should only be given during pregnancy if clearly needed.[40708]

The manufacturer of hyoscyamine; methenamine; methylene blue; phenyl salicylate; sodium biphosphate states that problems in humans have not been documented with breast-feeding. However, methenamine and traces of hyoscyamine are excreted in breast milk. In 4 women, a mean breast-milk concentration of 50 micromol/L was reported. Consider the benefits of breast-feeding, the risk of potential infant drug exposure, and the risk of an untreated or inadequately treated condition. If a breast-feeding infant experiences an adverse effect related to a maternally ingested drug, healthcare providers are encouraged to report the adverse effect to the FDA.