Vasotec

Browse PDR's full list of drug information

Vasotec

Classes

Angiotensin Converting Enzyme Inhibitors/ACEIs

Administration
Oral Administration

May administer without regard to meals.

Oral Liquid Formulations

Use a calibrated device to measure the appropriate oral dosage of enalapril.
 
Ready-to-use Oral Solution
Solution contains enalapril 1 mg/mL.
Storage: Store refrigerated (2 to 8 degrees C or 36 to 46 degrees F) in a tightly closed container. Patients may store at room temperature (20 to 25 degrees C or 68 to 77 degrees F) for up to 60 days.
Powder for Oral Solution
Final concentration after reconstitution is 1 mg/mL.
Prior to reconstitution, tap the bottle of enalapril powder 5 times to loosen the powder.
Add approximately one-half (75 mL) of the provided diluent (Ora-Sweet SF) to the bottle of enalapril powder and shake vigorously for 30 seconds.
Add the remainder of the provided diluent and shake vigorously for an additional 30 seconds.
Storage: The reconstituted solution is stable for 60 days at room temperature (25 degrees C or 77 degrees F).

Extemporaneous Compounding-Oral

Extemporaneous Oral Suspension Formulations
NOTE: An FDA-approved oral solution is commercially available; commercially available products are preferred over compounded products when available.
 
An oral suspension yielding 1 mg/mL may be formulated according to the following procedure:
Take 10 mL of Bicitra and add to a PET bottle containing 2-tablets of enalapril 20-mg.
Shake bottle manually for at least 5 minutes.
Allow to stand at room temperature for 20 minutes.
Add 30 mL of Ora-Sweet SF and shake manually for roughly 2 minutes.
Storage: According to the authors, stability data on file with the authors indicate stability of this suspension for 4 weeks at 5 degrees C with ambient relative humidity.
While other extemporaneous formulations have been reported , this formulation appears to have greater stability and achieves a concentration for ease of use and dosage titration.
The manufacturer of Vasotec tablets recommends the following procedure to prepare a greater quantity (200 mL) of a 1 mg/mL suspension:
Add 50 mL of Bicitra to a PET bottle containing ten (10) tablets of Vasotec 20-mg and shake for at least 2 minutes.
Let concentrate stand for 60 minutes; after standing, shake the concentrate for an additional minute.
Add 150 mL of Ora-Sweet SF and shake the suspension to disperse the ingredients.
Storage: The resultant suspension is stable for 30 days when refrigerated at 2 to 8 degrees C (36 to 46 degrees F).

Injectable Administration

Visually inspect parenteral products for particulate matter and discoloration prior to administration whenever solution and container permit.

Intravenous Administration

May be administered undiluted or in up to 50 mL of a compatible IV infusion solution.
Administer by slow, direct IV infusion over a period of at least 5 minutes.
 
Preparation and stability of enalaprilat dilutions for parenteral administration:
Prepare in a sterile environment, using aseptic technique.
Each dose should be diluted with no more than 50 mL of compatible solution for intravenous administration.
Enalaprilat injection may be diluted with the following solutions for intravenous administration: 5% Dextrose Injection, 0.9% Sodium Chloride Injection, 5% Dextrose and 0.9% Sodium Chloride Injection, 5% Dextrose and Lactated Ringer's Injection.
Dilutions made with these solutions maintain full activity for at least 24 hours at room temperature.
For a 25 mcg/mL dilution often used in neonatal or small pediatric patients: combine 1 mL of enalaprilat 1.25 mg/mL and 49 mL of compatible solution for intravenous administration.

Adverse Reactions
Severe

hyperkalemia / Delayed / 1.0-3.8
myocardial infarction / Delayed / 0.5-1.2
hemolytic anemia / Delayed / Incidence not known
agranulocytosis / Delayed / Incidence not known
glomerulonephritis / Delayed / Incidence not known
azotemia / Delayed / Incidence not known
renal failure (unspecified) / Delayed / Incidence not known
renal tubular necrosis / Delayed / Incidence not known
oliguria / Early / Incidence not known
bradycardia / Rapid / Incidence not known
pulmonary embolism / Delayed / Incidence not known
stroke / Early / Incidence not known
pulmonary edema / Early / Incidence not known
atrial tachycardia / Early / Incidence not known
cardiac arrest / Early / Incidence not known
atrial fibrillation / Early / Incidence not known
bronchospasm / Rapid / Incidence not known
eosinophilic pneumonia / Delayed / Incidence not known
exfoliative dermatitis / Delayed / Incidence not known
Stevens-Johnson syndrome / Delayed / Incidence not known
toxic epidermal necrolysis / Delayed / Incidence not known
pemphigus / Delayed / Incidence not known
erythema multiforme / Delayed / Incidence not known
acute generalized exanthematous pustulosis (AGEP) / Delayed / Incidence not known
angioedema / Rapid / Incidence not known
anaphylactoid reactions / Rapid / Incidence not known
ileus / Delayed / Incidence not known
pancreatitis / Delayed / Incidence not known
hepatic failure / Delayed / Incidence not known
hepatic necrosis / Delayed / Incidence not known
teratogenesis / Delayed / Incidence not known
vasculitis / Delayed / Incidence not known

Moderate

hypotension / Rapid / 0.9-6.7
chest pain (unspecified) / Early / 2.1-2.1
orthostatic hypotension / Delayed / 1.6-1.6
angina / Early / 1.5-1.5
dyspnea / Early / 1.3-1.3
constipation / Delayed / 0.5-1.0
thrombocytopenia / Delayed / Incidence not known
neutropenia / Delayed / Incidence not known
anemia / Delayed / Incidence not known
flank pain / Delayed / Incidence not known
palpitations / Early / Incidence not known
hyponatremia / Delayed / Incidence not known
stomatitis / Delayed / Incidence not known
melena / Delayed / Incidence not known
glossitis / Early / Incidence not known
jaundice / Delayed / Incidence not known
elevated hepatic enzymes / Delayed / Incidence not known
hyperbilirubinemia / Delayed / Incidence not known
hepatitis / Delayed / Incidence not known
cholestasis / Delayed / Incidence not known
depression / Delayed / Incidence not known
ataxia / Delayed / Incidence not known
peripheral neuropathy / Delayed / Incidence not known
confusion / Early / Incidence not known
conjunctivitis / Delayed / Incidence not known
blurred vision / Early / Incidence not known
impotence (erectile dysfunction) / Delayed / Incidence not known
eosinophilia / Delayed / Incidence not known

Mild

dizziness / Early / 0.5-7.9
headache / Early / 1.8-5.2
fatigue / Early / 0.5-3.0
syncope / Early / 0.5-2.2
cough / Delayed / 1.3-2.2
diarrhea / Early / 1.4-2.1
abdominal pain / Early / 1.6-1.6
vertigo / Early / 1.6-1.6
asthenia / Delayed / 1.1-1.6
rash / Early / 0.5-1.4
nausea / Early / 1.1-1.4
vomiting / Early / 1.3-1.3
fever / Early / 0.5-1.0
rhinorrhea / Early / Incidence not known
hoarseness / Early / Incidence not known
photosensitivity / Delayed / Incidence not known
diaphoresis / Early / Incidence not known
alopecia / Delayed / Incidence not known
pruritus / Rapid / Incidence not known
flushing / Rapid / Incidence not known
urticaria / Rapid / Incidence not known
dyspepsia / Early / Incidence not known
anorexia / Delayed / Incidence not known
xerostomia / Early / Incidence not known
nightmares / Early / Incidence not known
paresthesias / Delayed / Incidence not known
dysesthesia / Delayed / Incidence not known
drowsiness / Early / Incidence not known
insomnia / Early / Incidence not known
muscle cramps / Delayed / Incidence not known
xerophthalmia / Early / Incidence not known
tinnitus / Delayed / Incidence not known
anosmia / Delayed / Incidence not known
dysgeusia / Early / Incidence not known
gynecomastia / Delayed / Incidence not known
myalgia / Early / Incidence not known
leukocytosis / Delayed / Incidence not known
arthralgia / Delayed / Incidence not known

Boxed Warning
Neonates, pregnancy

If pregnancy is detected, discontinue enalapril as soon as possible. When used in pregnancy during the second and third trimesters, ACE inhibitors can cause injury and even death to the developing fetus. When pregnancy is detected, enalapril should be discontinued as soon as possible. Women of child-bearing age should be made aware of the potential risk and ACE inhibitors should only be given after careful counseling and consideration of individual risks and benefits. Rarely (probably less often than once per 1,000 pregnancies), no alternative to ACE inhibitors will be found. In these rare cases, the pregnant women should be apprised of the potential hazards to their fetuses, and serial ultrasound examinations should be performed to assess the intraamniotic environment. The reported adverse fetal and neonatal effects (e.g., hypotension, neonatal skull hypoplasia and craniofacial deformation, fetal limb contractures, hypoplastic lung development, anuria, oligohydramnios, reversible or irreversible renal failure, and death) have been reported during ACE inhibitor exposure during the second and third trimesters. An observational study based on Tennessee Medicaid data reported that the risk of congenital malformations is significantly increased during first-trimester exposure to ACE inhibitors as well. However, a much larger observational study (n = 465,754) found that the risk of birth defects was similar in babies exposed to ACE inhibitors during the first trimester, in those exposed to other antihypertensives during the first trimester, and in those whose mothers were hypertensive but were not treated. Newborns born to mothers with hypertension, either treated or untreated, had a higher risk of birth defects than those born to mothers without hypertension. The authors concluded that the presence of hypertension likely contributed to the development of birth defects rather than the use of medications. Further evaluation of teratogenicity data associated with ACE inhibitor exposure during pregnancy is ongoing. Closely observe neonates with histories of in utero exposure to enalapril for hypotension, oliguria, and hyperkalemia. If oliguria or hypotension occurs, blood pressure and renal perfusion support may be required, as well as exchange transfusion or dialysis to reverse hypotension and/or support decreased renal function. Enalapril, which crosses the placenta, has been removed from neonatal circulation by peritoneal dialysis with some clinical benefit, and theoretically may be removed by exchange transfusion, although there is no experience with the latter procedure.

Common Brand Names

Epaned, Vasotec

Dea Class

Rx

Description

IV and oral ACE inhibitor; used for hypertension and CHF; longer-acting than captopril but shorter-acting than other ACE inhibitors; usually dosed twice daily when given orally.

Dosage And Indications
For the treatment of hypertension. Oral dosage Adults

5 mg PO once daily, initially. May increase dose if further control is needed. Usual dose range: 5 to 40 mg/day PO in 1 to 2 divided doses.

Adolescents 17 years

5 mg PO once daily initially. The usual dosage range is 10 to 40 mg/day PO given in 1 to 2 divided doses. In patients with hyponatremia, hypovolemia, moderate-severe congestive heart failure, renal dysfunction (i.e., Scr more than 1.6 mg/dL), or in those receiving diuretics, an initial dose of 2.5 mg is recommended. In patients at risk for hypotension or deterioration of renal function, dosage increases are generally recommended at intervals of 4 days or more. If blood pressure is not controlled with monotherapy, a diuretic may be added.

Infants, Children, and Adolescents 16 years and younger

0.08 mg/kg/dose PO once daily (Max: 5 mg) initially; adjust dosage based on clinical response. Max: 0.6 mg/kg/day, up to 40 mg/day, given in 1 to 2 divided doses. In patients with hyponatremia, hypovolemia, moderate-severe congestive heart failure, renal dysfunction, or in those receiving diuretics, a lower initial maximum dose of 2.5 mg is recommended. In patients at risk for hypotension or deterioration of renal function, dosage increases are generally recommended at intervals of 4 days or more.

Intravenous dosage (enalaprilat) Adults

1.25 mg IV every 6 hours. Higher doses have not been clearly demonstrated to be more effective; however, up to 5 mg IV every 6 hours has been used. Max: 20 mg/day.

Neonates†, Infants†, Children†, and Adolescents†

5 to 10 mcg/kg/dose (Max: 1.25 mg/dose) IV every 8 to 24 hours. Monitor blood pressure and urine output carefully due to the risk of prolonged hypotension and acute renal failure, especially in neonates; select patients may require higher doses.

For the treatment of heart failure. Oral dosage Adults

2.5 mg PO twice daily, initially. Increase the dose as tolerated over a few days or weeks up to 10 to 20 mg PO twice daily. Guidelines recommend an angiotensin-converting enzyme (ACE) inhibitor in combination with an evidence-based beta blocker and aldosterone antagonist, in select patients, for patients with chronic reduced ejection fraction heart failure (HFrEF) NYHA class I to IV to reduce morbidity and mortality. In patients with prior or current symptoms of chronic HFrEF, use of an ACE inhibitor is recommended. Continued use of an ACE inhibitor is recommended for all classes of HFrEF for those patients for whom subsequent angiotensin receptor-neprilysin inhibitor (ARNI) use is inappropriate. Use of an ACE inhibitor in patients with preserved ejection fraction heart failure (HFpEF) and hypertension is reasonable to control blood pressure.

Infants†, Children†, and Adolescents†

In 39 children, after a test dose, enalapril was titrated to a dose of 0.16 mg/kg/day PO by the end of the first week. Subsequently, the mean dose required for improvement in CHF was 0.36 mg/kg/day PO. In select cases, dosages up to 0.94 mg/kg/day PO have been used. A maximum dose for this indication has not been determined; however, the maximum for pediatric patients with hypertension is 40 mg/day PO.

Neonates†

FDA-approved labeling recommends against use in neonates due to the lack of data. Very limited data describe the use of 0.01 to 0.27 mg/kg/day PO in neonates and infants; however, there are concerns about the risk for adverse events. Cases of acute hypotension and acute renal failure have been reported after doses of 0.1 mg/kg/day PO in hypertensive infants ; therefore, conservative initial dosages and careful monitoring of blood pressure and renal function are recommended. As part of a small pediatric study (total n = 63 patients), 15 infants ages 9 days to 9 months with left-to-right shunts received enalapril; all but 1 patient in this group was less than 4 months old (neonatal-specific data was not reported separately). Four patients improved while receiving enalapril (mean dosage = 0.19 mg/kg/day PO), 6 patients experienced no change in clinical status (mean dosage = 0.27 mg/kg/day PO), and 5 patients discontinued enalapril due to adverse events (mean dosage = 0.11 mg/kg/day PO). Eight patients in the entire cohort developed renal failure within 14 days of initiating enalapril (7 of the 8 developed renal failure within 5 days); 3 of these patients were 4 weeks or younger and all 3 died. In another case series, doses of 0.1 to 0.16 mg/kg/day PO were used in 3 neonatal patients with CHF without adverse events.

For the treatment of hypertensive emergency† or hypertensive urgency†. Intravenous dosage Adults

0.625 to 1.25 mg IV every 6 hours, initially; may increase dose up to 5 mg IV every 6 hours.

Infants, Children, and Adolescents

5 to 10 mcg/kg/dose (Max: 1.25 mg/dose) IV every 8 to 24 hours. Monitor blood pressure and urine output carefully due to the risk of prolonged hypotension and acute renal failure; select patients may require higher doses.

Neonates

5 to 10 mcg/kg/dose (Max: 1.25 mg/dose) IV every 8 to 24 hours. Monitor blood pressure and urine output carefully due to the risk of prolonged hypotension and acute renal failure, especially in neonates; select patients may require higher doses.

Oral dosage Infants, Children, and Adolescents

0.08 mg/kg/dose (Max: 5 mg/dose) PO once daily, initially; adjust dosage based on clinical response. Max: 0.6 mg/kg/day, up to 40 mg/day, in 1 to 2 divided doses.

For the treatment of asymptomatic left ventricular dysfunction including postmyocardial infarction† patients. Oral dosage Adults

Initially, 2.5 mg PO twice daily. Increase gradually to 20 mg/day PO, given in divided doses. Patients should be observed for hypotension for at least 2 hours following first dose and for at least 1 hour following stabilization of blood pressure.

For the treatment of persistent albuminuria† in patients with diabetic nephropathy† or in at-risk hypertensive patients†. Oral dosage Adults

10 mg PO once daily. Dose range: 5 to 20 mg/day PO in 1 or 2 divided doses. Usually begin with a low dose and titrate to response and tolerance. Guidelines recommend the use of an angiotensin converting enzyme (ACE) inhibitor to slow the progression of renal disease in selected patients.

For the treatment of proteinuria† in pediatric patients. Oral dosage (weight-based dosing) Children and Adolescents

0.07 to 0.7 mg/kg/day PO given in 1 to 2 divided doses. Begin with a low dose and titrate every 4 to 12 weeks based on clinical response and patient tolerance. Max: 20 to 40 mg/day.

Oral dosage (fixed dosing) Children and Adolescents 7 to 17 years

2.5 to 5 mg/day PO decreased proteinuria with no significant effects on blood pressure in a retrospective study in normotensive patients when used with (n = 11) or without (n = 17) prednisone. In a small case study of adolescents with sickle nephropathy (n = 3), initial treatment was 5 mg/day; 1 patient required a dosage increase to 7.5 mg/day due to weight gain during puberty.

†Indicates off-label use

Dosing Considerations
Hepatic Impairment

Specific guidelines for dosage adjustments in hepatic impairment are not available; it appears that no dosage adjustments are needed.

Renal Impairment

Adults
CrCl more than 30 mL/minute: No adjustment necessary.
CrCl 30 mL/minute or less: Reduce to 2.5 mg PO once daily initially. For enalaprilat, administer 0.625 mg IV initially; repeat dose if inadequate response after 1 hour. Thereafter, may administer 1.25 mg IV every 6 hours.
Alternatively, the following has been recommended:
GFR more than 50 mL/minute: No adjustment necessary.
GFR 10 to 50 mL/minute: Administer 50% to 100% of usual dose.
GFR less than 10 mL/minute: Administer 25% of usual oral dose and 25% to 50% of usual IV dose.
 
Pediatrics
Use is not recommended in pediatric patients with a GFR less than 30 mL/minute/1.73 m2, as no data is available per FDA-approved labeling. Alternatively, the following has been recommended:
GFR more than 50 mL/minute/1.73 m2: No adjustment necessary.
GFR 10 to 50 mL/minute/1.73 m2: Administer 75% of usual dose.
GFR less than 10 mL/minute/1.73 m2: Administer 50% of usual dose.
 
Intermittent hemodialysis (IHD)
Adults
2.5 mg PO on dialysis days; adjust dosage on nondialysis days based on clinical response. For enalaprilat, administer 0.625 mg IV over at least 5 minutes and preferably up to 1 hour every 6 hours. Administer oral and IV doses after hemodialysis.
Pediatrics
Administer 50% of usual dose.
 
Peritoneal dialysis (PD)
Adults
Administer 25% of usual oral dose and 25% to 50% of usual IV dose.
Pediatrics
Administer 50% of usual dose.
 
Continuous renal replacement therapy (CRRT)
Adults
Administer 50% to 100% of usual dose.
Pediatrics
Administer 75% of usual dose.

Drug Interactions

Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Acetaminophen; Chlorpheniramine; Phenylephrine : (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Acetaminophen; Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Acetaminophen; Dextromethorphan; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Acetaminophen; Dextromethorphan; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Acetaminophen; Dichloralphenazone; Isometheptene: (Major) Isometheptene has sympathomimetic properties. Patients taking antihypertensive agents may need to have their therapy modified. Careful blood pressure monitoring is recommended.
Acetaminophen; Guaifenesin; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Acetaminophen; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Acetaminophen; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Acrivastine; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Aldesleukin, IL-2: (Moderate) Angiotensin converting enzyme inhibitors, like other antihypertensive agents, may potentiate the hypotension seen with aldesleukin, IL 2.
Alemtuzumab: (Moderate) Alemtuzumab may cause hypotension. Careful monitoring of blood pressure and hypotensive symptoms is recommended especially in patients with ischemic heart disease and in patients on antihypertensive agents.
Aliskiren: (Major) Aliskiren-containing products are contraindicated in combination with angiotensin-converting enzyme inhibitors (ACE inhibitors) in patients with diabetes mellitus. In general, avoid combined use of two renin-angiotensin-aldosterone system (RAAS) inhibitors, particularly in patients with CrCl less than 60 mL/minute. Combination therapy increases the risk for hyperkalemia, renal impairment, and other side effects. Most patients receiving a comination of two RAAS inhibitors, such as ACE inhibitors and aliskiren do not obtain any additional benefit compared to monotherapy. Closely monitor blood pressure, renal function, and electrolytes if aliskiren must be combined with another RAAS inhibitor. In the ALTITUDE trial, patients with type 2 diabetes and renal impairment, a population at high risk for cardiovascular and renal events, were given aliskiren in addition to ACE inhibitors or ARBs. The trial was stopped early because aliskiren was associated with an increased risk of non-fatal stroke, renal complications, hyperkalemia, and hypotension. In the Veterans Affairs Nephropathy in Diabetes (VA NEPHRON-D) trial, no additional benefit over monotherapy was seen in patients receiving the combination of losartan and lisinopril compared to monotherapy; however, there was an increased incidence of hyperkalemia and acute renal injury.
Aliskiren; Hydrochlorothiazide, HCTZ: (Major) Aliskiren-containing products are contraindicated in combination with angiotensin-converting enzyme inhibitors (ACE inhibitors) in patients with diabetes mellitus. In general, avoid combined use of two renin-angiotensin-aldosterone system (RAAS) inhibitors, particularly in patients with CrCl less than 60 mL/minute. Combination therapy increases the risk for hyperkalemia, renal impairment, and other side effects. Most patients receiving a comination of two RAAS inhibitors, such as ACE inhibitors and aliskiren do not obtain any additional benefit compared to monotherapy. Closely monitor blood pressure, renal function, and electrolytes if aliskiren must be combined with another RAAS inhibitor. In the ALTITUDE trial, patients with type 2 diabetes and renal impairment, a population at high risk for cardiovascular and renal events, were given aliskiren in addition to ACE inhibitors or ARBs. The trial was stopped early because aliskiren was associated with an increased risk of non-fatal stroke, renal complications, hyperkalemia, and hypotension. In the Veterans Affairs Nephropathy in Diabetes (VA NEPHRON-D) trial, no additional benefit over monotherapy was seen in patients receiving the combination of losartan and lisinopril compared to monotherapy; however, there was an increased incidence of hyperkalemia and acute renal injury.
Alogliptin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Alpha-glucosidase Inhibitors: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Alprostadil: (Minor) The concomitant use of systemic alprostadil injection and antihypertensive agents, such as angiotensin-converting enzyme inhibitors (ACE inhibitors), may cause additive hypotension. Caution is advised with this combination. Systemic drug interactions with the urethral suppository (MUSE) or alprostadil intracavernous injection are unlikely in most patients because low or undetectable amounts of the drug are found in the peripheral venous circulation following administration. In those men with significant corpora cavernosa venous leakage, hypotension might be more likely. Use caution with in-clinic dosing for erectile dysfunction (ED) and monitor for the effects on blood pressure. However, in clinical trials with alprostadil intracavernous injection, anti-hypertensive agents had no apparent effect on the safety and efficacy of alprostadil.
Amifostine: (Major) Patients receiving angiotensin-converting enzyme inhibitors should be closely monitored during amifostine infusions due to additive effects. Patients receiving amifostine at doses recommended for chemotherapy should have antihypertensive therapy interrupted 24 hours preceding administration of amifostine. If the antihypertensive cannot be stopped, patients should not receive amifostine.
Amiloride: (Major) Amiloride should be used very cautiously with agents that have potential to induce hyperkalemia; serum potassium levels monitored when such agents are coadministered with amiloride. Simultaneous use of a potassium-sparing diuretic (e.g., amiloride) with angiotensin-converting enzyme inhibitors (ACE inhibitors) can increase the risk of hyperkalemia, especially in the presence of renal impairment (renal disease, elderly patients). These agents should be used with caution and serum potassium levels monitored when the substances are coadministered. The Beers Criteria recommends avoiding routine use of this combination in older adults; reserve this combination for patients with demonstrated hypokalemia while taking an ACE inhibitor.
Amiloride; Hydrochlorothiazide, HCTZ: (Major) Amiloride should be used very cautiously with agents that have potential to induce hyperkalemia; serum potassium levels monitored when such agents are coadministered with amiloride. Simultaneous use of a potassium-sparing diuretic (e.g., amiloride) with angiotensin-converting enzyme inhibitors (ACE inhibitors) can increase the risk of hyperkalemia, especially in the presence of renal impairment (renal disease, elderly patients). These agents should be used with caution and serum potassium levels monitored when the substances are coadministered. The Beers Criteria recommends avoiding routine use of this combination in older adults; reserve this combination for patients with demonstrated hypokalemia while taking an ACE inhibitor.
Amlodipine; Olmesartan: (Major) In general, avoid combined use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) due to lack of benefit with concomitant use in most patients. Closely monitor blood pressure, renal function, and electrolytes in patients on ACE inhibitors and ARBs. Dual blockade of the renin-angiotensin system with ACE inhibitors and ARBs is associated with increased risks of hypotension, syncope, hyperkalemia, and changes in renal function, including acute renal failure, compared to monotherapy.
Amlodipine; Valsartan: (Major) In general, avoid combined use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) due to lack of benefit with concomitant use in most patients. Closely monitor blood pressure, renal function, and electrolytes in patients on ACE inhibitors and ARBs. Dual blockade of the renin-angiotensin system with ACE inhibitors and ARBs is associated with increased risks of hypotension, syncope, hyperkalemia, and changes in renal function, including acute renal failure, compared to monotherapy.
Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Major) In general, avoid combined use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) due to lack of benefit with concomitant use in most patients. Closely monitor blood pressure, renal function, and electrolytes in patients on ACE inhibitors and ARBs. Dual blockade of the renin-angiotensin system with ACE inhibitors and ARBs is associated with increased risks of hypotension, syncope, hyperkalemia, and changes in renal function, including acute renal failure, compared to monotherapy.
Amobarbital: (Moderate) Concurrent use of amobarbital with antihypertensive agents may lead to hypotension. Monitor for decreases in blood pressure during times of coadministration.
Amphetamine; Dextroamphetamine Salts: (Minor) Amphetamines increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, like angiotensin-converting enzyme inhibitors (ACE inhibitors). Close monitoring of blood pressure is advised.
Angiotensin II receptor antagonists: (Major) In general, avoid combined use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) due to lack of benefit with concomitant use in most patients. Closely monitor blood pressure, renal function, and electrolytes in patients on ACE inhibitors and ARBs. Dual blockade of the renin-angiotensin system with ACE inhibitors and ARBs is associated with increased risks of hypotension, syncope, hyperkalemia, and changes in renal function, including acute renal failure, compared to monotherapy.
Angiotensin II: (Moderate) Angiotensin converting enzyme inhibitors (ACE inhibitors) may increase the response to angiotensin II. Angiotensin II is a naturally occurring peptide hormone of the renin-angiotensin-aldosterone system (RAAS) that causes vasoconstriction and an increase in blood pressure. ACE inhibitors reduce the breakdown of angiotensin II.
Apomorphine: (Moderate) Use of angiotensin-converting enzyme inhibitors (ACE inhibitors) and apomorphine together can increase the hypotensive effects of apomorphine. Monitor blood pressure regularly during use of this combination.
Apraclonidine: (Minor) Alpha blockers as a class may reduce heart rate and blood pressure. While no specific drug interactions have been identified with systemic agents and apraclonidine during clinical trials, it is theoretically possible that additive blood pressure reductions could occur when apraclonidine is combined with the use of antihypertensive agents. Patients using cardiovascular drugs concomitantly with apraclonidine should have their pulse and blood pressure monitored periodically.
Aprotinin: (Moderate) The manufacturer recommends using aprotinin cautiously in patients that are receiving drugs that can affect renal function, such as ACE inhibitors, as the risk of renal impairment may be increased.
Aripiprazole: (Minor) Aripiprazole may enhance the hypotensive effects of antihypertensive agents.
Articaine; Epinephrine: (Moderate) Antihypertensives, including angiotensin-converting enzyme inhibitors, antagonize the vasopressor effects of parenteral epinephrine.
Asenapine: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Azathioprine: (Major) The use of ACE inhibitors in hypertensive patients receiving azathioprine has been reported to induce anemia and severe leukopenia. This combination should be avoided where possible. When concurrent azathioprine and ACE inhibitor therapy is necessary, the patient should be monitored cautiously for potential myelosuppression.
Azilsartan: (Major) In general, avoid combined use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) due to lack of benefit with concomitant use in most patients. Closely monitor blood pressure, renal function, and electrolytes in patients on ACE inhibitors and ARBs. Dual blockade of the renin-angiotensin system with ACE inhibitors and ARBs is associated with increased risks of hypotension, syncope, hyperkalemia, and changes in renal function, including acute renal failure, compared to monotherapy.
Azilsartan; Chlorthalidone: (Major) In general, avoid combined use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) due to lack of benefit with concomitant use in most patients. Closely monitor blood pressure, renal function, and electrolytes in patients on ACE inhibitors and ARBs. Dual blockade of the renin-angiotensin system with ACE inhibitors and ARBs is associated with increased risks of hypotension, syncope, hyperkalemia, and changes in renal function, including acute renal failure, compared to monotherapy.
Baclofen: (Moderate) Baclofen has been associated with hypotension. Concurrent use with baclofen and antihypertensive agents may result in additive hypotension. Dosage adjustments of the antihypertensive medication may be required.
Benzphetamine: (Minor) Benzphetamine may increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, like angiotensin-converting enzyme inhibitors (ACE inhibitors). Close monitoring of blood pressure is advised.
Brexpiprazole: (Moderate) Due to brexpiprazole's antagonism at alpha 1-adrenergic receptors, the drug may enhance the hypotensive effects of alpha-blockers and other antihypertensive agents.
Brompheniramine; Dextromethorphan; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Brompheniramine; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Brompheniramine; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Brompheniramine; Pseudoephedrine; Dextromethorphan: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Bupivacaine; Epinephrine: (Moderate) Antihypertensives, including angiotensin-converting enzyme inhibitors, antagonize the vasopressor effects of parenteral epinephrine.
Cabergoline: (Moderate) Cabergoline should be used cautiously with antihypertensive agents, including angiotensin-converting enzyme inhibitors. Cabergoline has been associated with hypotension. Initial doses of cabergoline higher than 1 mg may produce orthostatic hypotension. It may be advisable to monitor blood pressure.
Calcium Phosphate, Supersaturated: (Moderate) Concomitant use of medicines with potential to alter renal perfusion or function such as angiotensin-converting enzyme inhibitors, may increase the risk of acute phosphate nephropathy in patients taking sodium phosphate monobasic monohydrate; sodium phosphate dibasic anhydrous.
Canagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Candesartan: (Major) In general, avoid combined use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) due to lack of benefit with concomitant use in most patients. Closely monitor blood pressure, renal function, and electrolytes in patients on ACE inhibitors and ARBs. Dual blockade of the renin-angiotensin system with ACE inhibitors and ARBs is associated with increased risks of hypotension, syncope, hyperkalemia, and changes in renal function, including acute renal failure, compared to monotherapy.
Candesartan; Hydrochlorothiazide, HCTZ: (Major) In general, avoid combined use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) due to lack of benefit with concomitant use in most patients. Closely monitor blood pressure, renal function, and electrolytes in patients on ACE inhibitors and ARBs. Dual blockade of the renin-angiotensin system with ACE inhibitors and ARBs is associated with increased risks of hypotension, syncope, hyperkalemia, and changes in renal function, including acute renal failure, compared to monotherapy.
Carbidopa; Levodopa: (Moderate) Concomitant use of antihypertensive agents with levodopa can result in additive hypotensive effects.
Carbidopa; Levodopa; Entacapone: (Moderate) Concomitant use of antihypertensive agents with levodopa can result in additive hypotensive effects.
Cariprazine: (Moderate) Orthostatic vital signs should be monitored in patients who are at risk for hypotension, such as those receiving cariprazine in combination with antihypertensive agents. Atypical antipsychotics may cause orthostatic hypotension and syncope, most commonly during treatment initiation and dosage increases. Patients should be informed about measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning, or rising slowly from a seated position. Consider a cariprazine dose reduction if hypotension occurs.
Cetirizine; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Chloroprocaine: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents.
Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Chlorpheniramine; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Chlorpheniramine; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Clozapine: (Moderate) Lisinopril may decrease the renal elimination of clozapine and metabolites. Clozapine toxicity, including irritability, anger, insomnia, nightmares and sialorrhea may occur. The mechanism of this interaction is unclear; however, as lisinopril does not undergo metabolism, cytochrome P450 enzyme involvement is unlikely. It is speculated that a decrease in renal elimination of clozapine occurs due to a lisinopril-induced reduction in glomerular filtration rate (GFR). Plasma clozapine concentrations should be measured carefully during concomitant lisinopril therapy; another antihypertensive class may need to be selected. In addition, clozapine used concomitantly with the antihypertensive agents can increase the risk and severity of hypotension by potentiating the effect of the antihypertensive drug.
Cocaine: (Major) Use of cocaine with antihypertensive agents may increase the antihypertensive effects of the antihypertensive medications or may potentiate cocaine-induced sympathetic stimulation.
Codeine; Guaifenesin; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Codeine; Phenylephrine; Promethazine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Co-Enzyme Q10, Ubiquinone: (Moderate) Co-enzyme Q10, ubiquinone (CoQ10) may lower blood pressure. CoQ10 use in combination with antihypertensive agents may lead to additional reductions in blood pressure in some individuals. Patients who choose to take CoQ10 concurrently with antihypertensive medications should receive periodic blood pressure monitoring. Patients should be advised to inform their prescriber of their use of CoQ10.
Cyclophosphamide: (Moderate) Closely monitor complete blood counts if coadministration of cyclophosphamide with angiotensin-converting enzyme inhibitors (ACE inhibitors) is necessary as there is an increased risk of hematologic toxicity (specifically leukopenia) and immunosuppression.
Cyclosporine: (Moderate) Several cases of acute renal failure have been associated with the addition of angiotensin-converting enzyme (ACE) inhibitors to cyclosporine therapy in renal transplant patients. In response to cyclosporine-induced renal afferent vasoconstriction and glomerular hypoperfusion, angiotensin II is required to maintain an adequate glomerular filtration rate. Inhibition of ACE could reduce renal function acutely. Also, cyclosporine can cause hyperkalemia, and inhibition of angiotensin II leads to reduced aldosterone concentrations, which can increase the serum potassium concentration. Closely monitor renal function and serum potassium concentrations in patients receiving cyclosporine concurrently with ACE inhibitors or potassium salts.
Dapagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Desloratadine; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Dexbrompheniramine; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Dextromethorphan; Diphenhydramine; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Dextromethorphan; Quinidine: (Moderate) Quinidine can decrease blood pressure and should be used cautiously in patients receiving antihypertensive agents due to the potential for additive hypotension.
Diazoxide: (Moderate) Additive hypotensive effects can occur with the concomitant administration of diazoxide with other antihypertensive agents. This interaction can be therapeutically advantageous, but dosages must be adjusted accordingly. The manufacturer advises that IV diazoxide should not be administered to patients within 6 hours of receiving other antihypertensive agents.
Diethylpropion: (Major) Diethylpropion has vasopressor effects and may limit the benefit of angiotensin-converting enzyme inhibitors. Although leading drug interaction texts differ in the potential for an interaction between diethylpropion and this group of antihypertensive agents, these effects are likely to be clinically significant and have been described in hypertensive patients on these medications.
Digoxin: (Moderate) Monitor for signs and symptoms of digoxin toxicity during concomitant enalapril use. A decline in GFR or tubular secretion, as from angiotensin-converting enzyme inhibitors, may impair the excretion of digoxin.
Diphenhydramine; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Drospirenone: (Moderate) Drospirenone has antimineralocorticoid effects and may increase serum potassium. The concurrent use of ACE inhibitors may increase the risk of hyperkalemia, especially in the presence of renal impairment. Monitor serum potassium during the 1st month of drospirenone treatment if an Angiotensin-Converting Enzyme inhibitor (ACE inhibitor) is used concurrently and thereafter as clinically indicated. Also monitor for any changes in blood pressure, fluid retention, or renal function.
Drospirenone; Estetrol: (Moderate) Drospirenone has antimineralocorticoid effects and may increase serum potassium. The concurrent use of ACE inhibitors may increase the risk of hyperkalemia, especially in the presence of renal impairment. Monitor serum potassium during the 1st month of drospirenone treatment if an Angiotensin-Converting Enzyme inhibitor (ACE inhibitor) is used concurrently and thereafter as clinically indicated. Also monitor for any changes in blood pressure, fluid retention, or renal function.
Drospirenone; Estradiol: (Moderate) Drospirenone has antimineralocorticoid effects and may increase serum potassium. The concurrent use of ACE inhibitors may increase the risk of hyperkalemia, especially in the presence of renal impairment. Monitor serum potassium during the 1st month of drospirenone treatment if an Angiotensin-Converting Enzyme inhibitor (ACE inhibitor) is used concurrently and thereafter as clinically indicated. Also monitor for any changes in blood pressure, fluid retention, or renal function.
Drospirenone; Ethinyl Estradiol: (Moderate) Drospirenone has antimineralocorticoid effects and may increase serum potassium. The concurrent use of ACE inhibitors may increase the risk of hyperkalemia, especially in the presence of renal impairment. Monitor serum potassium during the 1st month of drospirenone treatment if an Angiotensin-Converting Enzyme inhibitor (ACE inhibitor) is used concurrently and thereafter as clinically indicated. Also monitor for any changes in blood pressure, fluid retention, or renal function.
Drospirenone; Ethinyl Estradiol; Levomefolate: (Moderate) Drospirenone has antimineralocorticoid effects and may increase serum potassium. The concurrent use of ACE inhibitors may increase the risk of hyperkalemia, especially in the presence of renal impairment. Monitor serum potassium during the 1st month of drospirenone treatment if an Angiotensin-Converting Enzyme inhibitor (ACE inhibitor) is used concurrently and thereafter as clinically indicated. Also monitor for any changes in blood pressure, fluid retention, or renal function.
Duloxetine: (Moderate) Orthostatic hypotension and syncope have been reported during duloxetine administration. The concurrent administration of antihypertensive agents and duloxetine may increase the risk of hypotension. Monitor blood pressure if the combination is necessary.
Empagliflozin; Linagliptin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Empagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Entecavir: (Moderate) Because entecavir is primarily eliminated by the kidneys and ACE inhibitors can affect renal function, concurrent administration with ACE inhibitors may increase the serum concentrations of entecavir and adverse events. Monitor for adverse effects when these drugs are coadministered.
Ephedrine: (Major) The cardiovascular effects of sympathomimetics, such as ephedrine, may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Blood pressure and heart rates should be monitored closely to confirm that the desired antihypertensive effect is achieved.
Ephedrine; Guaifenesin: (Major) The cardiovascular effects of sympathomimetics, such as ephedrine, may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Blood pressure and heart rates should be monitored closely to confirm that the desired antihypertensive effect is achieved.
Epinephrine: (Moderate) Antihypertensives, including angiotensin-converting enzyme inhibitors, antagonize the vasopressor effects of parenteral epinephrine.
Eplerenone: (Major) Monitor serum potassium and serum creatinine concentrations within 3 to 7 days of initiating coadministration of eplerenone and angiotensin-converting enzyme (ACE) inhibitors. Hyperkalemia risk is increased when eplerenone is used with ACE inhibitors. Patients who develop hyperkalemia may continue eplerenone with proper dose adjustment; eplerenone dose reduction decreases potassium concentrations.
Eprosartan: (Major) In general, avoid combined use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) due to lack of benefit with concomitant use in most patients. Closely monitor blood pressure, renal function, and electrolytes in patients on ACE inhibitors and ARBs. Dual blockade of the renin-angiotensin system with ACE inhibitors and ARBs is associated with increased risks of hypotension, syncope, hyperkalemia, and changes in renal function, including acute renal failure, compared to monotherapy.
Eprosartan; Hydrochlorothiazide, HCTZ: (Major) In general, avoid combined use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) due to lack of benefit with concomitant use in most patients. Closely monitor blood pressure, renal function, and electrolytes in patients on ACE inhibitors and ARBs. Dual blockade of the renin-angiotensin system with ACE inhibitors and ARBs is associated with increased risks of hypotension, syncope, hyperkalemia, and changes in renal function, including acute renal failure, compared to monotherapy.
Ertugliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Estradiol: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Ethiodized Oil: (Moderate) Because the use of other nephrotoxic drugs, including ACE inhibitors, is an additive risk factor for nephrotoxicity in patients receiving radiopaque contrast agents, ACE inhibitor therapy should be withheld, when possible, during radiopaque contrast agent administration.
Etomidate: (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Everolimus: (Major) Avoid coadministration of everolimus with angiotensin-converting enzyme inhibitors (ACE inhibitors) as the risk of angioedema, with or without respiratory impairment, may be increased. In a pooled analysis of randomized, double-blind oncology clinical trials, angioedema was reported in 6.8% of patients receiving concomitant everolimus and ACE inhibitor therapy, compared to 1.3% of patients with an ACE inhibitor alone.
Fexofenadine; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Finerenone: (Moderate) Monitor serum potassium concentrations closely if finerenone and angiotensin-converting enzyme inhibitors (ACEI) are used together. Concomitant use may increase the risk of hyperkalemia.
Fish Oil, Omega-3 Fatty Acids (Dietary Supplements): (Moderate) High doses of fish oil supplements may produce a blood pressure lowering effect. It is possible that additive reductions in blood pressure may be seen when fish oils are used in a patient already taking antihypertensive agents.
Fluorescein: (Moderate) Patients on angiotensin-converting enzyme inhibitors are at an increased risk of adverse reactions when administered fluorescein injection. If fluorescein injection is deemed necessary in a patient on ACE inhibitor therapy, monitor as appropriate during and after the procedure.
General anesthetics: (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Glipizide; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Glyburide; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Gold: (Minor) Nitritoid reactions (facial flushing, diaphoresis, dizziness, nausea/vomiting, hypotension, tachycardia, syncope, and anaphylactic type reactions) or vasomotor reactions have been reported rarely in patients receiving injectable gold and concomitant ACE inhibitor therapy. Monitor closely for nitritoid reactions during co-therapy with gold and ACE inhibitor agents.
Guaifenesin; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Guaifenesin; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Haloperidol: (Moderate) In general, haloperidol should be used cautiously with antihypertensive agents due to the possibility of additive hypotension.
Hydralazine; Isosorbide Dinitrate, ISDN: (Moderate) Concomitant use of nitrates with other antihypertensive agents can cause additive hypotensive effects. Dosage adjustments may be necessary.
Hydrocodone; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Ibritumomab Tiuxetan: (Major) Avoid coadministration of potassium phosphate and angiotensin-converting enzyme inhibitors as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Ibuprofen; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Icatibant: (Minor) Although clinical data are lacking, icatibant is a bradykinin B2 receptor antagonist and may theoretically potentiate the antihypertensive effect of ACE inhibitors.
Iloperidone: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Iloprost: (Moderate) Further reductions in blood pressure may occur when inhaled iloprost is administered to patients receiving other antihypertensive agents.
Incretin Mimetics: (Moderate) Monitor blood glucose during concomitant incretin mimetic and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Indapamide: (Moderate) The effects of indapamide may be additive when administered with other antihypertensive agents or diuretics. In some patients, this may be desirable, but orthostatic hypotension may occur. Patients with hyponatremia or hypovolemia are more susceptible to developing reversible renal insufficiency when given an angiotensin-converting enzyme inhibitors (ACE Inhibitors) and diuretic therapy concomitantly.
Insulins: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Intravenous Lipid Emulsions: (Moderate) High doses of fish oil supplements may produce a blood pressure lowering effect. It is possible that additive reductions in blood pressure may be seen when fish oils are used in a patient already taking antihypertensive agents.
Iodixanol: (Moderate) Because the use of other nephrotoxic drugs, including ACE inhibitors, is an additive risk factor for nephrotoxicity in patients receiving radiopaque contrast agents, ACE inhibitor therapy should be withheld, when possible, during radiopaque contrast agent administration.
Iohexol: (Moderate) Because the use of other nephrotoxic drugs, including ACE inhibitors, is an additive risk factor for nephrotoxicity in patients receiving radiopaque contrast agents, ACE inhibitor therapy should be withheld, when possible, during radiopaque contrast agent administration.
Iomeprol: (Moderate) Because the use of other nephrotoxic drugs, including ACE inhibitors, is an additive risk factor for nephrotoxicity in patients receiving radiopaque contrast agents, ACE inhibitor therapy should be withheld, when possible, during radiopaque contrast agent administration.
Iopamidol: (Moderate) Because the use of other nephrotoxic drugs, including ACE inhibitors, is an additive risk factor for nephrotoxicity in patients receiving radiopaque contrast agents, ACE inhibitor therapy should be withheld, when possible, during radiopaque contrast agent administration.
Iopromide: (Moderate) Because the use of other nephrotoxic drugs, including ACE inhibitors, is an additive risk factor for nephrotoxicity in patients receiving radiopaque contrast agents, ACE inhibitor therapy should be withheld, when possible, during radiopaque contrast agent administration.
Ioversol: (Moderate) Because the use of other nephrotoxic drugs, including ACE inhibitors, is an additive risk factor for nephrotoxicity in patients receiving radiopaque contrast agents, ACE inhibitor therapy should be withheld, when possible, during radiopaque contrast agent administration.
Irbesartan: (Major) In general, avoid combined use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) due to lack of benefit with concomitant use in most patients. Closely monitor blood pressure, renal function, and electrolytes in patients on ACE inhibitors and ARBs. Dual blockade of the renin-angiotensin system with ACE inhibitors and ARBs is associated with increased risks of hypotension, syncope, hyperkalemia, and changes in renal function, including acute renal failure, compared to monotherapy.
Irbesartan; Hydrochlorothiazide, HCTZ: (Major) In general, avoid combined use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) due to lack of benefit with concomitant use in most patients. Closely monitor blood pressure, renal function, and electrolytes in patients on ACE inhibitors and ARBs. Dual blockade of the renin-angiotensin system with ACE inhibitors and ARBs is associated with increased risks of hypotension, syncope, hyperkalemia, and changes in renal function, including acute renal failure, compared to monotherapy.
Iron Dextran: (Moderate) The concomitant use of angiotensin-converting enzyme inhibitors (ACE inhibitors) with iron dextran may increase the risk for anaphylactic-type reactions. The factors that affect the risk for anaphylactic-type reactions to iron dextran products are not fully known but limited clinical data suggest the risk may be increased among patients with a history of drug allergy or multiple drug allergies. Patients should be monitored for signs and symptoms of anaphylactic-type reactions during all iron dextran administrations.
Isocarboxazid: (Moderate) Additive hypotensive effects may be seen when monoamine oxidase inhibitors (MAOIs) are combined with antihypertensives. Careful monitoring of blood pressure is suggested during concurrent therapy of MAOIs with angiotensin-converting enzyme inhibitors (ACE inhibitors). Patients should be instructed to rise slowly from a sitting position, and to report syncope or changes in blood pressure or heart rate to their health care provider.
Isoflurane: (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Isoniazid, INH; Pyrazinamide, PZA; Rifampin: (Moderate) Concomitant use of rifampin and enalapril may result in decreased concentrations of enalaprilat, the active metabolite of enalapril. Dosage adjustments of enalapril may be required.
Isoniazid, INH; Rifampin: (Moderate) Concomitant use of rifampin and enalapril may result in decreased concentrations of enalaprilat, the active metabolite of enalapril. Dosage adjustments of enalapril may be required.
Isoproterenol: (Moderate) The pharmacologic effects of isoproterenol may cause an increase in blood pressure. If isoproterenol is used concomitantly with antihypertensives, the blood pressure should be monitored as the administration of isoproterenol can compromise the effectiveness of antihypertensive agents.
Isosorbide Dinitrate, ISDN: (Moderate) Concomitant use of nitrates with other antihypertensive agents can cause additive hypotensive effects. Dosage adjustments may be necessary.
Isosorbide Mononitrate: (Moderate) Concomitant use of nitrates with other antihypertensive agents can cause additive hypotensive effects. Dosage adjustments may be necessary.
Isosulfan Blue: (Moderate) Because the use of other nephrotoxic drugs, including ACE inhibitors, is an additive risk factor for nephrotoxicity in patients receiving radiopaque contrast agents, ACE inhibitor therapy should be withheld, when possible, during radiopaque contrast agent administration.
Ketamine: (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Lanthanum Carbonate: (Moderate) ACE Inhibitors should not be taken within 2 hours of dosing with lanthanum carbonate. Oral compounds known to interact with cationic antacids may similarly be bound with lanthanum carbonate and have their absorption reduced. If these agents are used concomitantly, separate the dosing intervals appropriately. Monitor the clinical condition of the patient to ensure the proper clinical response to the ACE inhibitor is obtained.
Levodopa: (Moderate) Concomitant use of antihypertensive agents with levodopa can result in additive hypotensive effects.
Lidocaine; Epinephrine: (Moderate) Antihypertensives, including angiotensin-converting enzyme inhibitors, antagonize the vasopressor effects of parenteral epinephrine.
Linagliptin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Lisdexamfetamine: (Minor) Lisdexamfetamine may increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, like angiotensin-converting enzyme inhibitors (ACE inhibitors). Close monitoring of blood pressure is advised.
Lithium: (Moderate) Monitor serum lithium concentrations during concomitant angiotensin-converting enzyme inhibitor use; reduce the lithium dose based on serum lithium concentration and clinical response. Concomitant use may increase steady-state lithium concentrations.
Loop diuretics: (Major) Discontinue the loop diuretic prior to starting enalapril, if possible, or start enalapril at the lower dose of 2.5 mg/day. Monitor blood pressure and renal function during concomitant use, particularly when doses are increased. Concomitant use may increase the risk for hypotension or renal failure.
Loratadine; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Losartan: (Major) In general, avoid combined use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) due to lack of benefit with concomitant use in most patients. Closely monitor blood pressure, renal function, and electrolytes in patients on ACE inhibitors and ARBs. Dual blockade of the renin-angiotensin system with ACE inhibitors and ARBs is associated with increased risks of hypotension, syncope, hyperkalemia, and changes in renal function, including acute renal failure, compared to monotherapy.
Losartan; Hydrochlorothiazide, HCTZ: (Major) In general, avoid combined use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) due to lack of benefit with concomitant use in most patients. Closely monitor blood pressure, renal function, and electrolytes in patients on ACE inhibitors and ARBs. Dual blockade of the renin-angiotensin system with ACE inhibitors and ARBs is associated with increased risks of hypotension, syncope, hyperkalemia, and changes in renal function, including acute renal failure, compared to monotherapy.
Lurasidone: (Moderate) Due to the antagonism of lurasidone at alpha-1 adrenergic receptors, the drug may enhance the hypotensive effects of alpha-blockers and other antihypertensive agents. If concurrent use of lurasidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Magnesium Salts: (Moderate) Use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as angiotensin-converting enzyme inhibitors (ACE inhibitors).
Magnesium Sulfate; Potassium Sulfate; Sodium Sulfate: (Moderate) Monitor renal function during concomitant angiotensin-converting enzyme inhibitor and magnesium sulfate; potassium sulfate; sodium sulfate bowel preparation due to risk for renal injury; ensure adequate hydration.
Meglitinides: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Metformin: (Moderate) Monitor blood glucose during concomitant metformin and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Metformin; Repaglinide: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control. (Moderate) Monitor blood glucose during concomitant metformin and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Metformin; Rosiglitazone: (Moderate) Monitor blood glucose during concomitant metformin and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Metformin; Saxagliptin: (Moderate) Monitor blood glucose during concomitant metformin and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Metformin; Sitagliptin: (Moderate) Monitor blood glucose during concomitant metformin and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Methamphetamine: (Minor) Amphetamines increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, like angiotensin-converting enzyme inhibitors (ACE inhibitors). Close monitoring of blood pressure is advised.
Methohexital: (Moderate) Concurrent use of methohexital and antihypertensive agents increases the risk of developing hypotension.
Methylphenidate Derivatives: (Moderate) Periodic evaluation of blood pressure is advisable during concurrent use of methylphenidate derivatives and antihypertensive agents, particularly during initial coadministration and after dosage increases of methylphenidate derivatives. Methylphenidate derivatives can reduce the hypotensive effect of antihypertensive agents such as angiotensin-converting enzyme inhibitors.
Milrinone: (Moderate) Concurrent administration of antihypertensive agents could lead to additive hypotension when administered with milrinone. Titrate milrinone dosage according to hemodynamic response.
Nanoparticle Albumin-Bound Sirolimus: (Moderate) Sirolimus has been associated with the development of angioedema. The use of sirolimus with other drugs known to cause angioedema, such as angiotensin-converting enzyme inhibitors may increase the risk of developing angioedema. Patients should be monitored for angioedema if any of these drugs are coadministered with sirolimus.
Naproxen; Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Nateglinide: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Nebivolol; Valsartan: (Major) In general, avoid combined use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) due to lack of benefit with concomitant use in most patients. Closely monitor blood pressure, renal function, and electrolytes in patients on ACE inhibitors and ARBs. Dual blockade of the renin-angiotensin system with ACE inhibitors and ARBs is associated with increased risks of hypotension, syncope, hyperkalemia, and changes in renal function, including acute renal failure, compared to monotherapy.
Nefazodone: (Minor) Although relatively infrequent, nefazodone may cause orthostatic hypotension in some patients; this effect may be additive with antihypertensive agents. Blood pressure monitoring and dosage adjustments of either drug may be necessary.
Nesiritide, BNP: (Major) The potential for hypotension may be increased when coadministering nesiritide with antihypertensive agents.
Niacin, Niacinamide: (Moderate) Cutaneous vasodilation induced by niacin may become problematic if high-dose niacin is used concomitantly with other antihypertensive agents. This effect is of particular concern in the setting of acute myocardial infarction, unstable angina, or other acute hemodynamic compromise.
Niacin; Simvastatin: (Moderate) Cutaneous vasodilation induced by niacin may become problematic if high-dose niacin is used concomitantly with other antihypertensive agents. This effect is of particular concern in the setting of acute myocardial infarction, unstable angina, or other acute hemodynamic comp

romise.
Nitrates: (Moderate) Concomitant use of nitrates with other antihypertensive agents can cause additive hypotensive effects. Dosage adjustments may be necessary.
Nitroglycerin: (Moderate) Concomitant use of nitrates with other antihypertensive agents can cause additive hypotensive effects. Dosage adjustments may be necessary.
Nitroprusside: (Moderate) Additive hypotensive effects may occur when nitroprusside is used concomitantly with other antihypertensive agents. Dosages should be adjusted carefully, according to blood pressure.
Non-Ionic Contrast Media: (Moderate) Because the use of other nephrotoxic drugs, including ACE inhibitors, is an additive risk factor for nephrotoxicity in patients receiving radiopaque contrast agents, ACE inhibitor therapy should be withheld, when possible, during radiopaque contrast agent administration.
Nonsteroidal antiinflammatory drugs: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin-converting enzyme (ACE) inhibitor and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of ACE inhibitors may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of ACE inhibitors and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
Olanzapine: (Moderate) Olanzapine may induce orthostatic hypotension and thus enhance the effects of antihypertensive agents.
Olanzapine; Fluoxetine: (Moderate) Olanzapine may induce orthostatic hypotension and thus enhance the effects of antihypertensive agents.
Olanzapine; Samidorphan: (Moderate) Olanzapine may induce orthostatic hypotension and thus enhance the effects of antihypertensive agents.
Olmesartan: (Major) In general, avoid combined use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) due to lack of benefit with concomitant use in most patients. Closely monitor blood pressure, renal function, and electrolytes in patients on ACE inhibitors and ARBs. Dual blockade of the renin-angiotensin system with ACE inhibitors and ARBs is associated with increased risks of hypotension, syncope, hyperkalemia, and changes in renal function, including acute renal failure, compared to monotherapy.
Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Major) In general, avoid combined use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) due to lack of benefit with concomitant use in most patients. Closely monitor blood pressure, renal function, and electrolytes in patients on ACE inhibitors and ARBs. Dual blockade of the renin-angiotensin system with ACE inhibitors and ARBs is associated with increased risks of hypotension, syncope, hyperkalemia, and changes in renal function, including acute renal failure, compared to monotherapy.
Olmesartan; Hydrochlorothiazide, HCTZ: (Major) In general, avoid combined use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) due to lack of benefit with concomitant use in most patients. Closely monitor blood pressure, renal function, and electrolytes in patients on ACE inhibitors and ARBs. Dual blockade of the renin-angiotensin system with ACE inhibitors and ARBs is associated with increased risks of hypotension, syncope, hyperkalemia, and changes in renal function, including acute renal failure, compared to monotherapy.
Oxymetazoline: (Major) The vasoconstricting actions of oxymetazoline, an alpha adrenergic agonist, may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. If these drugs are used together, closely monitor for changes in blood pressure.
Paliperidone: (Moderate) Paliperidone may cause orthostatic hypotension, thereby enhancing the hypotensive effects of antihypertensive agents. Orthostatic vital signs should be monitored in patients receiving paliperidone and angiotensin-converting enzyme inhibitors who are susceptible to hypotension.
Pentoxifylline: (Moderate) Pentoxifylline has been used concurrently with antihypertensive drugs (beta blockers, diuretics) without observed problems. Small decreases in blood pressure have been observed in some patients treated with pentoxifylline; periodic systemic blood pressure monitoring is recommended for patients receiving concomitant antihypertensives. If indicated, dosage of the antihypertensive agents should be reduced.
Phenelzine: (Moderate) Additive hypotensive effects may be seen when monoamine oxidase inhibitors (MAOIs) are combined with antihypertensives. Careful monitoring of blood pressure is suggested during concurrent therapy of MAOIs with angiotensin-converting enzyme inhibitors (ACE inhibitors). Patients should be instructed to rise slowly from a sitting position, and to report syncope or changes in blood pressure or heart rate to their health care provider.
Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Pioglitazone; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Polyethylene Glycol; Electrolytes: (Moderate) Monitor renal function during concomitant angiotensin-converting enzyme inhibitor and magnesium sulfate; potassium sulfate; sodium sulfate bowel preparation due to risk for renal injury; ensure adequate hydration.
Polyethylene Glycol; Electrolytes; Ascorbic Acid: (Moderate) Monitor renal function during concomitant angiotensin-converting enzyme inhibitor and magnesium sulfate; potassium sulfate; sodium sulfate bowel preparation due to risk for renal injury; ensure adequate hydration.
Potassium Phosphate: (Major) Avoid coadministration of potassium phosphate and angiotensin-converting enzyme inhibitors as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Potassium Phosphate; Sodium Phosphate: (Major) Avoid coadministration of potassium phosphate and angiotensin-converting enzyme inhibitors as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Potassium: (Moderate) Monitor serum potassium concentrations closely if potassium supplements and angiotensin-converting enzyme inhibitors (ACE inhibitors) are used together. Concomitant use may increase the risk of hyperkalemia.
Pramlintide: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Prazosin: (Moderate) Prazosin is well-known to produce a 'first-dose' phenomenon. Some patients develop significant hypotension shortly after administration of the first dose. The first dose response (acute postural hypotension) of prazosin may be exaggerated in patients who are receiving beta-adrenergic blockers, diuretics, or other antihypertensive agents. Concomitant administration of prazosin with other antihypertensive agents is not prohibited, however. This can be therapeutically advantageous, but lower dosages of each agent should be used.
Pregabalin: (Moderate) Monitor for signs and symptoms of angioedema during concomitant angiotensin-converting enzyme inhibitor and pregabalin use. Concomitant use may increase the risk of developing angioedema.
Prilocaine; Epinephrine: (Moderate) Antihypertensives, including angiotensin-converting enzyme inhibitors, antagonize the vasopressor effects of parenteral epinephrine.
Procainamide: (Moderate) Procainamide can decrease blood pressure and should be used cautiously in patients receiving antihypertensive agents. Intravenous administration of procainamide is more likely to cause hypotensive effects.
Promethazine; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Propofol: (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Pseudoephedrine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Pseudoephedrine; Triprolidine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Quinidine: (Moderate) Quinidine can decrease blood pressure and should be used cautiously in patients receiving antihypertensive agents due to the potential for additive hypotension.
Rasagiline: (Moderate) Additive hypotensive effects may be seen when monoamine oxidase inhibitors (MAOIs) are combined with antihypertensives. Careful monitoring of blood pressure is suggested during concurrent therapy of MAOIs with angiotensin-converting enzyme inhibitors (ACE inhibitors). Patients should be instructed to rise slowly from a sitting position, and to report syncope or changes in blood pressure or heart rate to their health care provider.
Repaglinide: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Rifampin: (Moderate) Concomitant use of rifampin and enalapril may result in decreased concentrations of enalaprilat, the active metabolite of enalapril. Dosage adjustments of enalapril may be required.
Risperidone: (Moderate) Risperidone may induce orthostatic hypotension and thus enhance the hypotensive effects of antihypertensive agents. Lower initial doses or slower dose titration of risperidone may be necessary in patients receiving antihypertensive agents concomitantly.
Sacubitril; Valsartan: (Contraindicated) Sacubitril; valsartan is contraindicated with the concomitant use of angiotensin-converting enzyme inhibitors (ACE inhibitors) due to the increased risk of angioedema. Do not administer sacubitril; valsartan within 36 hours of switching to or from an ACE inhibitor. (Major) In general, avoid combined use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) due to lack of benefit with concomitant use in most patients. Closely monitor blood pressure, renal function, and electrolytes in patients on ACE inhibitors and ARBs. Dual blockade of the renin-angiotensin system with ACE inhibitors and ARBs is associated with increased risks of hypotension, syncope, hyperkalemia, and changes in renal function, including acute renal failure, compared to monotherapy.
Salicylates: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Sevoflurane: (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
SGLT2 Inhibitors: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Silodosin: (Moderate) During clinical trials with silodosin, the incidence of dizziness and orthostatic hypotension was higher in patients receiving concomitant antihypertensive treatment. Thus, caution is advisable when silodosin is administered with antihypertensive agents.
Sirolimus: (Moderate) Sirolimus has been associated with the development of angioedema. The use of sirolimus with other drugs known to cause angioedema, such as angiotensin-converting enzyme inhibitors may increase the risk of developing angioedema. Patients should be monitored for angioedema if any of these drugs are coadministered with sirolimus.
Sodium Phosphate Monobasic Monohydrate; Sodium Phosphate Dibasic Anhydrous: (Moderate) Concomitant use of medicines with potential to alter renal perfusion or function such as angiotensin-converting enzyme inhibitors, may increase the risk of acute phosphate nephropathy in patients taking sodium phosphate monobasic monohydrate; sodium phosphate dibasic anhydrous.
Sodium picosulfate; Magnesium oxide; Anhydrous citric acid: (Moderate) Use caution when prescribing sodium picosulfate; magnesium oxide; anhydrous citric acid in patients taking concomitant medications that may affect renal function such as angiotensin-converting enzyme inhibitors (ACE inhibitors). In addition, use caution in patients receiving drugs where hypokalemia is a particular risk.
Sodium Sulfate; Magnesium Sulfate; Potassium Chloride: (Moderate) Use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as angiotensin-converting enzyme inhibitors (ACE inhibitors).
Sparsentan: (Major) Hold angiotensin-converting enzyme inhibitor therapy when initiating sparsentan and until a stable dose of sparsentan is achieved. Frequently monitor potassium during concomitant use due to the increased risk for hyperkalemia.
Spironolactone: (Moderate) Monitor serum potassium concentrations closely if ACE inhibitors and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function.
Spironolactone; Hydrochlorothiazide, HCTZ: (Moderate) Monitor serum potassium concentrations closely if ACE inhibitors and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function.
Sulfamethoxazole; Trimethoprim, SMX-TMP, Cotrimoxazole: (Moderate) Monitor for hyperkalemia if concomitant use of an angiotensin-converting enzyme (ACE) inhibitor and trimethoprim is necessary. Avoid concomitant use and consider alternative antibiotic therapy in patients with additional risk factors for hyperkalemia, including patients older than 65 years, those with underlying disorders of potassium metabolism, renal insufficiency, or those requiring high doses of trimethoprim. Amongst patients older than 65 years, concomitant use has been associated with a 2- to 7-fold increased risk of significant hyperkalemia compared to other antibiotics. Trimethoprim has a potassium-sparing effect on the distal nephron and may induce hyperkalemia, especially in those with pre-existing risk factors.
Sulfonylureas: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Tacrolimus: (Moderate) Tacrolimus, in the absence of overt renal impairment, may adversely affect renal function. Care should be taken in using tacrolimus with other nephrotoxic drugs, including ACE inhibitors.
Telavancin: (Moderate) Concurrent or sequential use of telavancin with other potentially nephrotoxic drugs such as Angiotensin-converting enzyme inhibitors (ACE inhibitors) may lead to additive nephrotoxicity. Closely monitor renal function and adjust telavancin doses based on calculated creatinine clearance.
Telmisartan: (Major) In general, avoid combined use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) due to lack of benefit with concomitant use in most patients. Closely monitor blood pressure, renal function, and electrolytes in patients on ACE inhibitors and ARBs. Dual blockade of the renin-angiotensin system with ACE inhibitors and ARBs is associated with increased risks of hypotension, syncope, hyperkalemia, and changes in renal function, including acute renal failure, compared to monotherapy.
Telmisartan; Amlodipine: (Major) In general, avoid combined use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) due to lack of benefit with concomitant use in most patients. Closely monitor blood pressure, renal function, and electrolytes in patients on ACE inhibitors and ARBs. Dual blockade of the renin-angiotensin system with ACE inhibitors and ARBs is associated with increased risks of hypotension, syncope, hyperkalemia, and changes in renal function, including acute renal failure, compared to monotherapy.
Telmisartan; Hydrochlorothiazide, HCTZ: (Major) In general, avoid combined use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) due to lack of benefit with concomitant use in most patients. Closely monitor blood pressure, renal function, and electrolytes in patients on ACE inhibitors and ARBs. Dual blockade of the renin-angiotensin system with ACE inhibitors and ARBs is associated with increased risks of hypotension, syncope, hyperkalemia, and changes in renal function, including acute renal failure, compared to monotherapy.
Temsirolimus: (Moderate) Monitor for signs and symptoms of angioedema if temsirolimus is administered concomitantly with enalapril. Angioedema has been reported in patients taking mammalian target of rapamycin (mTOR) inhibitors in combination with another ACE inhibitor.
Tenapanor: (Moderate) Consider monitoring for loss of efficacy of enalapril if coadministered with tenapanor. Monitor blood pressure or other treatment parameters and increase the enalapril dosage if clinically indicated. Coadministration may reduce exposure of enalapril. Tenapanor is an inhibitor of intestinal uptake transporter, OATP2B1 and enalapril is an OATP2B1 substrate. Coadministration decreased the exposure of enalapril by 50% to 65%.
Tetrabenazine: (Moderate) Tetrabenazine may induce orthostatic hypotension and thus enhance the hypotensive effects of antihypertensive agents. Lower initial doses or slower dose titration of tetrabenazine may be necessary in patients receiving antihypertensive agents concomitantly.
Tetracaine: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. Use extreme caution with the concomitant use of tetracaine and antihypertensive agents.
Thiazide diuretics: (Major) Discontinue the thiazide diuretic prior to starting enalapril, if possible, or start enalapril at the lower dose of 2.5 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure.
Thiazolidinediones: (Moderate) Monitor blood glucose during concomitant thiazolidinedione and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Thiothixene: (Moderate) Thiothixene should be used cautiously in patients receiving antihypertensive agents. Additive hypotensive effects are possible.
Tizanidine: (Moderate) Concurrent use of tizanidine with antihypertensive agents can result in significant hypotension. Caution is advised when tizanidine is to be used in patients receiving concurrent antihypertensive therapy.
Tolvaptan: (Moderate) Monitor serum potassium concentrations closely if tolvaptan and angiotensin-converting enzyme inhibitors (ACE inhibitors) are used together. In clinical studies, hyperkalemia was reported at a rate 1% to 2% higher when tolvaptan was administered with ACE inhibitors compared to administration of these medications with placebo.
Tranylcypromine: (Contraindicated) The use of hypotensive agents and tranylcypromine is contraindicated by the manufacturer of tranylcypromine because the effects of hypotensive agents may be markedly potentiated.
Trazodone: (Minor) Due to additive hypotensive effects, patients receiving antihypertensive agents concurrently with trazodone may have excessive hypotension. Decreased dosage of the antihypertensive agent may be required when given with trazodone.
Triamterene: (Moderate) Monitor serum potassium concentrations closely if ACE inhibitors and triamterene are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function.
Triamterene; Hydrochlorothiazide, HCTZ: (Moderate) Monitor serum potassium concentrations closely if ACE inhibitors and triamterene are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function.
Trimethoprim: (Moderate) Monitor for hyperkalemia if concomitant use of an angiotensin-converting enzyme (ACE) inhibitor and trimethoprim is necessary. Avoid concomitant use and consider alternative antibiotic therapy in patients with additional risk factors for hyperkalemia, including patients older than 65 years, those with underlying disorders of potassium metabolism, renal insufficiency, or those requiring high doses of trimethoprim. Amongst patients older than 65 years, concomitant use has been associated with a 2- to 7-fold increased risk of significant hyperkalemia compared to other antibiotics. Trimethoprim has a potassium-sparing effect on the distal nephron and may induce hyperkalemia, especially in those with pre-existing risk factors.
Valsartan: (Major) In general, avoid combined use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) due to lack of benefit with concomitant use in most patients. Closely monitor blood pressure, renal function, and electrolytes in patients on ACE inhibitors and ARBs. Dual blockade of the renin-angiotensin system with ACE inhibitors and ARBs is associated with increased risks of hypotension, syncope, hyperkalemia, and changes in renal function, including acute renal failure, compared to monotherapy.
Valsartan; Hydrochlorothiazide, HCTZ: (Major) In general, avoid combined use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) due to lack of benefit with concomitant use in most patients. Closely monitor blood pressure, renal function, and electrolytes in patients on ACE inhibitors and ARBs. Dual blockade of the renin-angiotensin system with ACE inhibitors and ARBs is associated with increased risks of hypotension, syncope, hyperkalemia, and changes in renal function, including acute renal failure, compared to monotherapy.
Vasopressin, ADH: (Moderate) Monitor hemodynamics and adjust the dose of vasopressin as needed when used concomitantly with drugs suspected of causing syndrome of inappropriate antidiuretic hormone (SIADH), such as enalapril. Use together may increase the pressor and antidiuretic effects of vasopressin.
Ziprasidone: (Minor) Ziprasidone is a moderate antagonist of alpha-1 receptors and may cause orthostatic hypotension with or without tachycardia, dizziness, or syncope. Additive hypotensive effects are possible if ziprasidone is used concurrently with antihypertensive agents.

How Supplied

Enalapril Maleate/Epaned Oral Sol: 1mg, 1mL
Enalapril Maleate/Vasotec Oral Tab: 2.5mg, 5mg, 10mg, 20mg
Enalaprilat/Vasotec Intravenous Inj Sol: 1mL, 1.25mg

Maximum Dosage
Adults

40 mg/day PO or 20 mg/day IV.

Geriatric

40 mg/day PO or 20 mg/day IV.

Adolescents

17 years: 40 mg/day PO for hypertension; safety and efficacy of IV enalaprilat has not been established; however, doses up to 10 mcg/kg/dose IV (Max: 1.25 mg/dose IV) have been used off-label.
13 to 16 years: 0.6 mg/kg/day PO (Max: 40 mg/day PO) for hypertension; doses of up to 0.94 mg/kg/day PO have been used off-label for congestive heart failure; safety and efficacy of IV enalaprilat has not been established; however, doses up to 10 mcg/kg/dose IV (Max: 1.25 mg/dose IV) have been used off-label.

Children

0.6 mg/kg/day PO (Max: 40 mg/day PO) for hypertension; doses of up to 0.94 mg/kg/day PO have been used off-label for congestive heart failure; safety and efficacy of IV enalaprilat has not been established; however, doses up to 10 mcg/kg/dose IV (Max: 1.25 mg/dose IV) have been used off-label.

Infants

0.6 mg/kg/day PO for hypertension; however, doses as high as 0.94 mg/kg/day PO have been used off-label for congestive heart failure; safety and efficacy of IV enalaprilat has not been established; however, doses up to 10 mcg/kg/dose IV have been used off-label.

Neonates

Safety and efficacy have not been established; however, doses up to 0.27 mg/kg/day PO and 10 mcg/kg/dose IV have been used off-label.

Mechanism Of Action

Enalapril competes with the natural substrate, angiotensin I, thereby inhibiting its conversion to angiotensin II. Angiotensin II is a potent vasoconstrictor and a negative feedback mediator for renin activity. Thus, when enalapril lowers angiotensin II plasma levels, blood pressure decreases and plasma renin activity increases. In addition, baroreceptor reflex mechanisms are stimulated in response to the fall in blood pressure. Kininase II, identical to ACE, is an enzyme that degrades bradykinin, a potent vasodilator, to inactive peptides. Whether increased bradykinin levels play a part in the therapeutic effects of ACE inhibitors is presently unclear. Bradykinin-induced vasodilation is thought to be of secondary importance in the blood-pressure lowering effect of ACE inhibitors. A bradykinin mechanism may, however, contribute to ACE-inhibitor-induced angioneurotic edema.
 
ACE-inhibiting drugs can act locally to reduce vascular tone by decreasing local angiotensin II-induced sympathetic and/or vasoconstrictive activity. ACE inhibitors also can inhibit presynaptic norepinephrine release and postsynaptic adrenergic receptor activity, decreasing vascular sensitivity to vasopressor activity; however, this action may not be clinically evident at usual doses. Decreases in plasma angiotensin II levels also reduce aldosterone secretion, with a subsequent decrease in sodium and water retention. As antihypertensives, ACE inhibitors reduce LVH, do not worsen insulin resistance or hyperlipidemia, and do not cause sexual dysfunction.
 
Enalapril causes arterial dilation, thereby lowering total peripheral vascular resistance. In hypertensive patients, blood pressure is decreased with little or no change in heart rate, stroke volume, or cardiac output. However, in patients with heart failure, enalapril increases cardiac output, cardiac index, stroke volume, and exercise tolerance. The drug also decreases pulmonary wedge pressure, pulmonary vascular resistance, and mean arterial and right atrial pressures in these patients.

Pharmacokinetics

Enalapril is administered orally and enalaprilat is administered parenterally. Enalapril maleate is a prodrug; it is converted by hydrolysis of the ethyl ester to enalaprilat, the active drug. Animal studies indicate that enalapril crosses the blood-brain barrier poorly, if at all. Enalaprilat does not enter the brain. Excretion of enalapril and enalaprilat is primarily renal. Approximately 94% of a dose is recovered in the urine and feces as enalaprilat or enalapril. The principal components in urine are enalaprilat (accounting for about 40% of the dose) and intact enalapril. The half-life of enalaprilat after multiple doses of enalapril is about 11 hours.
 
Affected cytochrome P450 isoenzymes: none

Oral Route

After oral administration, peak serum concentrations are achieved within about 1 hour. The extent of absorption is approximately 60%. Peak serum concentrations of enalaprilat occur 3 to 4 hours after an oral dose of enalapril maleate. In most patients, the onset of antihypertensive activity after a single dose of enalapril occurs about 1 hour after administration, with peak reductions in blood pressure achieved by 4 to 6 hours. At recommended doses, the antihypertensive effect of enalapril monotherapy is maintained for at least 24 hours in many patients. However, in some patients, the effect diminishes towards the end of the 24-hour dosing interval. The pharmacokinetics of enalapril oral solution are similar to that of the tablets.

Intravenous Route

The onset of antihypertensive activity usually occurs within 15 minutes of administration, with peak reductions in blood pressure achieved within 1 to 4 hours. At recommended doses, the antihypertensive effect of enalaprilat is maintained for approximately 6 hours.

Pregnancy And Lactation
Pregnancy

Enalapril and enalaprilat have been detected in human breast milk.  Due to low levels in breast milk, guidelines generally consider captopril and enalapril to be compatible with breast-feeding unless high doses are required. Consider the benefits of breast-feeding, the risk of potential infant drug exposure, and the risk of an untreated or inadequately treated condition.