XARTEMIS XR

Browse PDR's full list of drug information

XARTEMIS XR

Classes

Opioid Agonists and Other Drug Combinations

Administration
Oral Administration

Storage: Keep acetaminophen; oxycodone secured in a location not accessible by others.
Disposal: Flush unused medication down the toilet when it is no longer needed if a drug take-back option is not readily available.
 
Immediate-release formulations:
Administer with a full glass of water. May be taken food or milk to minimize GI irritation.
Extended-release tablets:
Swallow whole, 1 tablet at a time, with enough water to ensure complete swallowing immediately after placing in mouth.
May be given with or without food.
Do not break, chew, crush, cut, dissolve, or split the tablets due to the risk of uncontrolled drug delivery.

Adverse Reactions
Severe

oliguria / Early / 0-1.0
neonatal opioid withdrawal syndrome / Delayed / Incidence not known
cerebral edema / Early / Incidence not known
seizures / Delayed / Incidence not known
suicidal ideation / Delayed / Incidence not known
respiratory arrest / Rapid / Incidence not known
pulmonary edema / Early / Incidence not known
apnea / Delayed / Incidence not known
GI obstruction / Delayed / Incidence not known
ileus / Delayed / Incidence not known
pancreatitis / Delayed / Incidence not known
hepatic necrosis / Delayed / Incidence not known
hepatotoxicity / Delayed / Incidence not known
hepatic failure / Delayed / Incidence not known
proteinuria / Delayed / Incidence not known
interstitial nephritis / Delayed / Incidence not known
renal papillary necrosis / Delayed / Incidence not known
renal tubular necrosis / Delayed / Incidence not known
renal failure (unspecified) / Delayed / Incidence not known
agranulocytosis / Delayed / Incidence not known
hemolytic anemia / Delayed / Incidence not known
pancytopenia / Delayed / Incidence not known
laryngeal edema / Rapid / Incidence not known
anaphylactic shock / Rapid / Incidence not known
Stevens-Johnson syndrome / Delayed / Incidence not known
angioedema / Rapid / Incidence not known
toxic epidermal necrolysis / Delayed / Incidence not known
anaphylactoid reactions / Rapid / Incidence not known
acute generalized exanthematous pustulosis (AGEP) / Delayed / Incidence not known
cardiac arrest / Early / Incidence not known
bradycardia / Rapid / Incidence not known
visual impairment / Early / Incidence not known
hyperkalemia / Delayed / Incidence not known
rhabdomyolysis / Delayed / Incidence not known
hearing loss / Delayed / Incidence not known
serotonin syndrome / Delayed / Incidence not known

Moderate

constipation / Delayed / 4.0-4.0
euphoria / Early / 0-1.0
myoclonia / Delayed / 0-1.0
memory impairment / Delayed / 0-1.0
confusion / Early / 0-1.0
dyspnea / Early / 0-1.0
dysuria / Early / 1.0-1.0
migraine / Early / 0-1.0
erythema / Early / 1.0-1.0
palpitations / Early / 0-1.0
hypertension / Early / 0-1.0
blurred vision / Early / 0-1.0
peripheral edema / Delayed / 1.0-1.0
elevated hepatic enzymes / Delayed / 1.0
physiological dependence / Delayed / Incidence not known
psychological dependence / Delayed / Incidence not known
withdrawal / Early / Incidence not known
tolerance / Delayed / Incidence not known
depression / Delayed / Incidence not known
dysphoria / Early / Incidence not known
hallucinations / Early / Incidence not known
hypoventilation / Rapid / Incidence not known
tachypnea / Early / Incidence not known
respiratory depression / Rapid / Incidence not known
hyperbilirubinemia / Delayed / Incidence not known
hepatitis / Delayed / Incidence not known
jaundice / Delayed / Incidence not known
hypoprothrombinemia / Delayed / Incidence not known
encephalopathy / Delayed / Incidence not known
urinary retention / Early / Incidence not known
neutropenia / Delayed / Incidence not known
thrombocytopenia / Delayed / Incidence not known
edema / Delayed / Incidence not known
contact dermatitis / Delayed / Incidence not known
chest pain (unspecified) / Early / Incidence not known
orthostatic hypotension / Delayed / Incidence not known
sinus tachycardia / Rapid / Incidence not known
hypotension / Rapid / Incidence not known
hyperemia / Delayed / Incidence not known
dehydration / Delayed / Incidence not known
hypoglycemia / Early / Incidence not known
hyperglycemia / Delayed / Incidence not known
metabolic acidosis / Delayed / Incidence not known
infertility / Delayed / Incidence not known
impotence (erectile dysfunction) / Delayed / Incidence not known
adrenocortical insufficiency / Delayed / Incidence not known
hyperalgesia / Delayed / Incidence not known

Mild

nausea / Early / 4.1-31.0
dizziness / Early / 13.0-13.0
headache / Early / 10.0-10.0
vomiting / Early / 4.8-9.0
drowsiness / Early / 4.0-4.0
rash / Early / 2.0-2.0
paresthesias / Delayed / 0-1.0
tremor / Early / 0-1.0
anxiety / Delayed / 0-1.0
throat irritation / Early / 0-1.0
hiccups / Early / 0-1.0
abdominal pain / Early / 0-1.0
anorexia / Delayed / 0-1.0
ecchymosis / Delayed / 0-1.0
hyperhidrosis / Delayed / 0-1.0
pruritus / Rapid / 1.0-1.0
urticaria / Rapid / 0-1.0
flushing / Rapid / 0-1.0
chills / Rapid / 0-1.0
malaise / Early / 0-1.0
polydipsia / Early / 0-1.0
asthenia / Delayed / 0-1.0
arthralgia / Delayed / 0-1.0
tinnitus / Delayed / 0-1.0
insomnia / Early / 1.0
cough / Delayed / 1.0
xerostomia / Early / 1.0
diarrhea / Early / 1.0
dyspepsia / Early / 1.0
fatigue / Early / 1.0
agitation / Early / Incidence not known
hypoesthesia / Delayed / Incidence not known
lethargy / Early / Incidence not known
flatulence / Early / Incidence not known
dysgeusia / Early / Incidence not known
purpura / Delayed / Incidence not known
syncope / Early / Incidence not known
miosis / Early / Incidence not known
diaphoresis / Early / Incidence not known
hypothermia / Delayed / Incidence not known
myalgia / Early / Incidence not known
amenorrhea / Delayed / Incidence not known
gonadal suppression / Delayed / Incidence not known
libido decrease / Delayed / Incidence not known

Boxed Warning
Accidental exposure, alcoholism, depression, ethanol intoxication, hepatic disease, hepatitis, hepatotoxicity, hypovolemia, malnutrition, opioid overdose, opioid use disorder, potential for overdose or poisoning, requires an experienced clinician, substance abuse

Acetaminophen has the potential for overdose or poisoning causing hepatotoxicity and acute liver failure, at times resulting in liver transplantation and death. Most cases of liver injury are associated with the use of acetaminophen at doses exceeding 4 g/day and often involve the use of more than 1 acetaminophen-containing product. Use caution during the measurement of oral liquid dosage forms to minimize the risk of dosing errors that can result in accidental overdose. Advise patients receiving acetaminophen to carefully read OTC and prescription labels, to avoid excessive and/or duplicate medications, and to seek medical help immediately if more than 4 g/day of acetaminophen is ingested, even if they feel well. It is important to note that the risk of acetaminophen-induced hepatotoxicity is increased in patients with pre-existing hepatic disease (e.g., hepatitis), those who ingest alcohol (e.g., ethanol intoxication, alcoholism), those with chronic malnutrition, and those with severe hypovolemia. In patients with chronic hepatic disease, acetaminophen can be used safely in recommended doses and is often preferred to nonsteroidal anti-inflammatory drugs (NSAIDs) due to the absence of platelet impairment, gastrointestinal toxicity, and nephrotoxicity. Though the half-life of acetaminophen may be prolonged, repeated dosing does not result in drug or metabolite accumulation. In addition, cytochrome P450 activity is not increased and glutathione stores are not depleted in hepatically impaired patients taking therapeutic doses, therefore toxic metabolite formation and accumulation is not altered. Although it is always prudent to use the smallest dose of acetaminophen for the shortest duration necessary, courses less than 2 weeks in length have been administered safely to adult patients with stable chronic liver disease. Oxycodone may accumulate leading to a prolonged duration of action in patients with decreased liver function. Close monitoring is warranted to avoid respiratory depression. Opioid use requires an experienced clinician who is knowledgeable about the use of opioids and how to mitigate the associated risks. Opioids expose users to the risks of addiction, abuse, and misuse, which can occur at any dosage or duration. Although the risk of addiction in any individual is unknown, it can occur in persons appropriately prescribed an opioid. Addiction can occur at recommended dosages and if the drug is misused or abused. Assess each individual's risk for opioid addiction, abuse, or misuse before prescribing an opioid, and monitor for the development of these behaviors or conditions. Risks are increased in persons with a personal or family history of substance abuse (including alcoholism) or mental illness (e.g., major depression). The potential for these risks should not prevent the proper management of pain in any given individual. Persons at increased risk may be prescribed opioids but use in such persons necessitates intensive counseling about the risks and proper use of the opioid along with intensive monitoring for signs of addiction, abuse, and misuse. Abuse and addiction are separate and distinct from physical dependence and tolerance; persons with addiction may not exhibit tolerance and symptoms of physical dependence. Opioids are sought by drug abusers and persons with addiction disorders and are subject to criminal diversion. Abuse of opioids has the potential for overdose or poisoning and death. Consider these risks when prescribing or dispensing opioids. Strategies to reduce these risks include prescribing the drug in the smallest appropriate quantity. Dosing errors may result from confusion between mg and mL when prescribing, dispensing, and administering acetaminophen; oxycodone oral solution. Ensure that the dose is communicated clearly and dispensed accurately. Instruct patients on how to measure the dose and to use a calibrated oral dosing device. Keep opioids out of the reach of pediatric patients, others for whom the drug was not prescribed, and pets as accidental exposure or improper use may cause respiratory failure and a fatal overdose. Accidental exposure of even a single dose of an opioid, especially by younger persons, can result in a fatal overdose. Because the risk of overdose increases as opioid doses increase, reserve titration to higher doses of an opioid for persons in whom lower doses are insufficiently effective and in whom the expected benefits of using a higher dose opioid clearly outweigh the substantial risks. Do not use immediate-release opioids for an extended period unless the pain remains severe enough to require an opioid and for which alternative treatment options continue to be inadequate. Many acute pain conditions (e.g., pain occurring with surgical procedures or acute musculoskeletal injuries) require no more than a few days of an opioid. Clinical guidelines on opioid prescribing for some acute pain conditions are available. Discuss the availability of naloxone with all patients and consider prescribing it in persons who are at increased risk of opioid overdose, such as those who are also using other CNS depressants, who have a history of opioid use disorder (OUD), who have experienced a previous opioid overdose, or who have household members or other close contacts at risk for accidental exposure or opioid overdose.

Asthma, chronic obstructive pulmonary disease (COPD), coadministration with other CNS depressants, cor pulmonale, hypoxemia, respiratory depression, respiratory insufficiency, sleep apnea

Acetaminophen; oxycodone is contraindicated in persons with significant respiratory depression and those with acute or severe asthma in an unmonitored setting or in the absence of resuscitative equipment. Avoid coadministration with other CNS depressants when possible, as this significantly increases the risk for profound sedation, respiratory depression, coma, and death. Reserve concomitant prescribing of these drugs for use in persons for whom alternative treatment options are inadequate; if concurrent use is necessary, use the lowest effective dosages and minimum treatment durations needed. Monitor closely for signs or symptoms of respiratory depression and sedation. [61143] Persons with chronic obstructive pulmonary disease (COPD), cor pulmonale, respiratory insufficiency, hypoxemia, hypercapnia, or preexisting respiratory depression are at increased risk of decreased respiratory drive even at recommended doses. Persons with advanced age, cachexia, or debilitation are also at an increased risk for opioid-induced respiratory depression. Monitor such persons closely, particularly when initiating and titrating the opioid; consider the use of non-opioid analgesics. Opioids increase the risk of central sleep apnea (CSA) and sleep-related hypoxemia in a dose-dependent fashion. Consider decreasing the opioid dosage in persons with CSA. Respiratory depression, if left untreated, may cause respiratory arrest and death. Carbon dioxide retention from respiratory depression may also worsen opioid sedating effects. Careful monitoring is required, particularly when CYP450 3A4 inhibitors or inducers are used concomitantly; concurrent use of a CYP3A4 inhibitor or discontinuation of a concurrently used CYP3A4 inducer may increase plasma oxycodone concentrations and potentiate the risk of fatal respiratory depression. Management of respiratory depression may include observation, necessary supportive measures, and opioid antagonist use when indicated.

Labor, neonatal opioid withdrawal syndrome, obstetric delivery, pregnancy

Do not use acetaminophen; oxycodone during pregnancy unless the benefits outweigh the possible risks. Published epidemiological studies have not reported a clear association with acetaminophen use during pregnancy and birth defects, miscarriage, or adverse maternal or fetal outcomes. Large observational studies of newborns exposed to oral acetaminophen during the first trimester have not shown an increased risk for congenital malformations or major birth defects; however, these studies cannot definitely establish the absence of risk because of methodological limitations. Acetaminophen does cross the placenta and should be used during pregnancy only if the benefits to the mother outweigh the potential risks to the fetus or infant. No overall increase in fetal mortality, determined by pregnancy outcomes of mothers that overdosed on various amounts of oral acetaminophen, was apparent amongst 300 women. Treatment with acetylcysteine or methionine did not appear to affect fetal or neonatal toxicity. Of 235 infants exposed to an overdose of only acetaminophen, 168 were normal, 8 had malformations, 16 were spontaneously aborted, and 43 were electively terminated. None of the infants with malformations were exposed during the first trimester, but all of the spontaneous abortions were subsequent to first trimester exposure. Pregnancy exposure data are insufficient to inform a drug-associated risk of birth defects or miscarriage with oxycodone. In animal studies with rats and rabbits, no embryo-fetal toxicity was detected when oxycodone was given during organogenesis at doses 0.5- to 15-times the adult human dose of 160 mg/day. In a pre- and post-natal study in rats, oxycodone given during gestation and lactation at a dose approximately 0.4 times an adult human dose of 160 mg/day was not associated with any long-term developmental or reproductive adverse effects in pups; however, pup weight was transiently decreased during lactation and the early post-weaning period. No drug-related effects on reproductive performance in female rats were observed. Published data with rats indicate that oxycodone may result in neurobehavioral effects, including altered stress response, increased anxiety-like behavior, and altered learning and memory, in offspring when given at clinically relevant doses and below. Acetaminophen; oxycodone is not recommended for use during and immediately before labor when other analgesic techniques are more appropriate. Opioids can prolong labor and obstetric delivery by temporarily reducing the strength, duration, and frequency of uterine contractions. This effect is not consistent and may be offset by an increased rate of cervical dilatation, which may shorten labor. Opioids cross the placenta and may produce respiratory depression and psycho-physiologic effects in the neonate. Monitor neonates exposed to opioid analgesics during labor for signs of excess sedation and respiratory depression. An opioid antagonist (e.g., naloxone) should be available for reversal of opioid-induced respiratory depression in the neonate. Further, prolonged maternal use of opioids during pregnancy may result in neonatal opioid withdrawal syndrome (NOWS). Monitor the exposed neonate for withdrawal symptoms, including irritability, hyperactivity and abnormal sleep pattern, high-pitched cry, tremor, vomiting, diarrhea, and failure to gain weight, and manage accordingly. Onset, duration, and severity of opioid withdrawal may vary based on the specific opioid used, duration of use, timing and amount of last maternal use, and rate of elimination by the newborn. Guidelines recommend early universal screening of pregnant patients for opioid use and opioid use disorder at the first prenatal visit. Obtain a thorough history of substance use and review the Prescription Drug Monitoring Program to determine if patients have received prior prescriptions for opioids or other high-risk drugs such as benzodiazepines. Discuss the risks and benefits of opioid use during pregnancy, including the risk of becoming physiologically dependent on opioids, the possibility for NOWS, and how long-term opioid use may affect care during a future pregnancy.[64838] [64909] In women undergoing uncomplicated normal spontaneous vaginal birth, consider opioid therapy only if expected benefits for both pain and function are anticipated to outweigh risks to the patient. If opioids are used, use in combination with nonpharmacologic therapy and nonopioid pharmacologic therapy, as appropriate. Use immediate-release opioids instead of extended-release or long-acting opioids; order the lowest effective dosage and prescribe no greater quantity of opioids than needed for the expected duration of such pain severe enough to require opioids.[64909] For women using opioids for chronic pain, consider strategies to avoid or minimize the use of opioids, including alternative pain therapies (i.e., nonpharmacologic) and nonopioid pharmacologic treatments. Opioid agonist pharmacotherapy (e.g., methadone or buprenorphine) is preferable to medically supervised withdrawal in pregnant women with opioid use disorder.[64838]

Common Brand Names

Endocet, Nalocet, Percocet, Perloxx, Primalev, Primlev, Prolate, Roxicet

Dea Class

Rx, schedule II

Description

Combination product to treat moderate to severe pain. Acetaminophen is a non-salicylate analgesic; oxycodone is an oral semisynthetic opiate agonist. The combination produces additive analgesia as compared to either agent alone.

Dosage And Indications
For the treatment of moderate pain to moderately-severe pain. For the treatment of acute pain severe enough to require opioid treatment and for which alternative treatment options (e.g., non-opioid analgesics) are inadequate. Oral dosage (extended-release tablets, Xartemis XR) Adults

2 tablets PO every 12 hours administered with or without food. A second dose of 2 tablets may be given as early as 8 hours after the initial dose if needed for analgesia at that time. Subsequent doses are to be administered every 12 hours. Individualize the dosage regimen, considering prior analgesic exposure and risk for abuse. Monitor patients closely for excessive sedation and respiratory depression, particularly in the first 24—72 hours of treatment. To discontinue, use a gradual downward titration of 50% every 2—4 days to prevent withdrawal in the physically dependent patient. Extended-release tablets are NOT interchangeable with other acetaminophen; oxycodone products.

Oral dosage (immediate-release tablets or capsules) Adults

1—2 tablets or capsules (2.5—10 mg of oxycodone) PO every 6 hours as needed. It may be necessary to exceed the usual dosage recommendation (i.e., give every 4 hours) in cases of severe pain or in those patients who have become tolerant to the analgesic effect of opiate agonists. Maximum acetaminophen dose is 4 g/day.

Oral dosage (liquid) Adults

5—10 ml (5—10 mg of oxycodone) PO every 6 hours as needed. It may be necessary to exceed the usual dosage recommendation (i.e., give every 4 hours) in cases of severe pain or in those patients who have become tolerant to the analgesic effect of opiate agonists. Maximum acetaminophen dose is 4 g/day.

Children†

0.05—0.15 mg oxycodone/kg PO every 6 hours as needed. May titrate up to 5 mg oxycodone PO every 4—6 hours. The maximum acetaminophen dose is 75 mg/kg/day.

Dosing Considerations
Hepatic Impairment

Dosage should be modified depending upon the clinical response and degree of hepatic impairment. For initiation of the extended-release tablets, give 1 tablet and adjust dosage as needed.

Renal Impairment

Dosage should be modified depending upon the clinical response and degree of renal impairment. For initiation of the extended-release tablets, give 1 tablet and adjust dosage as needed.

Drug Interactions

Abacavir; Lamivudine, 3TC; Zidovudine, ZDV: (Minor) Both acetaminophen and zidovudine, ZDV undergo glucuronidation. Competition for the metabolic pathway is thought to have caused a case of acetaminophen-related hepatotoxicity. This interaction may be more clinically significant in patients with depleted glutathione stores, such as patients with acquired immunodeficiency syndrome, poor nutrition, or alcoholism.
Acetaminophen; Aspirin; Diphenhydramine: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Acetaminophen; Caffeine; Dihydrocodeine: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
Acetaminophen; Caffeine; Pyrilamine: (Moderate) Concomitant use of opioid agonists with pyrilamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with pyrilamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Acetaminophen; Chlorpheniramine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Acetaminophen; Chlorpheniramine; Dextromethorphan: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Acetaminophen; Chlorpheniramine; Phenylephrine : (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Acetaminophen; Codeine: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
Acetaminophen; Dextromethorphan; Doxylamine: (Major) Reserve concomitant use of opioids and doxylamine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Acetaminophen; Diphenhydramine: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Acetaminophen; Hydrocodone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor patients for sedation and respiratory depression.
Acetaminophen; Pamabrom; Pyrilamine: (Moderate) Concomitant use of opioid agonists with pyrilamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with pyrilamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Acrivastine; Pseudoephedrine: (Major) Avoid coadministration of opioid agonists with acrivastine due to the risk of additive CNS depression.
Adagrasib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of adagrasib is necessary. If adagrasib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A substrate, and coadministration with strong CYP3A inhibitors like adagrasib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If adagrasib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Aldesleukin, IL-2: (Moderate) Aldesleukin, IL-2 may affect CNS function significantly. Therefore, psychotropic pharmacodynamic interactions could occur following concomitant administration of drugs with significant CNS or psychotropic activity such as opiate agonists. In addition, aldesleukin, IL-2, is a CYP3A4 inhibitor and may increase oxycodone plasma concentrations and related toxicities including potentially fatal respiratory depression. If therapy with both agents is necessary, monitor patients for an extended period and adjust oxycodone dosage as necessary.
Alfentanil: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Almotriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering oxycodone with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risks and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Alosetron: (Major) Patients taking medications that decrease GI motility may be at greater risk for serious complications from alosetron, like constipation, via a pharmacodynamic interaction. Constipation is the most frequently reported adverse effect with alosetron. Alosetron, if used with drugs such as opiate agonists, may seriously worsen constipation, leading to events such as GI obstruction/impaction or paralytic ileus.
Alprazolam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at one-third to one-half the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Alvimopan: (Moderate) Patients should not take alvimopan if they have received therapeutic doses of opiate agonists for more than seven consecutive days immediately before initiation of alvimopan therapy. Patients recently exposed to opioids are expected to be more sensitive to the effects of mu-opioid receptor antagonists and may experience adverse effects localized to the gastrointestinal tract such as abdominal pain, nausea, vomiting, and diarrhea.
Amide local anesthetics: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Amiloride: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when amiloride is administered with oxycodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when amiloride is administered with oxycodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Amiodarone: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of amiodarone is necessary. If amiodarone is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like amiodarone can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If amiodarone is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Amitriptyline: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Amlodipine: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like amlodipine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If amlodipine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Amlodipine; Atorvastatin: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like amlodipine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If amlodipine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Amlodipine; Benazepril: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like amlodipine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If amlodipine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Amlodipine; Celecoxib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like amlodipine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If amlodipine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Amlodipine; Olmesartan: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like amlodipine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If amlodipine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Amlodipine; Valsartan: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like amlodipine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If amlodipine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like amlodipine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If amlodipine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Amobarbital: (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Amoxapine: (Major) Concomitant use of opioid agonists with amoxapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with amoxapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Amoxicillin; Clarithromycin; Omeprazole: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of clarithromycin is necessary. If clarithromycin is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like clarithromycin can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If clarithromycin is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Amphetamine: (Moderate) If concomitant use of oxycodone and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Amphetamine; Dextroamphetamine: (Moderate) If concomitant use of oxycodone and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Amphetamines: (Moderate) If concomitant use of oxycodone and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Antacids: (Minor) Antacids can delay the oral absorption of acetaminophen, but the interactions are not likely to be clinically significant as the extent of acetaminophen absorption is not appreciably affected.
Apalutamide: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with apalutamide is necessary; consider increasing the dose of oxycodone as needed. If apalutamide is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and apalutamide is a strong CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Apomorphine: (Major) Concomitant use of opioid agonists with apomorphine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with apomorphine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Dopaminergic agents like apomorphine have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment.
Apraclonidine: (Minor) Theoretically, apraclonidine might potentiate the effects of CNS depressant drugs such as opiate agonists. Although no specific drug interactions were identified with systemic agents and apraclonidine during clinical trials, apraclonidine can cause dizziness and somnolence.
Aprepitant, Fosaprepitant: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of aprepitant/fosaprepitant is necessary. If aprepitant/fosaprepitant is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like aprepitant/fosaprepitant can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If aprepitant/fosaprepitant is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. Aprepitant, when administered as a 3-day oral regimen (125 mg/80 mg/80 mg), is a moderate CYP3A4 inhibitor. When administered as a single oral or single intravenous dose, the inhibitory effect of aprepitant on CYP3A4 is weak and did not result in a clinically significant increase in the AUC of a sensitive substrate. (Minor) Use caution if acetaminophen and aprepitant are used concurrently and monitor for an increase in acetaminophen-related adverse effects for several days after administration of a multi-day aprepitant regimen. Acetaminophen is a minor (10 to 15%) substrate of CYP3A4. Aprepitant, when administered as a 3-day oral regimen (125 mg/80 mg/80 mg), is a moderate CYP3A4 inhibitor and inducer and may increase plasma concentrations of acetaminophen. For example, a 5-day oral aprepitant regimen increased the AUC of another CYP3A4 substrate, midazolam (single dose), by 2.3-fold on day 1 and by 3.3-fold on day 5. After a 3-day oral aprepitant regimen, the AUC of midazolam (given on days 1, 4, 8, and 15) increased by 25% on day 4, and then decreased by 19% and 4% on days 8 and 15, respectively. As a single 125 mg or 40 mg oral dose, the inhibitory effect of aprepitant on CYP3A4 is weak, with the AUC of midazolam increased by 1.5-fold and 1.2-fold, respectively. After administration, fosaprepitant is rapidly converted to aprepitant and shares many of the same drug interactions. However, as a single 150 mg intravenous dose, fosaprepitant only weakly inhibits CYP3A4 for a duration of 2 days; there is no evidence of CYP3A4 induction. Fosaprepitant 150 mg IV as a single dose increased the AUC of midazolam (given on days 1 and 4) by approximately 1.8-fold on day 1; there was no effect on day 4. Less than a 2-fold increase in the midazolam AUC is not considered clinically important.
Aripiprazole: (Moderate) Concomitant use of opioid agonists with aripiprazole may cause excessive sedation and somnolence. Limit the use of opioid pain medications with aripiprazole to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Armodafinil: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with armodafinil is necessary; consider increasing the dose of oxycodone as needed. If armodafinil is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and armodafinil is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Articaine; Epinephrine: (Moderate) Coadministration of articaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue articaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Asciminib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of asciminib is necessary. If asciminib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A substrate, and coadministration with weak CYP3A inhibitors like asciminib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If asciminib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Asenapine: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Aspirin, ASA; Butalbital; Caffeine: (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Aspirin, ASA; Caffeine; Orphenadrine: (Major) Concomitant use of opioid agonists with orphenadrine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with orphenadrine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Reduce the initial oxycodone dosage by one-third to one-half when using the extended-release tablets.
Aspirin, ASA; Carisoprodol: (Major) Concomitant use of opioid agonists with carisoprodol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with carisoprodol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Reduce the initial oxycodone dosage by one-third to one-half when using the extended-release tablets.
Aspirin, ASA; Carisoprodol; Codeine: (Major) Concomitant use of opioid agonists with carisoprodol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with carisoprodol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Reduce the initial oxycodone dosage by one-third to one-half when using the extended-release tablets. (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
Aspirin, ASA; Citric Acid; Sodium Bicarbonate: (Minor) Antacids can delay the oral absorption of acetaminophen, but the interactions are not likely to be clinically significant as the extent of acetaminophen absorption is not appreciably affected.
Atazanavir: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of atazanavir is necessary. If atazanavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like atazanavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If atazanavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Atazanavir; Cobicistat: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of atazanavir is necessary. If atazanavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like atazanavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If atazanavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of cobicistat is necessary. If cobicistat is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like cobicistat can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If cobicistat is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Atenolol; Chlorthalidone: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Atropine: (Major) Reserve concomitant use of oxycodone and atropine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Atropine; Difenoxin: (Major) Reserve concomitant use of oxycodone and atropine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus. (Moderate) Concurrent administration of diphenoxylate/difenoxin with other opiate agonists can potentiate the CNS-depressant effects of diphenoxylate/difenoxin. Use caution during coadministration. In addition, diphenoxylate/difenoxin use may cause constipation; cases of severe GI reactions including toxic megacolon and adynamic ileus have been reported. Reduced GI motility when combined with opiate agonists may increase the risk of serious GI related adverse events.
Avacopan: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of avacopan is necessary. If avacopan is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A substrate, and coadministration with weak CYP3A inhibitors like avacopan can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If avacopan is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Azelastine: (Major) Concomitant use of opioid agonists with azelastine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with azelastine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Azelastine; Fluticasone: (Major) Concomitant use of opioid agonists with azelastine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with azelastine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Azilsartan; Chlorthalidone: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Baclofen: (Major) Concomitant use of opioid agonists with baclofen may cause excessive sedation and somnolence. Limit the use of opioid pain medications with baclofen to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Reduce the initial oxycodone dosage by one-third to one-half when using the extended-release tablets.
Barbiturates: (Major) Concomitant use of oxycodone with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concurrent use of oxycodone with a barbiturate may decrease oxycodone plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to opioid agonists. Monitor for signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of increased opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; oxycodone is a CYP3A4 substrate. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Belladonna; Opium: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and belladonna use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Belumosudil: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of belumosudil is necessary. If belumosudil is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A substrate, and coadministration with weak CYP3A inhibitors like belumosudil can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If belumosudil is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Belzutifan: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with belzutifan is necessary; consider increasing the dose of oxycodone as needed. If belzutifan is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A substrate and belzutifan is a weak CYP3A inducer. Concomitant use with CYP3A inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Benzhydrocodone; Acetaminophen: (Major) Concomitant use of opioid agonists with benzhydrocodone may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of benzhydrocodone with opioid agonists to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If benzhydrocodone is initiated in a patient taking oxycodone, reduce initial dosage and titrate to clinical response. If oxycodone is prescribed in a patient taking benzhydrocodone, use a lower initial dose of oxycodone and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Careful monitoring, particularly during treatment initiation and dose adjustment, is recommended during coadministration of benzhydrocodone and oxycodone because of the potential risk of serotonin syndrome. Discontinue benzhydrocodone if serotonin syndrome is suspected. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome.
Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Major) Avoid concomitant use of oxycodone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Benzphetamine: (Moderate) If concomitant use of oxycodone and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Benztropine: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and benztropine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Berotralstat: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of berotralstat is necessary. If berotralstat is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with moderate CYP3A4 inhibitors like berotralstat can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If berotralstat is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Bethanechol: (Moderate) Bethanechol facilitates intestinal and bladder function via parasympathomimetic actions. Opiate agonists impair the peristaltic activity of the intestine. Thus, these drugs can antagonize the beneficial actions of bethanechol on GI motility.
Bexarotene: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with bexarotene is necessary; consider increasing the dose of oxycodone as needed. If bexarotene is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and bexarotene is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Bicalutamide: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of bicalutamide is necessary. If bicalutamide is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like bicalutamide can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If bicalutamide is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Bismuth Subcitrate Potassium; Metronidazole; Tetracycline: (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Bismuth Subsalicylate: (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Bosentan: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with bosentan is necessary; consider increasing the dose of oxycodone as needed. If bosentan is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and bosentan is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Brexanolone: (Moderate) Concomitant use of brexanolone with CNS depressants like the opiate agonists may increase the likelihood or severity of adverse reactions related to sedation and additive CNS depression. Monitor for excessive sedation, dizziness, and a potential for loss of consciousness during brexanolone use.
Brexpiprazole: (Major) Concomitant use of opioid agonists with brexpiprazole may cause excessive sedation and somnolence. Limit the use of opioid pain medications with brexpiprazole to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Brigatinib: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with brigatinib is necessary; consider increasing the dose of oxycodone as needed. If brigatinib is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and brigatinib is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Brimonidine: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of opiate agonists.
Brimonidine; Brinzolamide: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of opiate agonists.
Brimonidine; Timolol: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of opiate agonists.
Brompheniramine: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Brompheniramine; Dextromethorphan; Phenylephrine: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Brompheniramine; Phenylephrine: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Brompheniramine; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Brompheniramine; Pseudoephedrine; Dextromethorphan: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Budesonide; Glycopyrrolate; Formoterol: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and glycopyrrolate use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Bumetanide: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a loop diuretic and oxycodone; increase the dosage of the loop diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone.
Bupivacaine Liposomal: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Bupivacaine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypot

ension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Bupivacaine; Epinephrine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Bupivacaine; Lidocaine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) Coadministration of lidocaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue lidocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Bupivacaine; Meloxicam: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Buprenorphine: (Major) Avoid concomitant use of oxycodone and a mixed opioid agonist/antagonist, such as buprenorphine, due to risk for reduced analgesic effect of oxycodone and/or precipitation of withdrawal symptoms.
Buprenorphine; Naloxone: (Major) Avoid concomitant use of oxycodone and a mixed opioid agonist/antagonist, such as buprenorphine, due to risk for reduced analgesic effect of oxycodone and/or precipitation of withdrawal symptoms.
Bupropion; Naltrexone: (Major) When naltrexone is used as adjuvant treatment of opiate or alcohol dependence, use is contraindicated in patients currently receiving opiate agonists. Naltrexone will antagonize the therapeutic benefits of opiate agonists and will induce a withdrawal reaction in patients with physical dependence to opioids. Also, patients should be opiate-free for at least 7-10 days prior to initiating naltrexone therapy. If there is any question of opioid use in the past 7-10 days and the patient is not experiencing opioid withdrawal symptoms and/or the urine is negative for opioids, a naloxone challenge test needs to be performed. If a patient receives naltrexone, and an opiate agonist is needed for an emergency situation, large doses of opiate agonists may ultimately overwhelm naltrexone antagonism of opiate receptors. Immediately following administration of exogenous opiate agonists, the opiate plasma concentration may be sufficient to overcome naltrexone competitive blockade, but the patient may experience deeper and more prolonged respiratory depression and thus, may be in danger of respiratory arrest and circulatory collapse. Non-receptor mediated actions like facial swelling, itching, generalized erythema, or bronchoconstriction may occur presumably due to histamine release. A rapidly acting opiate agonist is preferred as the duration of respiratory depression will be shorter. Patients receiving naltrexone may also experience opiate side effects with low doses of opiate agonists. If the opiate agonist is taken in such a way that high concentrations remain in the body beyond the time naltrexone exerts its therapeutic effects, serious side effects may occur.
Buspirone: (Moderate) Concomitant use of CNS depressants, such as buspirone, can potentiate the effects of oxycodone, which may potentially lead to respiratory depression, CNS depression, sedation, or hypotensive responses. If concurrent use of codeine and buspirone is imperative, reduce the dose of one or both drugs.
Busulfan: (Moderate) Use busulfan and acetaminophen together with caution; concomitant use may result in increased busulfan levels and increased busulfan toxicity. Separating the administration of these drugs may mitigate this interaction; avoid giving acetaminophen within 72 hours prior to or concurrently with busulfan. Busulfan is metabolized in the liver through conjugation with glutathione; acetaminophen decreases glutathione levels in the blood and tissues and may reduce the clearance of busulfan.
Butabarbital: (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Butalbital; Acetaminophen: (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Butalbital; Acetaminophen; Caffeine: (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Butalbital; Acetaminophen; Caffeine; Codeine: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Butalbital; Aspirin; Caffeine; Codeine: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Butorphanol: (Major) Avoid the concomitant use of butorphanol and opiate agonists, such as oxycodone. Butorphanol is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce analgesic effects. Butorphanol may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of butorphanol with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
Calcium, Magnesium, Potassium, Sodium Oxybates: (Major) Concomitant use of opioid agonists with sodium oxybate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with sodium oxybate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Cannabidiol: (Moderate) Concomitant use of opioid agonists with cannabidiol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with cannabidiol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Capsaicin; Metaxalone: (Major) Concomitant use of opioid agonists with metaxalone may cause respiratory depression, profound sedation, and death. Limit the use of opioid pain medication with metaxalone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Consider prescribing naloxone for the emergency treatment of opioid overdose. Concomitant use of metaxalone and opioid agonists increases the risk for serotonin syndrome. Avoid concomitant use if possible and monitor for serotonin syndrome if use is necessary.
Captopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Carbamazepine: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with carbamazepine is necessary; consider increasing the dose of oxycodone as needed. If carbamazepine is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and carbamazepine is a strong CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. (Minor) Carbamazepine may potentially accelerate the hepatic metabolism of acetaminophen. In addition, due to enzyme induction, carbamazepine may increase the risk for acetaminophen-induced hepatotoxicity via generation of a greater percentage of acetaminophen's hepatotoxic metabolite, NAPQI. Clinicians should be alert to decreased effect of acetaminophen. Dosage adjustments may be necessary, and closer monitoring of clinical and/or adverse effects is warranted.
Carbinoxamine: (Moderate) Concomitant use of opioid agonists with carbinoxamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with carbinoxamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Cariprazine: (Moderate) Concomitant use of opioid agonists like oxycodone with cariprazine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with cariprazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Carisoprodol: (Major) Concomitant use of opioid agonists with carisoprodol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with carisoprodol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Reduce the initial oxycodone dosage by one-third to one-half when using the extended-release tablets.
Celecoxib; Tramadol: (Major) Concomitant use of tramadol with oxycodone may cause respiratory depression, hypotension, profound sedation, and death and increase the risk for serotonin syndrome, seizures, and anticholinergic effects. Limit the use of opioid pain medications to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor patients for serotonin syndrome if concomitant use is necessary, particularly during treatment initiation and dosage increases. If serotonin syndrome occurs, consider discontinuation of therapy. The concomitant use of serotonergic drugs increases the risk of serotonin syndrome. Monitor for signs of urinary retention or reduced gastric motility during coadministration. The concomitant use of anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Cenobamate: (Moderate) Concomitant use of oxycodone with cenobamate may cause excessive sedation and somnolence. Limit the use of oxycodone with cenobamate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Additionally, monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with cenobamate is necessary; consider increasing the dose of oxycodone as needed. If cenobamate is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and cenobamate is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Ceritinib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of ceritinib is necessary. If ceritinib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with strong CYP3A4 inhibitors like ceritinib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If ceritinib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Cetirizine: (Major) Reserve concomitant use of opioids and cetirizine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Cetirizine; Pseudoephedrine: (Major) Reserve concomitant use of opioids and cetirizine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Charcoal: (Minor) Activated charcoal binds many drugs within the gut. Administering charcoal dietary supplements at the same time as a routine acetaminophen dosage would be expected to interfere with the analgesic and antipyretic efficacy of acetaminophen. Charcoal is mostly used in the setting of acetaminophen overdose; however, patients should never try to treat an acetaminophen overdose with charcoal dietary supplements. Advise patients to get immediate medical attention for an acetaminophen overdose.
Chlophedianol; Dexbrompheniramine: (Moderate) Concomitant use of opioid agonists with dexbrompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexbrompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with dexchlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexchlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chloramphenicol: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of chloramphenicol is necessary. If chloramphenicol is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like chloramphenicol can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If chloramphenicol is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Chlorcyclizine: (Moderate) Concomitant use of opioid agonists with chlorcyclizine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorcyclizine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlordiazepoxide: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Chlordiazepoxide; Amitriptyline: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Chlordiazepoxide; Clidinium: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Chloroprocaine: (Moderate) Coadministration of chloroprocaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue chloroprocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Minor) Due to the CNS depression potential of all local anesthetics, they should be used with caution with other agents that can cause respiratory depression, such as opiate agonists.
Chlorothiazide: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Chlorpheniramine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Codeine: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Dextromethorphan: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Hydrocodone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor patients for sedation and respiratory depression. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Phenylephrine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpromazine: (Major) Concomitant use of oxycodone with phenothiazines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with phenothiazines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor for signs of hypotension after starting or titrating the dosage of oxycodone. There is an increased risk of severe hypotension in patients whose ability to maintain blood pressure has already been compromised by concurrent administration of phenothiazines.
Chlorthalidone: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Chlorthalidone; Clonidine: (Major) Concomitant use of opioid agonists with clonidine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with clonidine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Chlorzoxazone: (Major) Concomitant use of opioid agonists with chlorzoxazone may cause excessive sedation and somnolence. Limit the use of opioid pain medications with chlorzoxazone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Reduce the initial oxycodone dosage by one-third to one-half when using the extended-release tablets.
Cholestyramine: (Moderate) Cholestyramine has been shown to decrease the absorption of acetaminophen by roughly 60%. Experts have recommended that cholestyramine not be given within 1 hour of acetaminophen if analgesic or antipyretic effect is to be achieved.
Choline Salicylate; Magnesium Salicylate: (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. Although salicylates are rarely associated with nephrotoxicity, high-dose, chronic administration of salicylates combined other analgesics, including acetaminophen, significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Additive hepatic toxicity may occur, especially in combined overdose situations. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy.
Cimetidine: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of cimetidine is necessary. If cimetidine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like cimetidine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If cimetidine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Ciprofloxacin: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of ciprofloxacin is necessary. If ciprofloxacin is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like ciprofloxacin can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If ciprofloxacin is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Citalopram: (Moderate) The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment. Discontinue the suspected drugs if serotonin syndrome is suspected and manage cliinically. There has been a case report of possible serotonin syndrome caused by the combination of oxycodone and selective serotonin reuptake inhbitors (SSRIs).
Clarithromycin: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of clarithromycin is necessary. If clarithromycin is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like clarithromycin can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If clarithromycin is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Clemastine: (Moderate) Concomitant use of opioid agonists with clemastine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with clemastine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Clobazam: (Major) Concomitant use of oxycodone with clobazam may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with clobazam to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concurrent use of oxycodone with clobazam may decrease oxycodone plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to opioid agonists. Monitor for signs of opioid withdrawal. Discontinuation of clobazam may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Clobazam induces CYP3A4; oxycodone is a CYP3A4 substrate.
Clomipramine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Clonazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Clonidine: (Major) Concomitant use of opioid agonists with clonidine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with clonidine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Clopidogrel: (Moderate) Coadministration of opioid agonists, such as oxycodone, delay and reduce the absorption of clopidogrel resulting in reduced exposure to active metabolites and diminished inhibition of platelet aggregation. Consider the use of a parenteral antiplatelet agent in acute coronary syndrome patients requiring an opioid agonist. Coadministration of intravenous morphine decreased the Cmax and AUC of clopidogrel's active metabolites by 34%. Time required for maximal inhibition of platelet aggregation (median 3 hours vs. 1.25 hours) was significantly delayed; times up to 5 hours were reported. Inhibition of platelet plug formation was delayed and residual platelet aggregation was significantly greater 1 to 4 hours after morphine administration.
Clorazepate: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Clozapine: (Moderate) Concomitant use of oxycodone with other CNS depressants, such as clozapine, can lead to additive respiratory depression, hypotension, profound sedation, or coma. In addition, this drug combination may result in additive effects on intestinal motility or bladder function. Prior to concurrent use of oxycodone in patients taking clozapine, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Oxycodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate oxycodone at one-third to one-half the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider using a lower clozapine dose. Monitor patients for sedation and respiratory depression.
Cobicistat: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of cobicistat is necessary. If cobicistat is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like cobicistat can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If cobicistat is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Codeine: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
Codeine; Guaifenesin: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
Codeine; Guaifenesin; Pseudoephedrine: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
Codeine; Phenylephrine; Promethazine: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression. (Major) Concomitant use of oxycodone with phenothiazines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with phenothiazines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor for signs of hypotension after starting or titrating the dosage of oxycodone. There is an increased risk of severe hypotension in patients whose ability to maintain blood pressure has already been compromised by concurrent administration of phenothiazines.
Codeine; Promethazine: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression. (Major) Concomitant use of oxycodone with phenothiazines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with phenothiazines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor for signs of hypotension after starting or titrating the dosage of oxycodone. There is an increased risk of severe hypotension in patients whose ability to maintain blood pressure has already been compromised by concurrent administration of phenothiazines.
COMT inhibitors: (Major) Concomitant use of opioid agonists with COMT inhibitors may cause excessive sedation and somnolence. Limit the use of opioid pain medications with COMT inhibitors to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. COMT inhibitors have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment.
Conivaptan: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of conivaptan is necessary. If conivaptan is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A substrate, and coadministration with moderate CYP3A inhibitors like conivaptan can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If conivaptan is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Crizotinib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of crizotinib is necessary. If crizotinib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like crizotinib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If crizotinib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Crofelemer: (Moderate) Pharmacodynamic interactions between crofelemer and opiate agonists are theoretically possible. Crofelemer does not affect GI motility mechanisms, but does have antidiarrheal effects. Patients taking medications that decrease GI motility, such as opiate agonists, may be at greater risk for serious complications from crofelemer, such as constipation with chronic use. Use caution and monitor GI symptoms during coadministration.
Cyclizine: (Moderate) Concomitant use of opioid agonists with cyclizine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with cyclizine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Cyclobenzaprine: (Major) Concomitant use of oxycodone with cyclobenzaprine may cause respiratory depression, hypotension, profound sedation, and death and increase the risk for serotonin syndrome and anticholinergic effects. Limit the use of opioid pain medications with cyclobenzaprine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor patients for serotonin syndrome if concomitant use is necessary, particularly during treatment initiation and dosage increases. If serotonin syndrome occurs, consider discontinuation of therapy. The concomitant use of serotonergic drugs increases the risk of serotonin syndrome. Monitor for signs of urinary retention or reduced gastric motility during coadministration. The concomitant use of anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Cyclosporine: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of cyclosporine is necessary. If cyclosporine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like cyclosporine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If cyclosporine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Cyproheptadine: (Moderate) Concomitant use of opioid agonists with cyproheptadine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with cyproheptadine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Dabrafenib: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with dabrafenib is necessary; consider increasing the dose of oxycodone as needed. If dabrafenib is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and dabrafenib is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Dalfopristin; Quinupristin: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of dalfopristin; quinupristin is necessary. If dalfopristin; quinupristin is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like dalfopristin; quinupristin can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If dalfopristin; quinupristin is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Danazol: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of danazol is necessary. If danazol is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like danazol can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If danazol is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Dantrolene: (Major) Concomitant use of opioid agonists with dantrolene may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid agonists with dantrolene to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Reduce the initial oxycodone dosage by one-third to one-half when using the extended-release tablets.
Dapsone: (Moderate) Coadministration of dapsone with acetaminophen may increase the risk of developing methemoglobinemia. Advise patients to discontinue treatment and seek immediate medical attention with any signs or symptoms of methemoglobinemia.
Daridorexant: (Major) Concomitant use of opiate agonists with daridorexant may cause excessive sedation and somnolence. Limit the use of opiates with daridorexant to only patients for whom alter native treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Avoid prescribing cough medicines that contain opiates in patients taking daridorexant.
Darifenacin: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when darifenacin, an anticholinergic drug for overactive bladder, is used with opiate agonists. The concomitant use of these drugs together may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. Both agents may also cause drowsiness or blurred vision, and patients should use care in driving or performing other hazardous tasks until the effects of the drugs are known.
Darunavir: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of darunavir is necessary. If darunavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like darunavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If darunavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Darunavir; Cobicistat: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of cobicistat is necessary. If cobicistat is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like cobicistat can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If cobicistat is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of darunavir is necessary. If darunavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like darunavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If darunavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of cobicistat is necessary. If cobicistat is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like cobicistat can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If cobicistat is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of darunavir is necessary. If darunavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like darunavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If darunavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Deferasirox: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with deferasirox is necessary; consider increasing the dose of oxycodone as needed. If deferasirox is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and deferasirox is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Delavirdine: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of delavirdine is necessary. If delavirdine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like delavirdine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If delavirdine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Desflurane: (Moderate) Concurrent use with opiate agonists can decrease the minimum alveolar concentration (MAC) of desflurane needed to produce anesthesia.
Desipramine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Desmopressin: (Major) Additive hyponatremic effects may be seen in patients treated with desmopressin and drugs associated with water intoxication, hyponatremia, or SIADH including opiate agonists. Use combination with caution, and monitor patients for signs and symptoms of hyponatremia.
Desogestrel; Ethinyl Estradiol: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Desvenlafaxine: (Moderate) If concomitant use of oxycodone and serotonin norepinephrine reuptake inhibitors is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Deutetrabenazine: (Major) Concomitant use of opiate agonists with deutetrabenazine may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with deutetrabenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If extended-release oxycodone or oxycodone; naloxone is initiated in a patient taking a barbiturate, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage and titrate to clinical response; reduced initial doses of immediate-release oxycodone, oxycodone; naltrexone, aspirin, ASA; oxycodone, and ibuprofen; oxycodone are also recommended. If a decision is made to start treatment with acetaminophen; oxycodone extended-release tabIets, start with 1 tablet every 12 hours. If a barbitruate is prescribed for a patient taking an opioid agonist, use a lower initial dose of the barbitruate and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Dexamethasone: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with dexamethasone is necessary; consider increasing the dose of oxycodone as needed. If dexamethasone is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A substrate and dexamethasone is a weak CYP3A inducer. Concomitant use with CYP3A inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Dexbrompheniramine: (Moderate) Concomitant use of opioid agonists with dexbrompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexbrompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Dexbrompheniramine; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with dexbrompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexbrompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Dexchlorpheniramine: (Moderate) Concomitant use of opioid agonists with dexchlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexchlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with dexchlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexchlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Dexmedetomidine: (Moderate) Concomitant use of opioid agonists with dexmedetomidine may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with dexmedetomidine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Dextroamphetamine: (Moderate) If concomitant use of oxycodone and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Dextromethorphan; Diphenhydramine; Phenylephrine: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Diazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. If parental diazepam is used with an opiate agonist, reduce the opiate agonist dosage by at least 1/3. Educate patients about the risks and symptoms of respiratory depression and sedation.
Dicyclomine: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and dicyclomine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Difelikefalin: (Major) Avoid concomitant use of opioids and other CNS depressants, such as difelikefalin. Concomitant use can increase the risk of respiratory depression, hypotension, profound sedation, and death. If alternate treatment options are inadequate and coadministration is necessary, limit dosages and durations to the minimum required, monitor patients closely for respiratory depression and sedation, and consider prescribing naloxone for the emergency treatment of opioid overdose.
Diflunisal: (Moderate) Acetaminophen plasma concentrations can increase by approximately 50% following administration of diflunisal. Acetaminophen has no effect on diflunisal concentrations. Acetaminophen in high doses has been associated with severe hepatotoxic reactions; therefore, caution should be exercised when using these agents concomitantly.
Diltiazem: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of diltiazem is necessary. If diltiazem is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like diltiazem can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If diltiazem is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Dimenhydrinate: (Moderate) Concomitant use of opioid agonists with dimenhydrinate may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dimenhydrinate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Diphenhydramine: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Diphenhydramine; Ibuprofen: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Diphenhydramine; Naproxen: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Diphenhydramine; Phenylephrine: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Diphenoxylate; Atropine: (Major) Reserve concomitant use of oxycodone and atropine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus. (Moderate) Concurrent administration of diphenoxylate/difenoxin with other opiate agonists can potentiate the CNS-depressant effects of diphenoxylate/difenoxin. Use caution during coadministration. In addition, diphenoxylate/difenoxin use may cause constipation; cases of severe GI reactions including toxic megacolon and adynamic ileus have been reported. Reduced GI motility when combined with opiate agonists may increase the risk of serious GI related adverse events.
Dolasetron: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering oxycodone with serotonin-receptor antagonists. The development of serotonin syndrome has been reported with 5-HT3 receptor antagonists, mostly when used in combination with other serotonergic medications. Inform patients taking this combination of the possible increased risks and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Doxepin: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Doxylamine: (Major) Reserve concomitant use of opioids and doxylamine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Doxylamine; Pyridoxine: (Major) Reserve concomitant use of opioids and doxylamine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Dronabinol: (Moderate) Concomitant use of opioid agonists with dronabinol may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dronabinol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Dronedarone: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of dronedarone is necessary. If dronedarone is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like dronedarone can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If dronedarone is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Droperidol: (Major) Concomitant use of opioid agonists with droperidol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with droperidol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Drospirenone; Ethinyl Estradiol: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Drospirenone; Ethinyl Estradiol; Levomefolate: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Duloxetine: (Moderate) If concomitant use of oxycodone and serotonin norepinephrine reuptake inhibitors is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Duvelisib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of duvelisib is necessary. If duvelisib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like duvelisib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If duvelisib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Efavirenz: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with efavirenz is necessary; consider increasing the dose of oxycodone as needed. If efavirenz is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and efavirenz is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. (Minor) Drugs that induce the hepatic isoenzymes CYP2E1 and CYP1A2, such as efavirenz, may potentially increase the risk for acetaminophen-induced hepatotoxicity via generation of a greater percentage of acetaminophen's hepatotoxic metabolite, NAPQI. Also, the analgesic activity of acetaminophen may be reduced.
Efavirenz; Emtricitabine; Tenofovir Disoproxil Fumarate: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with efavirenz is necessary; consider increasing the dose of oxycodone as needed. If efavirenz is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and efavirenz is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. (Minor) Drugs that induce the hepatic isoenzymes CYP2E1 and CYP1A2, such as efavirenz, may potentially increase the risk for acetaminophen-induced hepatotoxicity via generation of a greater percentage of acetaminophen's hepatotoxic metabolite, NAPQI. Also, the analgesic activity of acetaminophen may be reduced.
Efavirenz; Lamivudine; Tenofovir Disoproxil Fumarate: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with efavirenz is necessary; consider increasing the dose of oxycodone as needed. If efavirenz is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and efavirenz is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. (Minor) Drugs that induce the hepatic isoenzymes CYP2E1 and CYP1A2, such as efavirenz, may potentially increase the risk for acetaminophen-induced hepatotoxicity via generation of a greater percentage of acetaminophen's hepatotoxic metabolite, NAPQI. Also, the analgesic activity of acetaminophen may be reduced.
Elagolix: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with elagolix is necessary; consider increasing the dose of oxycodone as needed. If elagolix is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Elagolix; Estradiol; Norethindrone acetate: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with elagolix is necessary; consider increasing the dose of oxycodone as needed. If elagolix is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Elbasvir; Grazoprevir: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of grazoprevir is necessary. If grazoprevir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like grazoprevir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If grazoprevir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Eletriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering oxycodone with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risks and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Elexacaftor; tezacaftor; ivacaftor: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of ivacaftor is necessary. If ivacaftor is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like ivacaftor can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If ivacaftor is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Eltrombopag: (Moderate) Eltrombopag is a UDP-glucuronyltransferase inhibitor. Acetaminophen is a substrate of UDP-glucuronyltransferases. The significance or effect of this interaction is not known; however, elevated concentrations of acetaminophen are possible. Monitor patients for adverse reactions if these drugs are coadministered.
Eluxadoline: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of eluxadoline is necessary. If eluxadoline is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like eluxadoline can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If eluxadoline is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Alafenamide: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of cobicistat is necessary. If cobicistat is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like cobicistat can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If cobicistat is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of cobicistat is necessary. If cobicistat is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like cobicistat can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If cobicistat is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Enzalutamide: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with enzalutamide is necessary; consider increasing the dose of oxycodone as needed. If enzalutamide is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and enzalutamide is a strong CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Erythromycin: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of erythromycin is necessary. If erythromycin is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like erythromycin can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If erythromycin is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Escitalopram: (Moderate) The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment. Discontinue the suspected drugs if serotonin syndrome is suspected and manage cliinically. There has been a case report of possible serotonin syndrome caused by the combination of oxycodone and selective serotonin reuptake inhbitors (SSRIs).
Esketamine: (Major) Concomitant use of opioid agonists with esketamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with esketamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Patients who have received a dose of esketamine should be instructed not to drive or engage in other activities requiring complete mental alertness until the next day after a restful sleep. Educate patients about the risks and symptoms of excessive CNS depression.
Eslicarbazepine: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with eslicarbazepine is necessary; consider increasing the dose of oxycodone as needed. If eslicarbazepine is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and eslicarbazepine is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Estazolam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Eszopiclone: (Moderate) Concomitant use of oxycodone with eszopiclone may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. In addition, the risk of next-day psychomotor impairment is increased during co-administration of eszopiclone and other CNS depressants, which may decrease the ability to perform tasks requiring full mental alertness such as driving. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If eszopiclone is used concurrently with oxycodone, a reduced dosage of oxycodone and/or eszopiclone is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
Ethacrynic Acid: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a loop diuretic and oxycodone; increase the dosage of the loop diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone.
Ethanol: (Major) Advise patients to avoid alcohol consumption while taking opioids. Alcohol consumption may result in additive CNS depression and may increase the risk for opioid overdose. Consider the patient's use of alcohol when prescribing opioid medications. If the patient is unlikely to be compliant with avoiding alcohol, consider prescribing naloxone especially if additional risk factors for opioid overdose are present. (Major) The risk of developing hepatotoxicity from acetaminophen appears to be increased in patients who regularly consume alcohol. Patients who drink more than 3 alcohol-containing drinks a day and take acetaminophen are at increased risk of developing hepatotoxicity. Acute or chronic alcohol use increases acetaminophen-induced hepatotoxicity by inducing CYP2E1 leading to increased formation of the hepatotoxic metabolite of acetaminophen. Also, chronic alcohol use can deplete liver glutathione stores. Administration of acetaminophen should be limited or avoided altogether in patients with alcoholism or patients who consume alcohol regularly.
Ethinyl Estradiol; Norelgestromin: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Ethinyl Estradiol; Norethindrone Acetate: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Ethinyl Estradiol; Norgestrel: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Ethynodiol Diacetate; Ethinyl Estradiol: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Etomidate: (Major) Concomitant use of oxycodone with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Etonogestrel; Ethinyl Estradiol: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Etravirine: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with etravirine is necessary; consider increasing the dose of oxycodone as needed. If etravirine is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and etravirine is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Everolimus: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of everoliumus is necessary. If everoliumus is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like everoliumus can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If everoliumus is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Exenatide: (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
Fedratinib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of fedratinib is necessary. If fedratinib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with moderate CYP3A4 inhibitors like fedratinib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If fedratinib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Fenfluramine: (Moderate) Concomitant use of opioid agonists with fenfluramine may cause excessive sedation and somnolence. Limit the use of opioid agonists with fenfluramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Fentanyl: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
Fesoterodine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when fesoterodine, an anticholinergic drug for overactive bladder is used with opiate agonists. The concomitant use of these drugs together may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. Both agents may also cause drowsiness or blurred vision, and patients should use care in driving or performing other hazardous tasks until the effects of the drugs are known.
Flavoxate: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and flavoxate use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Flibanserin: (Moderate) Concomitant use of opioid agonists with flibanserin may cause excessive sedation and somnolence. Limit the use of opioid pain medication with flibanserin to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Fluconazole: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of fluconazole is necessary. If fluconazole is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like fluconazole can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If fluconazole is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Fluoxetine: (Moderate) If concomitant use of oxycodone and fluoxetine is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Fluphenazine: (Major) Concomitant use of oxycodone with phenothiazines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with phenothiazines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor for signs of hypotension after starting or titrating the dosage of oxycodone. There is an increased risk of severe hypotension in patients whose ability to maintain blood pressure has already been compromised by concurrent administration of phenothiazines.
Flurazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Fluvoxamine: (Major) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression, sedation, and serotonin syndrome if concurrent use of fluvoxamine is necessary. If fluvoxamine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system like fluvoxamine has resulted in serotonin syndrome. In addition, oxycodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like fluvoxamine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If fluvoxamine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Food: (Major) Advise patients to avoid cannabis use while taking CNS depressants due to the risk for additive CNS depression and potential for other cognitive adverse reactions.
Fosamprenavir: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of fosamprenavir is necessary. If fosamprenavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A substrate, and coadministration with moderate CYP3A inhibitors like fosamprenavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If fosamprenavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Fosphenytoin: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with fosphenytoin is necessary; consider increasing the dose of oxycodone as needed. If fosphenytoin is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and fosphenytoin is a strong CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Fostamatinib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of fostamatinib is necessary. If fostamatinib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like fostamatinib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If fostamatinib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Frovatriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering oxycodone with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risks and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Furosemide: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a loop diuretic and oxycodone; increase the dosage of the loop diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone.
Gabapentin: (Major) Concomitant use of opioid agonists with gabapentin may cause excessive sedation, somnolence, and respiratory depression. Limit the use of opioid pain medications with gabapentin to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, initiate gabapentin at the lowest recommended dose and monitor patients for symptoms of respiratory depression and sedation. Use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and respiratory depression.
Gefitinib: (Moderate) Monitor for an increased incidence of oxycodone-related adverse effects if gefitinib and oxycodone are used concomitantly. At high concentrations, gefitinib is an inhibitor of CYP2D6, which is partially responsible for the metabolism of oxycodone. As < 15% of the total administered dose is metabolized by CYP2D6 to oxymorphone, concurrent use of some agents that inhibit CYP2D6 has not been shown to result in clinically significant interactions. However, potent inhibitors of CYP2D6, such as ritonavir, may potentially increase the effects of oxycodone. In patients with solid tumors, exposure to metoprolol, another CYP2D6 substrate, was increased by 30% when given on day 15 of gefitinib dosing (500 mg daily); the effect of gefitinib on CYP2D6-dependent drugs is only likely to be clinically relevant when given with CYP2D6 substrates with a narrow therapeutic index or that are individually dose titrated such as oxycodone.
General anesthetics: (Major) Concomitant use of oxycodone with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Glycerol Phenylbutyrate: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with glycerol phenylbutyrate is necessary; consider increasing the dose of oxycodone as needed. If glycerol phenylbutyrate is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A substrate and glycerol phenylbutyrate is a weak CYP3A inducer. Concomitant use with CYP3A inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Glycopyrrolate: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and glycopyrrolate use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Glycopyrrolate; Formoterol: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and glycopyrrolate use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Granisetron: (Moderate) Because of the potential risk and seve rity of serotonin syndrome, caution should be observed when administering oxycodone with serotonin-receptor antagonists. The development of serotonin syndrome has been reported with 5-HT3 receptor antagonists, mostly when used in combination with other serotonergic medications. Inform patients taking this combination of the possible increased risks and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Grapefruit juice: (Moderate) Patients should not significantly alter their intake of grapefruit or grapefruit juice duing therapy with oxycodone. Grapefruit juice, a strong CYP3A4 inhibitor, may increase plasma concentrations of oxycodone, a CYP3A4 substrate. This may increase or prolong oxycodone-related toxicities including respiratory depression. Advise patients accordingly; patient monitoring and dosage adjustments may be necessary if grapefruit is consumed regularly.
Guaifenesin; Hydrocodone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor patients for sedation and respiratory depression.
Guanfacine: (Moderate) Concomitant use of opioid agonists with guanfacine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with guanfacine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Haloperidol: (Moderate) Haloperidol can potentiate the actions of other CNS depressants such as opiate agonists. Caution should be exercised with simultaneous use of these agents due to potential excessive CNS effects.
Homatropine; Hydrocodone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor patients for sedation and respiratory depression. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and homatropine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Hydantoins: (Minor) Hydantoin anticonvulsants induce hepatic microsomal enzymes and may increase the metabolism of other drugs, leading to reduced efficacy of medications like acetaminophen. In addition, the risk of hepatotoxicity from acetaminophen may be increased with the chronic dosing of acetaminophen along with phenytoin. Adhere to recommended acetaminophen dosage limits. Acetaminophen-related hepatotoxicity has occurred clinically with the concurrent use of acetaminophen 1300 mg to 6200 mg daily and phenytoin. Acetaminophen cessation led to serum transaminase normalization within 2 weeks.
Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Hydrochlorothiazide, HCTZ; Methyldopa: (Moderate) Concomitant use of opioid agonists with methyldopa may cause excessive sedation and somnolence. Limit the use of opioid pain medication with methyldopa to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Hydrocodone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor patients for sedation and respiratory depression.
Hydrocodone; Ibuprofen: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor patients for sedation and respiratory depression.
Hydrocodone; Pseudoephedrine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor patients for sedation and respiratory depression.
Hydromorphone: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Hydroxyzine: (Major) Concomitant use of opioid agonists with hydroxyzine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with hydroxyzine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Hyoscyamine: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate: (Major) Avoid concomitant use of oxycodone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Idelalisib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of idelalisib is necessary. If idelalisib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like idelalisib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If idelalisib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Iloperidone: (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Imatinib: (Major) Imatinib, STI-571 may affect the metabolism of acetaminophen. In vitro, imatinib was found to inhibit acetaminophen O-glucuronidation at therapeutic levels. Therefore, systemic exposure to acetaminophen is expected to be increased with coadministration of imatinib. Chronic acetaminophen therapy should be avoided in patients receiving imatinib. (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of imatinib is necessary. If imatinib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like imatinib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If imatinib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Imipramine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Indacaterol; Glycopyrrolate: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and glycopyrrolate use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Indapamide: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when indapamide is administered with oxycodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Indinavir: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of indinavir is necessary. If indinavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like indinavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If indinavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Insulin Glargine; Lixisenatide: (Minor) When 1,000 mg acetaminophen was given 1 or 4 hours after 10 mcg lixisenatide, the AUC was not significantly changed, but the acetaminophen Cmax was decreased by 29% and 31%, respectively and median Tmax was delayed by 2 and 1.75 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before lixisenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying) and the clinical impact has not been assessed. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least one hour prior to lixisenatide subcutaneous injection.
Irbesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Isavuconazonium: (Moderate) Concomitant use of isavuconazonium with acetaminophen may result in increased serum concentrations of acetaminophen. Acetaminophen is a substrate of the hepatic isoenzyme CYP3A4; isavuconazole, the active moiety of isavuconazonium, is a moderate inhibitor of this enzyme. Caution and close monitoring are advised if these drugs are used together. (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of isavuconazonium is necessary. If isavuconazonium is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like isavuconazonium can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If isavuconazonium is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Isoflurane: (Major) Concomitant use of oxycodone with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Isoniazid, INH: (Major) Agents which induce the hepatic isoenzyme CYP2E1, such as isoniazid, may potentially increase the risk for acetaminophen-induced hepatotoxicity via generation of a greater percentage of acetaminophen's hepatotoxic metabolites. The combination of isoniazid and acetaminophen has caused severe hepatotoxicity in at least one patient; studies in rats have demonstrated that pre-treatment with isoniazid potentiates acetaminophen hepatotoxicity. (Major) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression, sedation, and serotonin syndrome if concurrent use of isoniazid is necessary. If isoniazid is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system like isoniazid has resulted in serotonin syndrome. In addition, oxycodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like isoniazid can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If isoniazid is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Isoniazid, INH; Pyrazinamide, PZA; Rifampin: (Major) Agents which induce the hepatic isoenzyme CYP2E1, such as isoniazid, may potentially increase the risk for acetaminophen-induced hepatotoxicity via generation of a greater percentage of acetaminophen's hepatotoxic metabolites. The combination of isoniazid and acetaminophen has caused severe hepatotoxicity in at least one patient; studies in rats have demonstrated that pre-treatment with isoniazid potentiates acetaminophen hepatotoxicity. (Major) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression, sedation, and serotonin syndrome if concurrent use of isoniazid is necessary. If isoniazid is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system like isoniazid has resulted in serotonin syndrome. In addition, oxycodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like isoniazid can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If isoniazid is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. (Moderate) Concomitant use of acetaminophen with rifampin may increase the known risk of hepatotoxicity in relation to each drug. Severe hepatic dysfunction including fatalities were reported in patients taking rifampin with other hepatotoxic agents. (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with rifampin is necessary; consider increasing the dose of oxycodone as needed. If rifampin is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and rifampin is a strong CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Isoniazid, INH; Rifampin: (Major) Agents which induce the hepatic isoenzyme CYP2E1, such as isoniazid, may potentially increase the risk for acetaminophen-induced hepatotoxicity via generation of a greater percentage of acetaminophen's hepatotoxic metabolites. The combination of isoniazid and acetaminophen has caused severe hepatotoxicity in at least one patient; studies in rats have demonstrated that pre-treatment with isoniazid potentiates acetaminophen hepatotoxicity. (Major) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression, sedation, and serotonin syndrome if concurrent use of isoniazid is necessary. If isoniazid is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system like isoniazid has resulted in serotonin syndrome. In addition, oxycodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like isoniazid can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If isoniazid is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. (Moderate) Concomitant use of acetaminophen with rifampin may increase the known risk of hepatotoxicity in relation to each drug. Severe hepatic dysfunction including fatalities were reported in patients taking rifampin with other hepatotoxic agents. (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with rifampin is necessary; consider increasing the dose of oxycodone as needed. If rifampin is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and rifampin is a strong CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Istradefylline: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of istradefylline 40 mg daily is necessary. If istradefylline is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate; istradefylline administered as 40 mg daily is a weak CYP3A4 inhibitor. Coadministration can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If istradefylline is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. There was no effect on drug exposure when istradefylline 20 mg daily was coadministered with a sensitive CYP3A4 substrate.
Itraconazole: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of itraconazole is necessary. If itraconazole is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like itraconazole can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If itraconazole is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Ivacaftor: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of ivacaftor is necessary. If ivacaftor is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like ivacaftor can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If ivacaftor is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Ketamine: (Major) Concomitant use of oxycodone with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Ketoconazole: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of ketoconazole is necessary. If ketoconazole is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like ketoconazole can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If ketoconazole is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Lamivudine, 3TC; Zidovudine, ZDV: (Minor) Both acetaminophen and zidovudine, ZDV undergo glucuronidation. Competition for the metabolic pathway is thought to have caused a case of acetaminophen-related hepatotoxicity. This interaction may be more clinically significant in patients with depleted glutathione stores, such as patients with acquired immunodeficiency syndrome, poor nutrition, or alcoholism.
Lamotrigine: (Moderate) Monitor patients for possible loss of lamotrigine efficacy and seizure activity during coadministration with acetaminophen. Acetaminophen may induce glucuronidation pathways involved in lamotrigine metabolism. During a study among 12 healthy volunteers, concomitant administration of acetaminophen 4 g/day with lamotrigine at steady-state increased the formation clearance of lamotrigine glucuronide conjugates by 45%, decreased lamotrigine AUC by 20%, and reduced lamotrigine trough concentrations by 25%.
Lansoprazole; Amoxicillin; Clarithromycin: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of clarithromycin is necessary. If clarithromycin is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like clarithromycin can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If clarithromycin is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Lapatinib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of lapatinib is necessary. If lapatinib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak CYP3A4 inhibitor like lapatinib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If lapatinib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Larotrectinib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of larotrectinib is necessary. If larotrectinib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with weak CYP3A4 inhibitors like larotrectinib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If larotrectinib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Lasmiditan: (Moderate) Concomitant use of oxycodone with lasmiditan may cause excessive sedation, somnolence, and serotonin syndrome. Limit the use of oxycodone with lasmiditan to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and serotonin syndrome.
Lefamulin: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of oral lefamulin is necessary. If oral lefamulin is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with moderate CYP3A4 inhibitors like oral lefamulin can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone; an interaction is not expected with intravenous lefamulin. If oral lefamulin is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Lemborexant: (Moderate) Concomitant use of oxycodone with lemborexant may cause excessive sedation and somnolence. Limit the use of oxycodone with lemborexant to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Lenacapavir: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of lenacapavir is necessary. If lenacapavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A substrate, and coadministration with moderate CYP3A inhibitors like lenacapavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If lenacapavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Lesinurad: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with lesinurad is necessary; consider increasing the dose of oxycodone as needed. If lesinurad is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and lesinurad is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Lesinurad; Allopurinol: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with lesinurad is necessary; consider increasing the dose of oxycodone as needed. If lesinurad is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and lesinurad is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Letermovir: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of letermovir is necessary. If letermovir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a CYP3A4 inhibitor like letermovir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If letermovir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Levamlodipine: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like amlodipine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If amlodipine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Levocetirizine: (Major) Reserve concomitant use of opioids and cetirizine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Levoketoconazole: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of ketoconazole is necessary. If ketoconazole is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like ketoconazole can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If ketoconazole is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Levomilnacipran: (Moderate) If concomitant use of oxycodone and serotonin norepinephrine reuptake inhibitors is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Levonorgestrel; Ethinyl Estradiol: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Levonorgestrel; Ethinyl Estradiol; Ferrous Bisglycinate: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Levonorgestrel; Ethinyl Estradiol; Ferrous Fumarate: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Levorphanol: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
Lidocaine: (Moderate) Coadministration of lidocaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue lidocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Lidocaine; Epinephrine: (Moderate) Coadministration of lidocaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue lidocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Lidocaine; Prilocaine: (Moderate) Coadministration of lidocaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue lidocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) Coadministration of prilocaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue prilocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Linezolid: (Major) Avoid concomitant use of oxycodone in patients receiving linezolid or within 14 days of stopping treatment with linezolid due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression.
Lisdexamfetamine: (Moderate) If concomitant use of oxycodone and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Lisinopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Lithium: (Moderate) If concomitant use of oxycodone and lithium is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Lixisenatide: (Minor) When 1,000 mg acetaminophen was given 1 or 4 hours after 10 mcg lixisenatide, the AUC was not significantly changed, but the acetaminophen Cmax was decreased by 29% and 31%, respectively and median Tmax was delayed by 2 and 1.75 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before lixisenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying) and the clinical impact has not been assessed. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least one hour prior to lixisenatide subcutaneous injection.
Lofexidine: (Moderate) Monitor for excessive hypotension and sedation during coadministration of lofexidine and oxycodone. Lofexidine can potentiate the effects of CNS depressants.
Lomitapide: (Moderate) Caution should be exercised when lomitapide is used with other medications known to have potential for hepatotoxicity, such as acetaminophen (> 4 g/day PO for >= 3 days/week). The effect of concomitant administration of lomitapide with other hepatotoxic medications is unknown. More frequent monitoring of liver-related tests may be warranted.
Lonafarnib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of lonafarnib is necessary. If lonafarnib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with strong CYP3A4 inhibitors like lonafarnib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If lonafarnib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Loop diuretics: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a loop diuretic and oxycodone; increase the dosage of the loop diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone.
Lopinavir; Ritonavir: (Moderate) Concurrent administration of acetaminophen with ritonavir may result in elevated acetaminophen plasma concentrations and subsequent adverse events. Acetaminophen is metabolized by the hepatic isoenzyme CYP3A4; ritonavir is an inhibitor of this enzyme. Caution and close monitoring are advised if these drugs are administered together. (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of ritonavir is necessary. If ritonavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like ritonavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If ritonavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Lorazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Lorcaserin: (Moderate) If concomitant use of oxycodone and lorcaserin is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Lorlatinib: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with lorlatinib is necessary; consider increasing the dose of oxycodone as needed. If lorlatinib is discontinued, consider a dose reduction of lorlatinib and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and lorlatinib is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Losartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Loxapine: (Moderate) Concomitant use of opioid agonists, such as oxycodone, with loxapine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with loxapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Lumacaftor; Ivacaftor: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of ivacaftor is necessary. If ivacaftor is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like ivacaftor can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If ivacaftor is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Lumacaftor; Ivacaftor: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with lumacaftor; ivacaftor is necessary; consider increasing the dose of oxycodone as needed. If lumacaftor; ivacaftor is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and lumacaftor; ivacaftor is a strong CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Lumateperone: (Moderate) Concomitant use of opioid agonists like oxycodone with lumateperone may cause excessive sedation and somnolence. Limit the use of opioid pain medication with lumateperone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Lurasidone: (Moderate) Concomitant use of opioid agonists like oxycodone with lurasidone may cause excessive sedation and somnolence. Limit the use of opioid pain medication with lurasidone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Maprotiline: (Major) Concomitant use of opioid agonists with maprotiline may cause excessive sedation and somnolence. Limit the use of opioid pain medications with maprotiline to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Maribavir: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of maribavir is necessary. If maribavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A substrate, and coadministration with weak CYP3A inhibitors like maribavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If maribavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Mavacamten: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with mavacamten is necessary; consider increasing the dose of oxycodone as needed. If mavacamten is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A substrate and mavacamten is a moderate CYP3A inducer. Concomitant use with CYP3A inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Melatonin: (Moderate) Concomitant use of opioid agonists with melatonin may cause excessive sedation and somnolence. Limit the use of opioid pain medications with melatonin to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Meperidine: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
Mepivacaine: (Moderate) Coadministration of mepivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue mepivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Meprobamate: (Moderate) Concomitant use of oxycodone with meprobamate may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If meprobamate is used concurrently with oxycodone, a reduced dosage of oxycodone and/or meprobamate is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
Metaxalone: (Major) Concomitant use of opioid agonists with metaxalone may cause respiratory depression, profound sedation, and death. Limit the use of opioid pain medication with metaxalone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Consider prescribing naloxone for the emergency treatment of opioid overdose. Concomitant use of metaxalone and opioid agonists increases the risk for serotonin syndrome. Avoid concomitant use if possible and monitor for serotonin syndrome if use is necessary.
Methadone: (Major) Concomitant use of methadone with another CNS depressant, such as oxycodone, can lead to additive respiratory depression, hypotension, profound sedation, or coma. Prior to concurrent use of methadone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Methadone should be used with caution and in reduced dosages if used concurrently with a CNS depressant; in opioid-naive adults, use an initial methadone dose of 2.5 mg every 12 hours. Also, consider a using a lower dose of the CNS depressant; use an initial dose of oxycodone at one-third to one-half the usual dosage. Monitor patients for sedation and respiratory d epression.
Methamphetamine: (Moderate) If concomitant use of oxycodone and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Methenamine; Sodium Acid Phosphate; Methylene Blue; Hyoscyamine: (Major) Avoid concomitant use of oxycodone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Methocarbamol: (Major) Concomitant use of opioid agonists with methocarbamol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with methocarbamol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Reduce the initial oxycodone dosage by one-third to one-half when using the extended-release tablets.
Methohexital: (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Methscopolamine: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and methscopolamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Methyclothiazide: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Methyldopa: (Moderate) Concomitant use of opioid agonists with methyldopa may cause excessive sedation and somnolence. Limit the use of opioid pain medication with methyldopa to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Methylene Blue: (Major) Avoid concomitant use of oxycodone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration.
Methylphenidate Derivatives: (Moderate) If concomitant use of oxycodone and methylphenidate derivatives is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Metoclopramide: (Moderate) The effects of metoclopramide on gastrointestinal motility are antagonized by narcotic analgesics. Concomitant use of opioid agonists with metoclopramide may also cause excessive sedation and somnolence. Limit the use of opioid pain medications with metoclopramide to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Metolazone: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Metyrapone: (Major) Coadministration of metyrapone and acetaminophen may result in acetaminophen toxicity. Acetaminophen glucuronidation is inhibited by metyrapone. It may be advisable for patients to avoid acetaminophen while taking metyrapone.
Metyrosine: (Moderate) The concomitant administration of metyrosine with opiate agonists can result in additive sedative effects.
Midazolam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Mifepristone: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of mifepristone is necessary. If mifepristone is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like mifepristone can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If mifepristone is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. The clinical significance of this interaction with the short-term use of mifepristone for termination of pregnancy is unknown.
Milnacipran: (Moderate) If concomitant use of oxycodone and serotonin norepinephrine reuptake inhibitors is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Minocycline: (Minor) Injectable minocycline contains magnesium sulfate heptahydrate. Because of the CNS-depressant effects of magnesium sulfate, additive central-depressant effects can occur following concurrent administration with CNS depressants such as opiate agonists. Caution should be exercised when using these agents concurrently.
Mipomersen: (Moderate) Caution should be exercised when mipomersen is used with other medications known to have potential for hepatotoxicity, such as acetaminophen (> 4 g/day for >= 3 days/week). The effect of concomitant administration of mipomersen with other hepatotoxic medications is unknown. More frequent monitoring of liver-related tests may be warranted.
Mirtazapine: (Major) Concomitant use of opioid agonists with mirtazapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with mirtazapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Mitapivat: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with mitapivat is necessary; consider increasing the dose of oxycodone as needed. If mitapivat is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A substrate and mitapivat is a weak CYP3A inducer. Concomitant use with CYP3A inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Mitotane: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with mitotane is necessary; consider increasing the dose of oxycodone as needed. If mitotane is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and mitotane is a strong CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. (Minor) Use caution if mitotane and acetaminophen are used concomitantly, and monitor for decreased efficacy of acetaminophen. Mitotane is a strong CYP3A4 inducer and acetaminophen is a minor (10% to 15%) CYP3A4 substrate; coadministration may result in decreased plasma concentrations of acetaminophen.
Mobocertinib: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with mobocertinib is necessary; consider increasing the dose of oxycodone as needed. If mobocertinib is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A substrate and mobocertinib is a weak CYP3A inducer. Concomitant use with CYP3A inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Modafinil: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with modafinil is necessary; consider increasing the dose of oxycodone as needed. If modafinil is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and modafinil is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Molindone: (Moderate) Concomitant use of opioid agonists like oxycodone with molindone may cause excessive sedation and somnolence. Limit the use of opioid pain medication with molindone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Monoamine oxidase inhibitors: (Major) The use of oxycodone is not recommended in patients who have received a monoamine oxidase inhibitor (MAOI) within the previous 14 days or are currently taking an MAOI due to a risk for serotonin syndrome or opioid toxicity, including respiratory depression. If urgent use of an opioid is necessary, use test doses and frequent titration of small opioid doses to treat pain while closely monitoring blood pressure and signs and symptoms of serotonin syndrome and CNS and respiratory depression.
Morphine: (Major) Concomitant use of oxycodone with morphine may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. A reduced dosage of oxycodone and/or morphine is recommended; use an initial dose of oxycodone at one-third to one-half the usual dosage. For extended-release morphine products, start with the lowest possible dose of morphine (i.e., 15 mg PO every 12 hours, extended-release tablets; 30 mg or less PO every 24 hours; extended-release capsules). Monitor for sedation and respiratory depression.
Morphine; Naltrexone: (Major) Concomitant use of oxycodone with morphine may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. A reduced dosage of oxycodone and/or morphine is recommended; use an initial dose of oxycodone at one-third to one-half the usual dosage. For extended-release morphine products, start with the lowest possible dose of morphine (i.e., 15 mg PO every 12 hours, extended-release tablets; 30 mg or less PO every 24 hours; extended-release capsules). Monitor for sedation and respiratory depression.
Nabilone: (Major) Avoid coadministration of opioid agonists with nabilone due to the risk of additive CNS depression.
Nafcillin: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with nafcillin is necessary; consider increasing the dose of oxycodone as needed. If nafcillin is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and nafcillin is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Nalbuphine: (Major) Avoid the concomitant use of nalbuphine and opiate agonists, such as oxycodone. Nalbuphine is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce analgesic effects of acetaminophen; oxycodone. Nalbuphine may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of nalbuphine with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
Naltrexone: (Major) When naltrexone is used as adjuvant treatment of opiate or alcohol dependence, use is contraindicated in patients currently receiving opiate agonists. Naltrexone will antagonize the therapeutic benefits of opiate agonists and will induce a withdrawal reaction in patients with physical dependence to opioids. Also, patients should be opiate-free for at least 7-10 days prior to initiating naltrexone therapy. If there is any question of opioid use in the past 7-10 days and the patient is not experiencing opioid withdrawal symptoms and/or the urine is negative for opioids, a naloxone challenge test needs to be performed. If a patient receives naltrexone, and an opiate agonist is needed for an emergency situation, large doses of opiate agonists may ultimately overwhelm naltrexone antagonism of opiate receptors. Immediately following administration of exogenous opiate agonists, the opiate plasma concentration may be sufficient to overcome naltrexone competitive blockade, but the patient may experience deeper and more prolonged respiratory depression and thus, may be in danger of respiratory arrest and circulatory collapse. Non-receptor mediated actions like facial swelling, itching, generalized erythema, or bronchoconstriction may occur presumably due to histamine release. A rapidly acting opiate agonist is preferred as the duration of respiratory depression will be shorter. Patients receiving naltrexone may also experience opiate side effects with low doses of opiate agonists. If the opiate agonist is taken in such a way that high concentrations remain in the body beyond the time naltrexone exerts its therapeutic effects, serious side effects may occur.
Naratriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering oxycodone with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risks and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Nefazodone: (Major) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression, sedation, and serotonin syndrome if concurrent use of nefazodone is necessary. If nefazodone is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system like nefazodone has resulted in serotonin syndrome. In addition, oxycodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like nefazodone can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If nefazodone is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Nelfinavir: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of nelfinavir is necessary. If nelfinavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like nelfinavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If nelfinavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Neostigmine; Glycopyrrolate: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and glycopyrrolate use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Nesiritide, BNP: (Major) The potential for hypotension may be increased when coadministering nesiritide with opiate agonists.
Netupitant, Fosnetupitant; Palonosetron: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of netupitant is necessary. If netupitant is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like netupitant can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If netupitant is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Nevirapine: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with nevirapine is necessary; consider increasing the dose of oxycodone as needed. If nevirapine is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A substrate and nevirapine is a weak CYP3A inducer. Concomitant use with CYP3A inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Nicardipine: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of nicardipine is necessary. If nicardipine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like nicardipine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If nicardipine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Nilotinib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of nilotinib is necessary. If nilotinib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like nilotinib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If nilotinib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Nirmatrelvir; Ritonavir: (Major) Consider withholding oxycodone, if clinically appropriate, during receipt of ritonavir-boosted nirmatrelvir. If this is not feasible, consider using an alternative COVID-19 therapy or reducing the oxycodone dose. Coadministration may increase oxycodone exposure, resulting in prolonged opioid effects including fatal respiratory depression. Oxycodone is metabolized by CYP3A4 and nirmatrelvir is a CYP3A inhibitor. (Moderate) Concurrent administration of acetaminophen with ritonavir may result in elevated acetaminophen plasma concentrations and subsequent adverse events. Acetaminophen is metabolized by the hepatic isoenzyme CYP3A4; ritonavir is an inhibitor of this enzyme. Caution and close monitoring are advised if these drugs are administered together. (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of ritonavir is necessary. If ritonavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like ritonavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If ritonavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Nitroglycerin: (Minor) Nitroglycerin can cause hypotension. This action may be additive with other agents that can cause hypotension such as opiate agonists. Patients should be monitored more closely for hypotension if nitroglycerin is used concurrently with opiate agonists.
Norethindrone Acetate; Ethinyl Estradiol; Ferrous fumarate: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Norethindrone; Ethinyl Estradiol: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Norethindrone; Ethinyl Estradiol; Ferrous fumarate: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Norgestimate; Ethinyl Estradiol: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Nortriptyline: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Odevixibat: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with odevixibat is necessary; consider increasing the dose of oxycodone as needed. If odevixibat is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A substrate and odevixibat is a weak CYP3A inducer. Concomitant use with CYP3A inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Olanzapine: (Major) Concomitant use of opioid agonists with olanzapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with olanzapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Olanzapine; Fluoxetine: (Major) Concomitant use of opioid agonists with olanzapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with olanzapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. (Moderate) If concomitant use of oxycodone and fluoxetine is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Olanzapine; Samidorphan: (Contraindicated) Salmidorphan is contraindicated in patients who are using opiate agonists or undergoing acute opioid withdrawal. Salmidorphan increases the risk of precipitating acute opioid withdrawal in patients dependent on opioids. Before initiating salmidorphan, there should be at least a 7-day opioid-free interval from the last use of short-acting opioids, and at least a 14-day opioid-free interval from the last use of long-acting opioids. In emergency situations, if a salmidorphan-treated patient requires opiates for anesthesia or analgesia, discontinue salmidorphan. The opiate agonist should be administered by properly trained individual(s), and the patient properly monitored in a setting equipped and staffed for cardiopulmonary resuscitation. In non-emergency situations, if a salmidorphan-treated patient requires opiate agonist treatment (e.g., for analgesia) discontinue salmidorphan at least 5 days before opioid treatment. Salmidorphan, as an opioid antagonist, may cause opioid treatment to be less effective or ineffective shortly after salmidorphan discontinuation. (Major) Concomitant use of opioid agonists with olanzapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with olanzapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Oliceridine: (Major) Concomitant use of oliceridine with oxycodone may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of oliceridine with oxycodone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Reduce the initial oxycodone dosage by one-third to one-half when using the extended-release tablets. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like amlodipine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If amlodipine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Olmesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Olutasidenib: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with olutasidenib is necessary; consider increasing the dose of oxycodone as needed. If olutasidenib is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A substrate and olutasidenib is a weak CYP3A inducer. Concomitant use with CYP3A inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Omaveloxolone: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with omaveloxolone is necessary; consider increasing the dose of oxycodone as needed. If omaveloxolone is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A substrate and omaveloxolone is a weak CYP3A inducer. Concomitant use with CYP3A inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Omeprazole; Amoxicillin; Rifabutin: (Moderate) As a cytochrome P450 isoenzyme inducers, rifabutin could induce the metabolism of acetaminophen. An increase in acetaminophen-induced hepatotoxicity may be seen by increasing the metabolism of acetaminophen to its toxic metabolite, NAPQI. Also, the analgesic activity of acetaminophen may be reduced. (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with rifabutin is necessary; consider increasing the dose of oxycodone as needed. If rifabutin is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and rifabutin is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Omeprazole; Sodium Bicarbonate: (Minor) Antacids can delay the oral absorption of acetaminophen, but the interactions are not likely to be clinically significant as the extent of acetaminophen absorption is not appreciably affected.
Ondansetron: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering oxycodone with serotonin-receptor antagonists. The development of serotonin syndrome has been reported with 5-HT3 receptor antagonists, mostly when used in combination with other serotonergic medications. Inform patients taking this combination of the possible increased risks and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Oritavancin: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with oritavancin is necessary; consider increasing the dose of oxycodone as needed. If oritavancin is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and oritavancin is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Orphenadrine: (Major) Concomitant use of opioid agonists with orphenadrine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with orphenadrine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Reduce the initial oxycodone dosage by one-third to one-half when using the extended-release tablets.
Osilodrostat: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of osilodrostat is necessary. If osilodrostat is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with weak CYP3A4 inhibitors like osilodrostat can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If osilodrostat is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Oxazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Oxcarbazepine: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with oxcarbazepine is necessary; consider increasing the dose of oxycodone as needed. If oxcarbazepine is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and oxcarbazepine is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Oxybutynin: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and oxybutynin use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Oxymorphone: (Major) Concomitant use of oxycodone with oxymorphone may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of oxycodone with oxymorphone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Reduce the initial dosage by one-third to one-half when using oxymorphone or extended-release oxycodone tablets. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Ozanimod: (Major) When possible, oxycodone should not be used in patients taking MAOIs or within 14 days of stopping such treatment. An active metabolite of ozanimod inhibits MAO-B. MAO inhibitor interactions with oxycodone may manifest as serotonin syndrome, hypertensive crisis, or opioid toxicity (e.g., respiratory depression, coma). If concurrent use is absolutely necessary, use the lowest possible doses of oxycodone, and monitor blood pressure and for serotonergic symptoms closely. Although a small number of patients treated with ozanimod were concomitantly exposed to opioids, this exposure was not adequate to rule out the possibility of an adverse reaction from coadministration.
Pacritinib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of pacritinib is necessary. If pacritinib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A substrate, and coadministration with weak CYP3A inhibitors like pacritinib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If pacritinib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Palbociclib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of palbociclib is necessary. If palbociclib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like palbociclib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If palbociclib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Paliperidone: (Moderate) Drugs that can cause CNS depression such as opiate agonists, if used concomitantly with paliperidone, can increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Monitor for signs and symptoms of CNS depression during coadministration of paliperidone and oxycodone and advise patients to avoid driving or engaging in other activities requiring mental alertness until they know how this combination affects them.
Palonosetron: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering oxycodone with serotonin-receptor antagonists. The development of serotonin syndrome has been reported with 5-HT3 receptor antagonists, mostly when used in combination with other serotonergic medications. Inform patients taking this combination of the possible increased risks and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Paroxetine: (Moderate) If concomitant use of oxycodone and paroxetine is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Pazopanib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of pazopanib is necessary. If pazopanib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like pazopanib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If pazopanib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Pegvisomant: (Moderate) In clinical trials, patients taking opiate agonists often required higher serum pegvisomant concentrations to achieve appropriate IGF-I suppression compared with patients not receiving opiate agonists. The mechanism of this interaction is unknown.
Penicillin G Benzathine; Penicillin G Procaine: (Moderate) Coadministration of penicillin G procaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue penicillin G procaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Penicillin G Procaine: (Moderate) Coadministration of penicillin G procaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue penicillin G procaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Pentazocine: (Major) Avoid the concomitant use of pentazocine and opiate agonists, such as oxycodone. Pentazocine is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce analgesic effects of oxycodone. Pentazocine may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of pentazocine with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
Pentazocine; Naloxone: (Major) Avoid the concomitant use of pentazocine and opiate agonists, such as oxycodone. Pentazocine is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce analgesic effects of oxycodone. Pentazocine may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of pentazocine with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
Pentobarbital: (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Perampanel: (Moderate) Concomitant use of opioid agonists with perampanel may cause excessive sedation and somnolence. Limit the use of opioid pain medications with perampanel to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Perindopril; Amlodipine: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like amlodipine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If amlodipine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Perphenazine: (Major) Concomitant use of oxycodone with phenothiazines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with phenothiazines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor for signs of hypotension after starting or titrating the dosage of oxycodone. There is an increased risk of severe hypotension in patients whose ability to maintain blood pressure has already been compromised by concurrent administration of phenothiazines.
Perphenazine; Amitriptyline: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. (Major) Concomitant use of oxycodone with phenothiazines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with phenothiazines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor for signs of hypotension after starting or titrating the dosage of oxycodone. There is an increased risk of severe hypotension in patients whose ability to maintain blood pressure has already been compromised by concurrent administration of phenothiazines.
Pexidartinib: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with pexidartinib is necessary; consider increasing the dose of oxycodone as needed. If pexidartinib is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and pexidartinib is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Phenobarbital: (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Phenobarbital; Hyoscyamine; Atropine; Scopolamine: (Major) Reserve concomitant use of oxycodone and atropine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus. (Major) Reserve concomitant use of oxycodone and scopolamine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Phenothiazines: (Major) Concomitant use of oxycodone with phenothiazines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with phenothiazines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor for signs of hypotension after starting or titrating the dosage of oxycodone. There is an increased risk of severe hypotension in patients whose ability to maintain blood pressure has already been compromised by concurrent administration of phenothiazines.
Phentermine; Topiramate: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with topiramate is necessary; consider increasing the dose of oxycodone as needed. If topiramate is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and topiramate is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Phenytoin: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with phenytoin is necessary; consider increasing the dose of oxycodone as needed. If phenytoin is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and phenytoin is a strong CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Pimozide: (Moderate) Concomitant use of oxycodone with other CNS depressants, such as pimozide, can lead to additive respiratory depression, hypotension, profound sedation, or coma. Prior to concurrent use of oxycodone in patients taking pimozide, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Oxycodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate oxycodone at one-third to one-half the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider using a lower pimozide dose. Monitor patients for sedation and respiratory depression.
Pirtobrutinib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of pirtobrutinib is necessary. If pirtobrutinib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A substrate, and coadministration with weak CYP3A inhibitors like pirtobrutinib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone.
Pneumococcal Vaccine, Polyvalent: (Moderate) Concomitant administration of antipyretics, such as acetaminophen, may decrease an individual's immunological response to the pneumococcal vaccine. A post-marketing study conducted in Poland using a non-US vaccination schedule (2, 3, 4, and 12 months of age) evaluated the impact of prophylactic oral acetaminophen on antibody responses to Prevnar 13. Data show that acetaminophen, given at the time of vaccination and then dosed at 6 to 8 hour intervals for 3 doses on a scheduled basis, reduced the antibody response to some serotypes after the third dose of Prevnar 13 when compared to the antibody responses of infants who only received antipyretics 'as needed' for treatment. However, reduced antibody responses were not observed after the fourth dose of Prevnar 13 with prophylactic acetaminophen.
Posaconazole: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of posaconazole is necessary. If posaconazole is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like posaconazole can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If posaconazole is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. (Moderate) Posaconazole and acetaminophen should be coadministered with caution due to an increased potential for acetaminophen-related adverse events. Posaconazole is a potent inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of acetaminophen. These drugs used in combination may result in elevated acetaminophen plasma concentrations, causing an increased risk for acetaminophen-related adverse events.
Pramipexole: (Major) Concomitant use of opioid agonists with pramipexole may cause excessive sedation and somnolence. Limit the use of opioid pain medications with pramipexole to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Dopaminergic agents like pramipexole have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment.
Pramlintide: (Major) Pramlintide slows gastric emptying and the rate of nutrient delivery to the small intestine. Medications with the potential to slow GI motility, such as opiate agonists, should be used with caution, if at all, with pramlintide until more data are available from the manufacturer. Monitor blood glucose. (Minor) Because pramlintide has the potential to delay the absorption of concomitantly administered medications, medications should be administered at least 1 hour before or 2 hours after pramlintide injection when the rapid onset of a concomitantly administered oral medication is a critical determinant of effectiveness (i.e., analgesics).
Prasugrel: (Moderate) Consider the use of a parenteral anti-platelet agent for patients with acute coronary syndrome who require concomitant opioid agonists. Coadministration of opioid agonists with prasugrel delays and reduces the abs orption of prasugrel's active metabolite due to slowed gastric emptying.
Pregabalin: (Major) Concomitant use of opioid agonists with pregabalin may cause excessive sedation, somnolence, and respiratory depression. Limit the use of opioid pain medications with pregabalin to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, initiate pregabalin at the lowest recommended dose and monitor patients for symptoms of respiratory depression and sedation. Use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and respiratory depression.
Prilocaine: (Moderate) Coadministration of prilocaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue prilocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Prilocaine; Epinephrine: (Moderate) Coadministration of prilocaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue prilocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Primidone: (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Procarbazine: (Moderate) Opiate agonists may cause additive sedation or other CNS effects when given in combination with procarbazine.
Prochlorperazine: (Major) Concomitant use of oxycodone with phenothiazines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with phenothiazines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor for signs of hypotension after starting or titrating the dosage of oxycodone. There is an increased risk of severe hypotension in patients whose ability to maintain blood pressure has already been compromised by concurrent administration of phenothiazines.
Promethazine: (Major) Concomitant use of oxycodone with phenothiazines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with phenothiazines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor for signs of hypotension after starting or titrating the dosage of oxycodone. There is an increased risk of severe hypotension in patients whose ability to maintain blood pressure has already been compromised by concurrent administration of phenothiazines.
Promethazine; Dextromethorphan: (Major) Concomitant use of oxycodone with phenothiazines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with phenothiazines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor for signs of hypotension after starting or titrating the dosage of oxycodone. There is an increased risk of severe hypotension in patients whose ability to maintain blood pressure has already been compromised by concurrent administration of phenothiazines.
Promethazine; Phenylephrine: (Major) Concomitant use of oxycodone with phenothiazines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with phenothiazines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor for signs of hypotension after starting or titrating the dosage of oxycodone. There is an increased risk of severe hypotension in patients whose ability to maintain blood pressure has already been compromised by concurrent administration of phenothiazines.
Propantheline: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and propantheline use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Propofol: (Major) Concomitant use of oxycodone with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Propranolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Protriptyline: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Pseudoephedrine; Triprolidine: (Moderate) Concomitant use of opioid agonists with triprolidine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with triprolidine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Pyrilamine: (Moderate) Concomitant use of opioid agonists with pyrilamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with pyrilamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Quazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Quetiapine: (Major) Concomitant use of opioid agonists with quetiapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with quetiapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Quinapril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Quinine: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of quinine is necessary. If quinine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like quinine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If quinine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Ramelteon: (Moderate) Concomitant use of opioid agonists with ramelteon may cause excessive sedation and somnolence. Limit the use of opioid pain medications with ramelteon to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Ranolazine: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of ranolazine is necessary. If ranolazine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like ranolazine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If ranolazine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Rasagiline: (Major) Avoid concomitant use of oxycodone in patients receiving rasagiline or within 14 days of stopping treatment with rasagiline due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression.
Remifentanil: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
Remimazolam: (Major) Concomitant use of opioid agonists with remimazolam may cause respiratory depression, hypotension, profound sedation, and death. Titrate the dose of remimazolam to the desired clinical response and continuously monitor sedated patients for hypotension, airway obstruction, hypoventilation, apnea, and oxygen desaturation. Reduce the initial oxycodone dosage by one-third to one-half when using the extended-release tablets.
Ribociclib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of ribociclib is necessary. If ribociclib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like ribociclib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If ribociclib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Ribociclib; Letrozole: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of ribociclib is necessary. If ribociclib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like ribociclib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If ribociclib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Rifabutin: (Moderate) As a cytochrome P450 isoenzyme inducers, rifabutin could induce the metabolism of acetaminophen. An increase in acetaminophen-induced hepatotoxicity may be seen by increasing the metabolism of acetaminophen to its toxic metabolite, NAPQI. Also, the analgesic activity of acetaminophen may be reduced. (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with rifabutin is necessary; consider increasing the dose of oxycodone as needed. If rifabutin is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and rifabutin is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Rifampin: (Moderate) Concomitant use of acetaminophen with rifampin may increase the known risk of hepatotoxicity in relation to each drug. Severe hepatic dysfunction including fatalities were reported in patients taking rifampin with other hepatotoxic agents. (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with rifampin is necessary; consider increasing the dose of oxycodone as needed. If rifampin is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and rifampin is a strong CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Rifapentine: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with rifapentine is necessary; consider increasing the dose of oxycodone as needed. If rifapentine is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and rifapentine is a strong CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Risperidone: (Moderate) Concomitant use of oxycodone with other CNS depressants, such as risperidone, can lead to additive respiratory depression, hypotension, profound sedation, or coma. Prior to concurrent use of oxycodone in patients taking risperidone, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Oxycodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate oxycodone at one-third to one-half the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider using a lower risperidone dose. Monitor patients for sedation and respiratory depression.
Ritlecitinib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of ritlecitinib is necessary. If ritlecitinib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A substrate, and coadministration with moderate CYP3A inhibitors like ritlecitinib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If ritlecitinib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Ritonavir: (Moderate) Concurrent administration of acetaminophen with ritonavir may result in elevated acetaminophen plasma concentrations and subsequent adverse events. Acetaminophen is metabolized by the hepatic isoenzyme CYP3A4; ritonavir is an inhibitor of this enzyme. Caution and close monitoring are advised if these drugs are administered together. (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of ritonavir is necessary. If ritonavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like ritonavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If ritonavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Rizatriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering oxycodone with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risks and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Ropinirole: (Major) Concomitant use of opioid agonists with ropinirole may cause excessive sedation and somnolence. Limit the use of opioid pain medication with ropinirole to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Dopaminergic agents have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Reassess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment.
Ropivacaine: (Moderate) Coadministration of ropivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue ropivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Rotigotine: (Major) Concomitant use of opioid agonists with rotigotine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with rotigotine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Dopaminergic agents like rotigotine have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment.
Rucaparib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of rucaparib is necessary. If rucaparib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate and rucaparib is a weak CYP3A4 inhibitor. Coadministration can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If rucaparib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Safinamide: (Contraindicated) Concomitant use of safinamide with opioids is contraindicated due to the risk of serotonin syndrome. Allow at least 14 days between discontinuation of safinamide and initiation of treatment with opioids.
Saquinavir: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of saquinavir is necessary. If saquinavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like saquinavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If saquinavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Scopolamine: (Major) Reserve concomitant use of oxycodone and scopolamine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Secobarbital: (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Segesterone Acetate; Ethinyl Estradiol: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Selegiline: (Major) Avoid concomitant use of oxycodone in patients receiving selegiline or within 14 days of stopping treatment with selegiline due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression.
Selpercatinib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of selpercatinib is necessary. If selpercatinib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with weak CYP3A4 inhibitors like selpercatinib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If selpercatinib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Serotonin norepinephrine reuptake inhibitors: (Moderate) If concomitant use of oxycodone and serotonin norepinephrine reuptake inhibitors is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Serotonin-Receptor Agonists: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering oxycodone with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risks and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Serotonin-Receptor Antagonists: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering oxycodone with serotonin-receptor antagonists. The development of serotonin syndrome has been reported with 5-HT3 receptor antagonists, mostly when used in combination with other serotonergic medications. Inform patients taking this combination of the possible increased risks and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Sertraline: (Moderate) If concomitant use of oxycodone and sertraline is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Sevoflurane: (Major) Concomitant use of oxycodone with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Sodium Bicarbonate: (Minor) Antacids can delay the oral absorption of acetaminophen, but the interactions are not likely to be clinically significant as the extent of acetaminophen absorption is not appreciably affected.
Sodium Oxybate: (Major) Concomitant use of opioid agonists with sodium oxybate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with sodium oxybate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Sodium Phenylbutyrate; Taurursodiol: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with taurursodiol is necessary; consider increasing the dose of oxycodone as needed. If taurursodiol is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A substrate and taurursodiol is a weak CYP3A inducer. Concomitant use with CYP3A inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Solifenacin: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when oxycodone is used concomitantly with an anticholinergic drug, such as solifenacin. The concomitant use of oxycodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Sotorasib: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with sotorasib is necessary; consider increasing the dose of oxycodone as needed. If sotorasib is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and sotorasib is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Spironolactone: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of spironolactone is necessary. If spironolactone is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with weak CYP3A4 inhibitors like spironolactone can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If spironolactone is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with oxycodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Spironolactone; Hydrochlorothiazide, HCTZ: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of spironolactone is necessary. If spironolactone is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with weak CYP3A4 inhibitors like spironolactone can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If spironolactone is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with oxycodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
St. John's Wort, Hypericum perforatum: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with St. John's wort is necessary; consider increasing the dose of oxycodone as needed. If St. John's wort is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and St. John's wort is a strong CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Additive serotonergic effects are also possible with this drug-herb combination. Caution and careful monitoring, particularly during treatment initiation and dose adjustment, is recommended due to the potential for serotonin syndrome. Serotonin syndrome may occur within the recommended dosage range. Discontinue St. John's wort if serotonin syndrome is suspected. Serotonin syndrome is characterized by the rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. (Minor) St. John's wort, Hypericum perforatum induces cytochrome P450 1A2. About 10 to 15% of the acetaminophen dose undergoes oxidative metabolism via cytochrome P450 isoenzymes CYP2E1, 3A4 and 1A2, which produces the hepatotoxic metabolite, N-acetyl-p-benzoquinonimine. Thus, theoretically St. John's wort might increase the risk of acetaminophen-induced hepatotoxicity by increasing the metabolism of acetaminophen to NAPQI.
Stiripentol: (Major) Concomitant use of opioid agonists with stiripentol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with stiripentol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Coadministration may alter plasma concentrations of oxycodone resulting in an increased risk of adverse reactions and/or decreased efficacy. Oxycodone is a CYP3A4 substrate. In vitro data predicts inhibition or induction of CYP3A4 by stiripentol potentially resulting in clinically significant interactions.
Streptogramins: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of dalfopristin; quinupristin is necessary. If dalfopristin; quinupristin is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like dalfopristin; quinupristin can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If dalfopristin; quinupristin is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Sumatriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering oxycodone with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risks and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Sumatriptan; Naproxen: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering oxycodone with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risks and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Suvorexant: (Moderate) Concomitant use of opioid agonists with suvorexant may cause excessive sedation and somnolence. Limit the use of opioid pain medications with suvorexant to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Tapentadol: (Major) Concomitant use of tapentadol with oxycodone may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of tapentadol with oxycodone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Reduce the initial oxycodone dosage by one-third to one-half when using the extended-release tablets. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Tasimelteon: (Moderate) Concomitant use of opioid agonists with tasimelteon may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tasimelteon to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Tecovirimat: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with tecovirimat is necessary; consider increasing the dose of oxycodone as needed. If tecovirimat is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and tecovirimat is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Tedizolid: (Major) Avoid concomitant use of oxycodone in patients receiving tedizolid or within 14 days of stopping treatment with tedizolid due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression.
Telmisartan; Amlodipine: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like amlodipine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If amlodipine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Telmisartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Telotristat Ethyl: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with telotristat ethyl is necessary; consider increasing the dose of oxycodone as needed. If telotristat ethyl is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and telotristat ethyl is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Temazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Tetrabenazine: (Moderate) Additive effects are possible when tetrabenazine is combined with other drugs that cause CNS depression. Concurrent use of tetrabenazine and drugs that can cause CNS depression, such as opiate agonists, can increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, dizziness, and orthostatic hypotension.
Tetracaine: (Major) Due to the central nervous system depression potential of local anesthetics, they should be used with caution with other agents that can cause respiratory depression, such as opiate agonists. Excitation or depression of the CNS may be the first manifestation of CNS toxicity. Restlessness, anxiety, tinnitus, dizziness, blurred vision, tremors, depression, or drowsiness may be early warning signs of CNS toxicity. After each local anesthetic injection, careful and constant monitoring of ventilation adequacy, cardiovascular vital signs, and the patient's state of consciousness is advised. (Moderate) Coadministration of tetracaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue tetracaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Tezacaftor; Ivacaftor: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of ivacaftor is necessary. If ivacaftor is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like ivacaftor can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If ivacaftor is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Thalidomide: (Major) Avoid coadministration of opioid agonists with thalidomide due to the risk of additive CNS depression.
Thiazide diuretics: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Thioridazine: (Major) Concomitant use of oxycodone with phenothiazines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with phenothiazines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor for signs of hypotension after starting or titrating the dosage of oxycodone. There is an increased risk of severe hypotension in patients whose ability to maintain blood pressure has already been compromised by concurrent administration of phenothiazines.
Thiothixene: (Moderate) Concomitant use of opioid agonists like oxycodone with thiothixene may cause excessive sedation and somnolence. Limit the use of opioid pain medication with thiothixene to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Ticagrelor: (Moderate) Coadministration of opioid agonists may delay and reduce the absorption of ticagrelor resulting in reduced exposure and diminished inhibition of platelet aggregation. Consider the use of a parenteral antiplatelet agent in acute coronary syndrome patients requiring an opioid agonist. Mean ticagrelor exposure decreased up to 36% in ACS patients undergoing PCI when intravenous morphine was administered with a loading dose of ticagrelor; mean platelet aggregation was higher up to 3 hours post loading dose. Similar effects on ticagrelor exposure and platelet inhibition were observed when fentanyl was administered with a ticagrelor loading dose in ACS patients undergoing PCI. Although exposure to ticagrelor was decreased up to 25% in healthy adults administered intravenous morphine with a loading dose of ticagrelor, platelet inhibition was not delayed or decreased in this population.
Tipranavir: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of tipranavir is necessary. If tipranavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like tipranavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If tipranavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Tizanidine: (Major) Concomitant use of opioid agonists with tizanidine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tizanidine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Reduce the initial oxycodone dosage by one-third to one-half when using the extended-release tablets. (Minor) Tizanidine delays the time to attain peak concentrations of acetaminophen by about 16 minutes. The clinical significance of this interaction is unknown.
Tolterodine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when oxycodone is used concomitantly with an anticholinergic drug, such as tolterodine. The concomitant use of oxycodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Topiramate: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with topiramate is necessary; consider increasing the dose of oxycodone as needed. If topiramate is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and topiramate is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Torsemide: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a loop diuretic and oxycodone; increase the dosage of the loop diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone.
Tramadol: (Major) Concomitant use of tramadol with oxycodone may cause respiratory depression, hypotension, profound sedation, and death and increase the risk for serotonin syndrome, seizures, and anticholinergic effects. Limit the use of opioid pain medications to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor patients for serotonin syndrome if concomitant use is necessary, particularly during treatment initiation and dosage increases. If serotonin syndrome occurs, consider discontinuation of therapy. The concomitant use of serotonergic drugs increases the risk of serotonin syndrome. Monitor for signs of urinary retention or reduced gastric motility during coadministration. The concomitant use of anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Tramadol; Acetaminophen: (Major) Concomitant use of tramadol with oxycodone may cause respiratory depression, hypotension, profound sedation, and death and increase the risk for serotonin syndrome, seizures, and anticholinergic effects. Limit the use of opioid pain medications to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor patients for serotonin syndrome if concomitant use is necessary, particularly during treatment initiation and dosage increases. If serotonin syndrome occurs, consider discontinuation of therapy. The concomitant use of serotonergic drugs increases the risk of serotonin syndrome. Monitor for signs of urinary retention or reduced gastric motility during coadministration. The concomitant use of anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Trandolapril; Verapamil: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of verapamil is necessary. If verapamil is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like verapamil can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If verapamil is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Trazodone: (Moderate) Because of the potential risk and severity of excessive sedation, somnolence, and serotonin syndrome, caution should be observed when administering oxycodone with trazodone. Limit the use of opioid pain medications with trazodone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Inform patients taking this combination of the possible increased risks and monitor for the emergence of excessive CNS depression and serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Triamterene: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of triamterene and oxycodone; increase the dosage of triamterene as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone.
Triamterene; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of triamterene and oxycodone; increase the dosage of triamterene as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone.
Triazolam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Tricyclic antidepressants: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Trifluoperazine: (Major) Concomitant use of oxycodone with phenothiazines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with phenothiazines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor for signs of hypotension after starting or titrating the dosage of oxycodone. There is an increased risk of severe hypotension in patients whose ability to maintain blood pressure has already been compromised by concurr ent administration of phenothiazines.
Trihexyphenidyl: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Trimethobenzamide: (Moderate) The concurrent use of trimethobenzamide with other medications that cause CNS depression, like opiate agonists, may potentiate the effects of either trimethobenzamide or the opiate agonist.
Trimipramine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Triprolidine: (Moderate) Concomitant use of opioid agonists with triprolidine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with triprolidine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Trofinetide: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of trofinetide is necessary. If trofinetide is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A substrate, and coadministration with weak CYP3A inhibitors like trofinetide can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If trofinetide is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Trospium: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when trospium, an anticholinergic drug for overactive bladder, is used with opiate agonists. The concomitant use of these drugs together may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. Both agents may also cause drowsiness or blurred vision, and patients should use care in driving or performing other hazardous tasks until the effects of the drugs are known.
Tucatinib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of tucatinib is necessary. If tucatinib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with strong CYP3A4 inhibitors like tucatinib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If tucatinib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Valerian, Valeriana officinalis: (Moderate) Concomitant use of opioid agonists with valerian may cause excessive sedation and somnolence. Limit the use of opioid pain medication with valerian to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Valproic Acid, Divalproex Sodium: (Moderate) Concomitant use of opioid agonists with valproic acid may cause excessive sedation and somnolence. Limit the use of opioid pain medications with valproic acid to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Vemurafenib: (Moderate) Concomitant use of vemurafenib and acetaminophen may result in altered concentrations of acetaminophen. Vemurafenib is an inhibitor of CYP1A2 and CYP2A6, and an inducer of CYP3A4. Acetaminophen is a substrate of CYP1A2, CYP2A6, and CYP3A4. Use caution and monitor patients for toxicity and efficacy. (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with vemurafenib is necessary; consider increasing the dose of oxycodone as needed. If vemurafenib is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and vemurafenib is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Venlafaxine: (Moderate) If concomitant use of oxycodone and serotonin norepinephrine reuptake inhibitors is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Verapamil: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of verapamil is necessary. If verapamil is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like verapamil can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If verapamil is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Vigabatrin: (Moderate) Vigabatrin may cause somnolence and fatigue. Drugs that can cause CNS depression, if used concomitantly with vigabatrin, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when vigabatrin is given with opiate agonists.
Vilazodone: (Moderate) Because of the potential risk and severity of excessive sedation, somnolence, and serotonin syndrome, caution should be observed when administering oxycodone with vilazodone. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Inform patients taking this combination of the possible increased risks and monitor for the emergence of excessive CNS depression and serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Viloxazine: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of viloxazine is necessary. If viloxazine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with weak CYP3A4 inhibitors like viloxazine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If viloxazine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Vonoprazan; Amoxicillin: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of vonoprazan is necessary. If vonoprazan is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A substrate, and coadministration with weak CYP3A inhibitors like vonoprazan can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If vonoprazan is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Vonoprazan; Amoxicillin; Clarithromycin: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of clarithromycin is necessary. If clarithromycin is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like clarithromycin can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If clarithromycin is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of vonoprazan is necessary. If vonoprazan is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A substrate, and coadministration with weak CYP3A inhibitors like vonoprazan can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If vonoprazan is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Voriconazole: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of voriconazole is necessary. If voriconazole is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like voriconazole can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If voriconazole is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Vortioxetine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering oxycodone with vortioxetine. Inform patients taking this combination of the possible increased risks and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Voxelotor: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of voxelotor is necessary. If voxelotor is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A substrate, and coadministration with moderate CYP3A inhibitors like voxelotor can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If voxelotor is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Warfarin: (Minor) Although acetaminophen is routinely considered safer than aspirin and agent of choice when a mild analgesic/antipyretic is necessary for a patient receiving therapy with warfarin, acetaminophen has also been shown to augment the hypoprothrombinemic response to warfarin. Concomitant acetaminophen ingestion may result in increases in the INR in a dose-related fashion. Clinical bleeding has been reported. Single doses or short (i.e., several days) courses of treatment with acetaminophen are probably safe in most patients taking warfarin. Clinicians should be alert for an increased INR if acetaminophen is administered in large daily doses for longer than 10 to 14 days.
Zafirlukast: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of zafirlukast is necessary. If zafirlukast is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like zafirlukast can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If zafirlukast is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
Zaleplon: (Moderate) Concomitant use of oxycodone with zaleplon may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If zaleplon is used concurrently with oxycodone, a reduced dosage of oxycodone and/or zaleplon is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
Ziconotide: (Moderate) Concurrent use of ziconotide and opiate agonists may result in an increased incidence of dizziness and confusion. Ziconotide neither interacts with opiate receptors nor potentiates opiate-induced respiratory depression. However, in animal models, ziconotide did potentiate gastrointestinal motility reduction by opioid agonists.
Zidovudine, ZDV: (Minor) Both acetaminophen and zidovudine, ZDV undergo glucuronidation. Competition for the metabolic pathway is thought to have caused a case of acetaminophen-related hepatotoxicity. This interaction may be more clinically significant in patients with depleted glutathione stores, such as patients with acquired immunodeficiency syndrome, poor nutrition, or alcoholism.
Ziprasidone: (Moderate) Because of the potential for additive sedation and CNS depression, caution should be observed when administering oxycodone with ziprasidone. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. There are case reports of serotonin syndrome with use of ziprasidone postmarketing but causality is not established. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Zolmitriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering oxycodone with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risks and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Minor) Zolmitriptan can delay the Tmax of acetaminophen by one hour. A single 1 g dose of acetaminophen does not alter the pharmacokinetics of zolmitriptan and its active metabolite. The interaction between zolmitriptan and acetaminophen is not likely to be clinically significant.
Zolpidem: (Major) Concomitant use of oxycodone with zolpidem may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. In addition, sleep-related behaviors, such as sleep-driving, are more likely to occur during concurrent use of zolpidem and other CNS depressants than with zolpidem alone. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If zolpidem is used concurrently with oxycodone, a reduced dosage of oxycodone and/or zolpidem is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. For Intermezzo brand of sublingual zolpidem tablets, reduce the dose to 1.75 mg/night. Monitor for sedation and respiratory depression.

How Supplied

Endocet/Nalocet/Oxycodone Hydrochloride, Acetaminophen/Oxycodone, Acetaminophen/Percocet/Perloxx/Primalev/Primlev/Prolate/Roxicet Oral Tab: 10-300mg, 10-325mg, 2.5-300mg, 2.5-325mg, 5-300mg, 5-325mg, 7.5-300mg, 7.5-325mg
Oxycodone Hydrochloride, Acetaminophen/Oxycodone, Acetaminophen/Prolate/Roxicet Oral Sol: 5mL, 10-300mg, 5-325mg

Maximum Dosage
Adults

Immediate-release formulations: Acetaminophen 4 g/day PO; the maximum dose of the acetaminophen; oxycodone combination is limited by the total daily limit of acetaminophen.
Extended-release tablets: 4 tablets/day PO. Total daily dose of acetaminophen from all products should not exceed 4 g/day PO.

Geriatric

Immediate-release formulations: Acetaminophen 4 g/day PO; the maximum dose of the acetaminophen; oxycodone combination is limited by the total daily limit of acetaminophen.
Extended-release tablets: 4 tablets/day PO. Total daily dose of acetaminophen from all products should not exceed 4 g/day PO.

Adolescents

Immediate-release formulations: Safety and efficacy have not been established. Doses containing up to acetaminophen 4 g/day PO have been used. The maximum dose of the acetaminophen; oxycodone combination is limited by the total daily limit of acetaminophen.
Extended-release tablets: Safety and efficacy have not been established.

Children

Immediate-release formulations: Safety and efficacy have not been established. Doses up to acetaminophen 75 mg/kg/day PO or 4 g/day PO, whichever is less, have been used. The maximum dose of the acetaminophen; oxycodone combination is limited by the total daily limit of acetaminophen.
Extended-release tablets: Safety and efficacy have not been established.

Infants

Safety and efficacy have not been established.

Neonates

Safety and efficacy have not been established.

Mechanism Of Action

Mechanism of Action: Acetaminophen-oxycodone combination produces analgesia through two different mechanisms leading to a synergistic analgesic effect.•Oxycodone: Oxycodone is a potent µ-opiate receptor agonist. Opioid analgesia is mediated through changes in the perception of pain at the spinal cord and higher levels in the CNS. Opioids also alter the emotional response to pain. The stimulatory effects of opioids are the result of 'disinhibition' as the release of inhibitory neurotransmitters such as GABA and acetylcholine is blocked.•Acetaminophen: Acetaminophen acts primarily in the CNS and increases the pain threshold by inhibiting cyclooxygenase, an enzyme involved in prostaglandin (PG) synthesis. Acetaminophen inhibits both isoforms of cyclooxygenase, COX-1 and COX-2, but does so centrally; acetaminophen does not inhibit PG synthesis in peripheral tissues, which is the reason for its lack of peripheral anti-inflammatory effects. The antipyretic activity of acetaminophen is exerted by blocking the effects of endogenous pyrogen on the hypothalamic heat-regulating center via inhibition of PG synthesis.

Pharmacokinetics

Acetaminophen; oxycodone is administered orally. Both acetaminophen and oxycodone are metabolized in the liver via cytochrome P450 (CYP) isoenzymes and excreted through the kidney. Administration of other drugs which affect these isoenzymes may affect the efficacy and incidence of adverse reactions from the acetaminophen-oxycodone combination.
Oxycodone: The metabolism of oxycodone is mediated through CYP2D6.
Acetaminophen: Acetaminophen primarily undergoes glucuronidation and sulfate conjugation; however, a small percentage of the dose is metabolized via CYP2E1 and CYP1A2 to a hepatotoxic metabolite. The elimination half-life of this compound is approximately 4 hours. Depletion of glucuronide and sulfate stores due to chronic ethanol use or acute acetaminophen overdose may increase oxidative metabolism of acetaminophen leading to hepatotoxicity.

Oral Route

For immediate-release formulations, the onset of analgesia is within 30 minutes with peak analgesic effects in about 90 minutes. The duration of analgesia is 3—4 hours. After administration of the extended-release tablets, maximum plasma concentrations of acetaminophen and oxycodone occur in approximately 1 and 3 hours, respectively. Steady state concentrations are achieved within 24 hours of initiation.

Pregnancy And Lactation
Pregnancy

Acetaminophen; oxycodone products are not preferred for use during breast-feeding because of the potential for serious adverse events, including excess sedation and respiratory depression from the opioid in the breastfed infant. Guidelines recommend reserving opioid use postpartum when other modalities (e.g., acetaminophen, NSAIDs such as ibuprofen) are inadequate, and, if used, single-agent opioids with short durations of action are preferred, and should be used at the lowest possible dose for the shortest possible duration. Combination acetaminophen-opioid products are not preferred since patients often already have acetaminophen "as needed" orders and daily limits of acetaminophen should not be exceeded. There have been rare reports of somnolence and lethargy in infants of nursing mothers taking acetaminophen; oxycodone. Oxycodone is excreted in breast milk in low concentrations. There is no information available on the effects of oxycodone on milk production. If an infant is exposed to oxycodone through breast milk, monitor for excessive sedation and respiratory depression. Withdrawal symptoms can occur in breastfed infants when opioid use by the lactating individual is stopped or when breast-feeding is discontinued. Medical experts regard acetaminophen (as a single drug) as usually compatible with breast-feeding and as a first-line choice when used alone for analgesia, headache or fever in the lactating individual, including for those patients who are immediately postpartum and planning to breastfeed. Amounts present in milk are much less than the doses usually given to infants, and adverse effects in breastfed infants appear to be rare.[27500]  Limited published studies report acetaminophen passes rapidly into human milk with similar concentrations in the milk and plasma. Average and maximum neonatal doses of 1% and 2%, respectively, of the weight-adjusted maternal dose are reported after a single oral dose of 1,000 mg. There is one well-documented report of rash occurring in a breastfed infant that resolved with drug discontinuation and recurred with resumption.[42289] A retrospective study compared central nervous system (CNS) depression in breast-feeding infants of mothers receiving oxycodone (n = 139), codeine (n = 210), or acetaminophen (n = 184). Symptoms of CNS depression were determined through questionnaires completed by the mothers. CNS depression was significantly higher in breastfed infants exposed to oxycodone compared to acetaminophen (20.1% vs. 0.5%, p less than 0.0001) and was not significantly different compared to infants exposed to codeine (16.7%, p more than 0.05). The median doses of both oxycodone and codeine in the mothers with infants that experienced symptoms were significantly higher compared to those that did not (oxycodone 0.4 mg/kg/day vs. 0.15 mg/kg/day, p = 0.0005; codeine 1.4 mg/kg/day vs. 0.9 mg/kg/day, p less than 0.001).