Saphris

Browse PDR's full list of drug information

Saphris

Classes

Multi-Acting Receptor-Targeted Antipsychotics (MARTA)

Administration
Oral Administration Oral Solid Formulations

Sublingual tablets
Remove the sublingual tablet from the package just prior to administration. Open the tablet pack by peeling back the colored tab. Do not push the tablets through the tablet pack.
Gently remove the tablet using dry hands.
After removal from the packaging, place the tablet under the patient's tongue where it will dissolve within seconds and can then be swallowed with saliva.
Advise patients not to chew, crush, or swallow the tablets.
Advise patients to avoid eating or drinking for 10 minutes after administration.

Topical Administration Transdermal Patch Formulations

Asenapine transdermal system (Secuado):
Apply once daily and wear for 24 hours only.
Instruct patients to wear only 1 transdermal system at any time.
Do not cut open the pouch until ready to apply the transdermal system and do not use if the individual pouch seal is broken or if it appears damaged.
Do not cut the transdermal system; the entire patch should be applied.
Apply to clean, dry, and intact skin at the selected application site. Application sites include the upper arm, upper back, abdomen, or hip.
Rotate the patch application site. Apply the transdermal system to a different application site each time a new patch is applied to minimize skin reactions. Increased skin irritation may occur if the patch is applied for a longer period than instructed or if the same application site is used repeatedly.
If the transdermal system lifts at the edges, reattach by pressing firmly and smoothing down the edges of the system. If the transdermal system comes off completely, apply a new transdermal system.
If irritation or a burning sensation occurs during use of the patch, remove the patch and apply a new one to a new application site.
Showering is permitted; however, use of the transdermal system during swimming or taking a bath has not been evaluated.
Do not apply external heat sources (e.g., heating pad) over the transdermal system since prolonged heat increases asenapine plasma concentrations.
Disposal: Remove the old patch before a new patch is applied. Fold the used transdermal system so that the adhesive side sticks to itself, then safely discard.

Adverse Reactions
Severe

suicidal ideation / Delayed / 1.0-4.0
visual impairment / Early / 0.1-0.9
seizures / Delayed / 0-0.3
torticollis / Delayed / Incidence not known
tardive dyskinesia / Delayed / Incidence not known
neuroleptic malignant syndrome / Delayed / Incidence not known
diabetic ketoacidosis / Delayed / Incidence not known
bradycardia / Rapid / Incidence not known
agranulocytosis / Delayed / Incidence not known
stroke / Early / Incidence not known
angioedema / Rapid / Incidence not known
anaphylactoid reactions / Rapid / Incidence not known
water intoxication / Delayed / Incidence not known
SIADH / Delayed / Incidence not known

Moderate

hypertriglyceridemia / Delayed / 1.9-15.2
hyperglycemia / Delayed / 0-11.4
akathisia / Delayed / 1.0-11.0
erythema / Early / 9.3-9.8
hypercholesterolemia / Delayed / 0-8.7
constipation / Delayed / 4.0-7.0
sinus tachycardia / Rapid / 0-3.0
hypertension / Early / 2.0-3.0
peripheral edema / Delayed / 3.0-3.0
hyperprolactinemia / Delayed / 0-2.6
elevated hepatic enzymes / Delayed / 0-2.5
depression / Delayed / 2.0-2.0
pseudoparkinsonism / Delayed / 1.0-2.0
glossitis / Early / 0.1-1.0
dehydration / Delayed / 1.0-1.0
orthostatic hypotension / Delayed / 0-1.0
dyspnea / Early / 1.0-1.0
hyponatremia / Delayed / 0-1.0
dysarthria / Delayed / 0.1-0.9
bundle-branch block / Early / 0.1-0.9
anemia / Delayed / 0.1-0.9
urinary incontinence / Early / 0.1-0.9
blurred vision / Early / 0.1-0.9
dysphagia / Delayed / 0-0.2
thrombocytopenia / Delayed / 0-0.1
oral ulceration / Delayed / Incidence not known
dystonic reaction / Delayed / Incidence not known
dyskinesia / Delayed / Incidence not known
hyperthermia / Delayed / Incidence not known
hyperinsulinemia / Early / Incidence not known
hypotension / Rapid / Incidence not known
QT prolongation / Rapid / Incidence not known
leukopenia / Delayed / Incidence not known
neutropenia / Delayed / Incidence not known
wheezing / Rapid / Incidence not known
edema / Delayed / Incidence not known
contact dermatitis / Delayed / Incidence not known
hyperlipidemia / Delayed / Incidence not known

Mild

drowsiness / Early / 3.0-53.0
paresthesias / Delayed / 0.1-30.0
insomnia / Early / 3.0-16.0
weight gain / Delayed / 2.0-14.7
fatigue / Early / 3.0-14.0
headache / Early / 9.0-12.0
dizziness / Early / 3.0-11.0
appetite stimulation / Delayed / 0-10.0
vomiting / Early / 0-7.0
hypoesthesia / Delayed / 4.0-7.0
dysgeusia / Early / 3.0-6.0
nausea / Early / 6.0-6.0
abdominal pain / Early / 6.0-6.0
pruritus / Rapid / 3.9-4.9
dyspepsia / Early / 1.0-4.0
hypersalivation / Early / 0-4.0
anxiety / Delayed / 4.0-4.0
dental pain / Delayed / 3.0-3.0
diarrhea / Early / 1.0-3.0
xerostomia / Early / 1.0-3.0
arthralgia / Delayed / 3.0-3.0
infection / Delayed / 1.0-3.0
pharyngitis / Delayed / 1.0-3.0
musculoskeletal pain / Early / 2.0-2.0
myalgia / Early / 0-2.0
irritability / Delayed / 1.0-2.0
nasal congestion / Early / 1.0-2.0
fever / Early / 0-1.0
dysmenorrhea / Delayed / 1.0-1.0
syncope / Early / 0-1.0
rash / Early / 1.0-1.0
photosensitivity / Delayed / 0.1-0.9
diplopia / Early / 0.1-0.9
gastroesophageal reflux / Delayed / 0-0.1
tremor / Early / Incidence not known
hypothermia / Delayed / Incidence not known
skin hyperpigmentation / Delayed / Incidence not known
skin discoloration / Delayed / Incidence not known
skin irritation / Early / Incidence not known
xerosis / Delayed / Incidence not known
maculopapular rash / Early / Incidence not known
polydipsia / Early / Incidence not known

Boxed Warning
Dementia, geriatric, stroke

Antipsychotics are not approved for the treatment of dementia-related psychosis in geriatric patients and the use of asenapine in this population should be avoided if possible due to an increase in morbidity and mortality in elderly patients with dementia receiving antipsychotics. Deaths have typically resulted from heart failure, sudden death, or infections (primarily pneumonia). An increased incidence of cerebrovascular adverse events (e.g., stroke, transient ischemic attack), including fatal events, has also been reported. In geriatric patients with psychosis, asenapine concentrations (exposures) are higher compared to younger adults. The Beers Criteria consider antipsychotics to be potentially inappropriate medications (PIMs) in elderly patients except for treating schizophrenia, bipolar disorder, and nausea/vomiting during chemotherapy. The Beers panel recommends avoiding antipsychotics in geriatric patients with delirium, dementia, or Parkinson's disease. Non-pharmacological strategies are first-line options for treating delirium- or dementia-related behavioral problems unless they have failed or are not possible and the patient is a substantial threat to self or others. If antipsychotic use is necessary in geriatrics with a history of falls or fractures, consider reducing the use of other CNS depressants and implement other fall risk strategies. Due to the potential for antipsychotic-induced hyponatremia and SIADH, sodium levels should be closely monitored when asenapine is initiated and after dose changes. According to the federal Omnibus Budget Reconciliation Act (OBRA) regulations in residents of long-term care facilities, antipsychotic therapy should only be initiated in a patient with behavioral or psychological symptoms of dementia (BPSD) when the patient is a danger to self or others or has symptoms due to mania or psychosis. For acute conditions persisting beyond 7 days, appropriate non-pharmacologic interventions must be attempted, unless clinically contraindicated and documented. OBRA provides general dosing guidance for antipsychotic treatment of BPSD. Antipsychotics are subject to periodic review for effectiveness, medical necessity, gradual dose reduction (GDR), or rationale for continued use. Refer to the OBRA guidelines for complete information.

Common Brand Names

Saphris, SECUADO

Dea Class

Rx

Description

Atypical antipsychotic; sublingual and transdermal forms
Sublingual tablet is used for the treatment of schizophrenia in adults, manic or mixed episodes and maintenance treatment of bipolar I disorder in adults, and for acute mania in pediatric patients 10 years and older; transdermal system is used for schizophrenia in adults
Appears to have low risk of QT prolongation; as with all antipsychotics, boxed warning for increased mortality risk in elderly patients with dementia-related psychosis

Dosage And Indications
For the treatment of schizophrenia. Sublingual dosage Adults

For acute treatment, the initial and target dose is 5 mg SL twice daily. Doses above 10 mg/day were associated with a clear increase in adverse events with no added benefit. For maintenance treatment give 5 mg SL twice daily; may increase to 10 mg SL twice daily after 1 week if needed/tolerated. Max: 20 mg/day SL. Periodically assess the need for continued treatment. There is limited experience in geriatric patients; monitor closely due to the possibility for poor tolerance, including orthostasis.

Transdermal dosage Adults

Initially, apply 3.8 mg/24 hours transdermally. May increase to 5.7 mg/24 hours or 7.6 mg/24 hours if needed after 1 week. Max: One 7.6 mg/24 hours patch per day. One short-term trial suggested no additional benefit of the 7.6 mg/24 hour dosage and there was an increase in certain adverse reactions. Periodically assess the need for continued treatment. SWITCHING FROM SL THERAPY: Based on average exposure to asenapine, the 3.8 mg/24 hours transdermal system corresponds to 5 mg SL twice daily. The 7.6 mg/24 hours transdermal system corresponds to 10 mg SL twice daily.

For the treatment of bipolar disorder (bipolar I disorder), including mania or mixed episodes. Sublingual dosage (monotherapy) Adults

5 to 10 mg sublingually twice daily. Adjust dose based on clinical response and tolerability.

Children and Adolescents 10 to 17 years

2.5 mg sublingually twice daily for 3 days, then 5 mg sublingually twice daily for 3 days, and then 10 mg sublingually twice daily. Adjust dose based on clinical response and tolerability.

Sublingual dosage (adjunctive therapy) Adults

5 mg sublingually twice daily, initially, when administered with either lithium or valproate. Adjust dose based on clinical response and tolerability. Max: 10 mg PO twice daily.

For the treatment of severe behavioral or psychological symptoms of dementia†. Oral dosage Geriatric Adults

Dosage not established.  According to the Agency for Healthcare Research and Quality (AHRQ) atypical antipsychotic review in 2011, asenapine had not been studied as an off-label treatment for behavioral disturbances associated with dementia. Antipsychotics are not FDA-approved for this indication and the labeling of all antipsychotics contains a boxed warning noting an increased risk of death in geriatric patients being treated for behavioral problems associated with dementia. The federal Omnibus Budget Reconciliation Act (OBRA) regulates the use of antipsychotics in long-term care facility (LTCF) residents with dementia-related behavioral symptoms. Specific criteria for treatment must be met, and adherence to daily dose thresholds for each antipsychotic is required, except when documentation is provided showing that higher doses are necessary to maintain or improve the resident's functional status. No OBRA Max asenapine dosing guidance is available due to a lack of data to assess the safety or efficacy of asenapine in older adults with dementia. For all antipsychotics, the facility must attempt a gradual dose reduction (GDR) in 2 separate quarters, at least 1 month apart, within the first year of admission to the facility or after the facility has initiated an antipsychotic, unless clinically contraindicated. After the first year, a GDR must be attempted annually unless clinically contraindicated. The GDR may be considered clinically contraindicated if the target symptoms returned or worsened after the most recent GDR attempt within the facility and the physician has documented justification for why attempting additional dose reductions at that time would likely impair the resident's function or increase distressed behavior.

†Indicates off-label use

Dosing Considerations
Hepatic Impairment

Mild to moderate impairment (Child-Pugh Class A or B): No dosage adjustment is required.
Severe impairment (Child-Pugh Class C): Asenapine use is contraindicated. Patients with severe hepatic dysfunction experienced mean exposures of asenapine that were 7 times higher than those in patients with normal hepatic function.

Renal Impairment

No dosage adjustment is needed.
 
Hemodialysis
The effect of dialysis on the clearance of asenapine has not been studied.

Drug Interactions

Acarbose: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Acebutolol: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of acebutolol. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known; the acebutolol dosage may need to be adjusted.
Acetaminophen; Aspirin; Diphenhydramine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Acetaminophen; Caffeine; Dihydrocodeine: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking asenapine. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Acetaminophen; Chlorpheniramine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Acetaminophen; Chlorpheniramine; Dextromethorphan: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Acetaminophen; Chlorpheniramine; Phenylephrine : (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Acetaminophen; Codeine: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking asenapine. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Acetaminophen; Dextromethorphan; Doxylamine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Acetaminophen; Dichloralphenazone; Isometheptene: (Moderate) Drugs that can cause CNS depression, including dichloralphenazone, can increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness if used concomitantly with atypical antipsychotics.
Acetaminophen; Diphenhydramine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Acetaminophen; Hydrocodone: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking asenapine. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Acetaminophen; Oxycodone: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Adagrasib: (Major) Concomitant use of adagrasib and asenapine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Alfentanil: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Alfuzosin: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect, such as alfuzosin. Based on electrophysiology studies performed by the manufacturer, alfuzosin has a slight effect to prolong the QT interval. The QT prolongation appeared less with alfuzosin 10 mg than with 40 mg. The manufacturer warns that the QT effect of alfuzosin should be considered prior to administering the drug to patients taking other medications known to prolong the QT interval.
Aliskiren: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Alogliptin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Alogliptin; Metformin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Alogliptin; Pioglitazone: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Alpha-blockers: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Alpha-glucosidase Inhibitors: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Alprazolam: (Moderate) Drugs that can cause CNS depression, if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when asenapine is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics (including barbiturates), buprenorphine, buprenorphine; naloxone, butorphanol, dronabinol, THC, nabilone, nalbuphine, opiate agonists, pentazocine, acetaminophen; pentazocine, aspirin, ASA; pentazocine, and pentazocine; naloxone.
Ambrisentan: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Amifampridine: (Major) Carefully consider the need for concomitant treatment with atypical antipsychotics and amifampridine, as coadministration may increase the risk of seizures. If coadministration occurs, closely monitor patients for seizure activity. Seizures have been observed in patients without a history of seizures taking amifampridine at recommended doses. Atypical antipsychotics may increase the risk of seizures.
Amiloride: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Amiodarone: (Major) Avoid coadministration of amiodarone and asenapine. Both agents have been associated with QT prolongation and coadministration may result in additive effects on the QT interval. In addition, in vitro studies indicate that CYP1A2 is a primary metabolic pathway of asenapine. Inhibitors of this isoenzyme, such as amiodarone, may decrease the elimination of asenapine.
Amisulpride: (Major) Avoid coadministration of amisulpride and asenapine due to the potential for additive QT prolongation. Asenapine has been associated with QT prolongation. Amisulpride causes dose- and concentration- dependent QT prolongation.
Amitriptyline: (Moderate) Concurrent use of asenapine and tricyclic antidepressants should be avoided if possible. Asenapine has been associated with a risk for QT prolongation and torsade de pointes, and tricyclics at elevated serum concentrations may produce clinically significant prolongation of the QTc interval. In addition, there is a potential for other interactions, such as augmentation of CNS impairment or orthostatic hypotension. Further, in vitro studies indicate that CYP1A2 and CYP3A4 are involved in the metabolism of asenapine. Inhibitors of these isoenzymes such as imipramine may decrease the elimination of asenapine. During co-administration of a single 75 mg dose of imipramine and a single 5 mg dose of asenapine, the Cmax of asenapine was increased by 17% and the AUC was increased by 10%. No asenapine dose adjustments are required during combined use.
Amlodipine: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Amlodipine; Atorvastatin: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Amlodipine; Benazepril: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Amlodipine; Celecoxib: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Amlodipine; Olmesartan: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Amlodipine; Valsartan: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Amobarbital: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Amoxapine: (Moderate) Use caution during co-administration of amoxapine and asenapine. Amoxapine exhibits some antipsychotic activity and may increase the risk of tardive dyskinesia or neuroleptic malignant syndrome (NMS) when antipsychotics are given concurrently. CNS effects, orthostatic hypotension, anticholinergic effects, and lowering of seizure threshold are potential problems with the combined use of amoxapine and antipsychotics.
Amoxicillin; Clarithromycin; Omeprazole: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect, such as clarithromycin. Clarithromycin is associated with an established risk for QT prolongation and torsades de pointes (TdP).
Anagrelide: (Major) Torsades de pointes (TdP) and ventricular tachycardia have been reported during post-marketing use of anagrelide. A cardiovascular examination, including an ECG, should be obtained in all patients prior to initiating anagrelide therapy. Monitor patients during anagrelide therapy for cardiovascular effects and evaluate as necessary. Drugs with a possible risk for QT prolongation and TdP that should be used cautiously and with close monitoring with anagrelide include asenapine.
Angiotensin II receptor antagonists: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Angiotensin-converting enzyme inhibitors: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Apomorphine: (Major) Avoid use of apomorphine and asenapine together if possible due to a risk for additive QT prolongation and sedation. Also, apomorphine and asenapine can reduce the effectiveness of each other through opposing effects on dopamine. Addtive CNS effects are also possible. Dose-related QTc prolongation is associated with therapeutic apomorphine exposure. Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to cause QT prolongation, such as apomorphine. In general, atypical antipsychotics are less likely to interfere with Parkinson's disease treatments than traditional antipsychotics. Monitor for movement disorders, unusual changes in moods or behavior, sedation, fast, irregular heartbeat, and diminished effectiveness of either agent if coadministration cannot be avoided.
Aprepitant, Fosaprepitant: (Moderate) Use caution if asenapine and a multi-day regimen of oral aprepitant are used concurrently and monitor for an increase in asenapine-related adverse effects for several days after administration. Asenapine is a CYP3A4 substrate in vitro. Aprepitant, when administered as a 3-day oral regimen (125 mg/80 mg/80 mg), is a moderate CYP3A4 inhibitor and inducer and may increase plasma concentrations of asenapine. For example, a 5-day oral aprepitant regimen increased the AUC of another CYP3A4 substrate, midazolam (single dose), by 2.3-fold on day 1 and by 3.3-fold on day 5. After a 3-day oral aprepitant regimen, the AUC of midazolam (given on days 1, 4, 8, and 15) increased by 25% on day 4, and then decreased by 19% and 4% on days 8 and 15, respectively. As a single 125 mg or 40 mg oral dose, the inhibitory effect of aprepitant on CYP3A4 is weak, with the AUC of midazolam increased by 1.5-fold and 1.2-fold, respectively. After administration, fosaprepitant is rapidly converted to aprepitant and shares many of the same drug interactions. However, as a single 150 mg intravenous dose, fosaprepitant only weakly inhibits CYP3A4 for a duration of 2 days; there is no evidence of CYP3A4 induction. Fosaprepitant 150 mg IV as a single dose increased the AUC of midazolam (given on days 1 and 4) by approximately 1.8-fold on day 1; there was no effect on day 4. Less than a 2-fold increase in the midazolam AUC is not considered clinically important.
Aripiprazole: (Major) Avoid concomitant use of aripiprazole and asenapine. If use is necessary, patients who are receiving both a CYP3A inhibitor plus asenapine may require an aripiprazole dosage adjustment. Dosing recommendations vary based on aripiprazole dosage form and CYP3A inhibitor strength. See prescribing information for details. Concomitant use may increase the risk for QT prolongation and torsade de pointes (TdP), and may increase aripiprazole exposure and the risk for other aripiprazole-related adverse effects. Aripiprazole is a CYP3A and CYP2D6 substrate; asenapine is a weak CYP2D6 inhibitor. Both medications have been associated with QT prolongation and TdP. Both antipsychotic medications may affect coordination, reaction time, or judgment.
Arsenic Trioxide: (Major) If possible, drugs that are known to prolong the QT interval, such as asenapine, should be discontinued prior to initiating arsenic trioxide therapy. QT prolongation should be expected with the administration of arsenic trioxide. Torsade de pointes (TdP) and complete atrioventricular block have been reported. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect.
Artemether; Lumefantrine: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect. The administration of artemether; lumefantrine is associated with prolongation of the QT interval. Although there are no studies examining the effects of artemether; lumefantrine in patients receiving other QT prolonging drugs, coadministration of such drugs may result in additive QT prolongation and should be avoided. Consider ECG monitoring if asenapine must be used with or after artemether; lumefantrine treatment.
Aspirin, ASA; Butalbital; Caffeine: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Aspirin, ASA; Carisoprodol; Codeine: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking asenapine. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Aspirin, ASA; Oxycodone: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Atazanavir: (Moderate) Caution is warranted when atazanavir is administered with asenapine as there is a potential for increased aspenapine concentrations. Asenapine is a substrate of CYP3A4. Atazanavir is an inhibitor of CYP3A4. In addition, asenapine is substrate for uridine glucoronyltransferase (UGT); atazanavir is a UGT1A1 inhibitor.
Atazanavir; Cobicistat: (Moderate) Caution is warranted when atazanavir is administered with asenapine as there is a potential for increased aspenapine concentrations. Asenapine is a substrate of CYP3A4. Atazanavir is an inhibitor of CYP3A4. In addition, asenapine is substrate for uridine glucoronyltransferase (UGT); atazanavir is a UGT1A1 inhibitor. (Moderate) Caution is warranted when cobicistat is administered with asenapine as there is a potential for increased aspenapine concentrations. Asenapine is a substrate of CYP3A4 and CYP2D6. Cobicistat is an inhibitor of CYP3A4 and CYP2D6.
Atenolol: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of atenolol. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known; the atenolol dosage may need to be adjusted.
Atenolol; Chlorthalidone: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known. (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of atenolol. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known; the atenolol dosage may need to be adjusted.
Atomoxetine: (Major) Concomitant use of asenapine and atomoxetine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Atropine; Difenoxin: (Moderate) Drugs that can cause CNS depression, if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when asenapine is given in combination with other centrally-acting medications including opiate agonists.
Azilsartan: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Azilsartan; Chlorthalidone: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Azithromycin: (Major) Avoid coadministration of azithromycin with asenapine due to the increased risk of QT prolongation. If use together is necessary, obtain an ECG at baseline to assess initial QT interval and determine frequency of subsequent ECG monitoring, avoid any non-essential QT prolonging drugs, and correct electrolyte imbalances. QT prolongation and torsade de pointes (TdP) have been spontaneously reported during azithromycin postmarketing surveillance. Asenapine has been associated with QT prolongation.
Barbiturates: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Bedaquiline: (Major) Concurrent use of asenapine and bedaquiline should be avoided due to an increased risk for QT prolongation and torsade de pointes (TdP). Both drugs have been associated with QT prolongation. Prior to initiating bedaquiline, obtain serum electrolyte concentrations and a baseline ECG. An ECG should also be performed at least 2, 12, and 24 weeks after starting bedaquiline therapy.
Belladonna; Opium: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Benazepril: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Benzhydrocodone; Acetaminophen: (Major) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Benzodiazepines: (Moderate) Drugs that can cause CNS depression, if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when asenapine is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics (including barbiturates), buprenorphine, buprenorphine; naloxone, butorphanol, dronabinol, THC, nabilone, nalbuphine, opiate agonists, pentazocine, acetaminophen; pentazocine, aspirin, ASA; pentazocine, and pentazocine; naloxone.
Betaxolol: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of betaxolol. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known; the betaxolol dosage may need to be adjusted.
Bismuth Subcitrate Potassium; Metronidazole; Tetracycline: (Major) Concomitant use of metronidazole and asenapine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Bismuth Subsalicylate; Metronidazole; Tetracycline: (Major) Concomitant use of metronidazole and asenapine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Bisoprolol: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of bisoprolol. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known; the bisoprolol dosage may need to be adjusted.
Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known. (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of bisoprolol. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known; the bisoprolol dosage may need to be adjusted.
Brexpiprazole: (Major) Caution is advisable during concurrent use of brexpiprazole with other antipsychotics such as asenapine. The risk of drowsiness, dizziness, hypotension, extrapyramidal symptoms, anticholinergic effects, neuroleptic malignant syndrome, or seizures may be increased during combined use; therefore, it may be advisable to initiate treatment with lower dosages if combination therapy is deemed necessary.
Brimonidine; Timolol: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of timolol. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known; the timolol dosage may need to be adjusted.
Bromocriptine: (Moderate) The effectiveness of bromocriptine may be reduced by most of the atypical antipsychotics, via their action as dopamine antagonists. Monitor the patient for reduced response to bromocriptine. The atypical antipsychotics elevate prolactin to various degrees. Atypical antipsychotics may also aggravate diabetes mellitus and cause metabolic changes including hyperglycemia; use caution if bromocriptine is taken for diabetes. If bromocriptine is taken for diabetes, monitor for worsening glycemic control.
Brompheniramine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Brompheniramine; Dextromethorphan; Phenylephrine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Brompheniramine; Phenylephrine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Brompheniramine; Pseudoephedrine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Brompheniramine; Pseudoephedrine; Dextromethorphan: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Bumetanide: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Buprenorphine: (Major) Buprenorphine should be avoided in combination with asenapine. Asenapine has been associated with QT prolongation. Buprenorphine has also been associated with QT prolongation and has a possible risk of torsade de pointes (TdP). The manufacturer of asenapine recommends avoiding coadministration with with other agents also known to prolong the QT interval. FDA-approved labeling for some buprenorphine products recommend avoiding use with Class 1A and Class III antiarrhythmic medications while other labels recommend avoiding use with any drug that has the potential to prolong the QT interval. If these drugs are used together, consider the potential for additive effects on the QT interval.
Buprenorphine; Naloxone: (Major) Buprenorphine should be avoided in combination with asenapine. Asenapine has been associated with QT prolongation. Buprenorphine has also been associated with QT prolongation and has a possible risk of torsade de pointes (TdP). The manufacturer of asenapine recommends avoiding coadministration with with other agents also known to prolong the QT interval. FDA-approved labeling for some buprenorphine products recommend avoiding use with Class 1A and Class III antiarrhythmic medications while other labels recommend avoiding use with any drug that has the potential to prolong the QT interval. If these drugs are used together, consider the potential for additive effects on the QT interval.
Bupropion: (Major) Bupropion is associated with a dose-related risk of seizures. Extreme caution is recommended during concurrent use of other drugs that may lower the seizure threshold such as antipsychotics. The manufacturer of bupropion recommends low initial dosing and slow dosage titration if this combination must be used; the patient should be closely monitored.
Bupropion; Naltrexone: (Major) Bupropion is associated with a dose-related risk of seizures. Extreme caution is recommended during concurrent use of other drugs that may lower the seizure threshold such as antipsychotics. The manufacturer of bupropion recommends low initial dosing and slow dosage titration if this combination must be used; the patient should be closely monitored.
Buspirone: (Moderate) Monitor for signs and symptoms of serotonin syndrome, particularly during treatment initiation and dosage increase, during concomitant atypical antipsychotic and buspirone use. If serotonin syndrome occurs, discontinue therapy. Concomitant use increases the risk for serotonin syndrome.
Butabarbital: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Butalbital; Acetaminophen: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Butalbital; Acetaminophen; Caffeine: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Butalbital; Acetaminophen; Caffeine; Codeine: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking asenapine. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Butalbital; Aspirin; Caffeine; Codeine: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking asenapine. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Butorphanol: (Moderate) Drugs that can cause CNS depression, if used concomitantly with asenapine, may increase adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when asenapine is given in combination with butorphanol.
Cabergoline: (Moderate) Cabergoline should not be coadministered with asenapine due to mutually antagonistic effects on dopaminergic function. The dopamine antagonist action of asenapine may diminish the prolactin-lowering ability of cabergoline while the dopamine agonist effects of cabergoline may exacerbate a psychotic disorder, reducing the effectiveness of antipsychotics such as asenapine.
Cabotegravir; Rilpivirine: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation; caution is advised when administering rilpivirine with other drugs that may prolong the QT or PR interval, such as asenapine.
Calcium-channel blockers: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Canagliflozin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Canagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Candesartan: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Cannabidiol: (Moderate) Monitor for excessive sedation and somnolence during coadministration of cannabidiol and asenapine. Concurrent use may result in additive CNS depression.
Captopril: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Captopril; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Carbamazepine: (Moderate) Drugs that can cause significant CNS effects such as drowsiness and dizziness, such as carbamazepine, if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Carbamazepine has been tested and has been found to have no clinically significant pharmacokinetic interaction with asenapine; no dosage adjustment is necessary based on pharmacokinetics.
Carbidopa; Levodopa: (Moderate) Monitor for movement disorders, unusual changes in moods or behavior, and diminished effectiveness of the atypical antipsychotic or levodopa during coadministration. Due to mutually opposing effects on dopamine, atypical antipsychotics and levodopa may interfere with the effectiveness of each other. In general, atypical antipsychotics are less likely to interfere with levodopa and other antiparkinson's treatments than traditional antipsychotics.
Carbidopa; Levodopa; Entacapone: (Moderate) Monitor for movement disorders, unusual changes in moods or behavior, and diminished effectiveness of the atypical antipsychotic or COMT inhibitor during coadministration. Due to mutually opposing effects on dopamine, atypical antipsychotics and COMT inhibitors may interfere with the effectiveness of each other. In general, atypical antipsychotics are less likely to interfere with COMT inhibitors and other Parkinson's treatments than traditional antipsychotics. The Beers Criteria recognize quetiapine and clozapine as exceptions to the general recommendation to avoid all antipsychotics in older adults with Parkinson's disease. (Moderate) Monitor for movement disorders, unusual changes in moods or behavior, and diminished effectiveness of the atypical antipsychotic or levodopa during coadministration. Due to mutually opposing effects on dopamine, atypical antipsychotics and levodopa may interfere with the effectiveness of each other. In general, atypical antipsychotics are less likely to interfere with levodopa and other antiparkinson's treatments than traditional antipsychotics.
Carbinoxamine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Cariprazine: (Moderate) The risk of adverse effects may be increased during concurrent use of cariprazine with other antipsychotics, such as asenapine. Similar to other antipsychotics, cariprazine administration has been associated with drowsiness, dizziness, orthostatic hypotension, extrapyramidal symptoms, neuroleptic malignant syndrome, and seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. The incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, but the risk appears to be increased.
Carteolol: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of carteolol. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known; the carteolol dosage may need to be adjusted.
Carvedilol: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of carvedilol. The potential reduction in blood pressure can

precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known; the carvedilol dosage may need to be adjusted.
Celecoxib; Tramadol: (Moderate) Concomitant use of tramadol with asenapine may cause excessive sedation, somnolence, and increased risk of seizure. Limit the use of tramadol with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and seizures.
Cenobamate: (Moderate) Monitor for excessive sedation and somnolence during coadministration of cenobamate and asenapine. Concurrent use may result in additive CNS depression.
Central-acting adrenergic agents: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Ceritinib: (Major) Avoid coadministration of asenapine with ceritinib due to the risk of QT prolongation. Asenapine has been associated with QT prolongation. Concentration-dependent QT prolongation has also been reported with ceritinib treatment.
Cetirizine: (Moderate) Monitor for unusual drowsiness and sedation during coadministration of atypical antipsychotics and cetirizine due to the risk for additive CNS depression.
Cetirizine; Pseudoephedrine: (Moderate) Monitor for unusual drowsiness and sedation during coadministration of atypical antipsychotics and cetirizine due to the risk for additive CNS depression.
Cetrorelix: (Moderate) Antipsychotic-induced hyperprolactinemia results in down-regulation of the number of pituitary GnRH receptors and may interfere with the response to any of the gonadotropin-releasing hormone (GnRH) analogs including cetrorelix.
Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Chlorcyclizine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Chlordiazepoxide: (Moderate) Drugs that can cause CNS depression, if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when asenapine is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics (including barbiturates), buprenorphine, buprenorphine; naloxone, butorphanol, dronabinol, THC, nabilone, nalbuphine, opiate agonists, pentazocine, acetaminophen; pentazocine, aspirin, ASA; pentazocine, and pentazocine; naloxone.
Chlordiazepoxide; Amitriptyline: (Moderate) Concurrent use of asenapine and tricyclic antidepressants should be avoided if possible. Asenapine has been associated with a risk for QT prolongation and torsade de pointes, and tricyclics at elevated serum concentrations may produce clinically significant prolongation of the QTc interval. In addition, there is a potential for other interactions, such as augmentation of CNS impairment or orthostatic hypotension. Further, in vitro studies indicate that CYP1A2 and CYP3A4 are involved in the metabolism of asenapine. Inhibitors of these isoenzymes such as imipramine may decrease the elimination of asenapine. During co-administration of a single 75 mg dose of imipramine and a single 5 mg dose of asenapine, the Cmax of asenapine was increased by 17% and the AUC was increased by 10%. No asenapine dose adjustments are required during combined use. (Moderate) Drugs that can cause CNS depression, if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when asenapine is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics (including barbiturates), buprenorphine, buprenorphine; naloxone, butorphanol, dronabinol, THC, nabilone, nalbuphine, opiate agonists, pentazocine, acetaminophen; pentazocine, aspirin, ASA; pentazocine, and pentazocine; naloxone.
Chlordiazepoxide; Clidinium: (Moderate) Drugs that can cause CNS depression, if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when asenapine is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics (including barbiturates), buprenorphine, buprenorphine; naloxone, butorphanol, dronabinol, THC, nabilone, nalbuphine, opiate agonists, pentazocine, acetaminophen; pentazocine, aspirin, ASA; pentazocine, and pentazocine; naloxone.
Chloroquine: (Major) Avoid coadministration of chloroquine with asenapine due to the increased risk of QT prolongation. If use together is necessary, obtain an ECG at baseline to assess initial QT interval and determine frequency of subsequent ECG monitoring, avoid any non-essential QT prolonging drugs, and correct electrolyte imbalances. Chloroquine is associated with an increased risk of QT prolongation and torsade de pointes (TdP); the risk of QT prolongation is increased with higher chloroquine doses. Asenapine has also been associated with QT prolongation.
Chlorothiazide: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Chlorpheniramine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Chlorpheniramine; Codeine: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking asenapine. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Chlorpheniramine; Dextromethorphan: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking asenapine. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Chlorpheniramine; Hydrocodone: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking asenapine. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Chlorpheniramine; Phenylephrine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Chlorpheniramine; Pseudoephedrine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Chlorpromazine: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect. Chlorpromazine, a phenothiazine, is associated with an established risk of QT prolongation and torsade de pointes (TdP) and should be avoided in combination with asenapine. Coadministration of asenapine with phenothiazines, loxapine, thiothixene, molindone, pimozide, haloperidol, or other atypical agents (e.g., aripiprazole, lurasidone, and others) may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Chlorthalidone: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Chlorthalidone; Clonidine: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Ciprofloxacin: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer, asenapine should not be used with other agents also known to have this effect. Ciprofloxacin is associated with a possible risk for QT prolongation and torsade de pointes; therefore, caution is advised during combination therapy. In addition, in vitro studies indicate that CYP1A2 is a primary metabolic pathway of asenapine. In theory, inhibitors of this isoenzyme such as ciprofloxacin may decrease the elimination of asenapine.
Cisapride: (Contraindicated) Because of the potential for torsade de pointes (TdP), asenapine use is contraindicated with cisapride. Cisapride has a known risk for QT prolongation and is contraindicated for use with other drugs that may cause QT prolongation. Asenapine has been associated with QT prolongation.
Citalopram: (Major) Concurrent use of asenapine and citalopram should be avoided if possible. Citalopram causes dose-dependent QT interval prolongation and asenapine is associated with a possible risk for QT prolongation and torsade de pointes (TdP). According to the manufacturer of citalopram, concurrent use of citalopram with other drugs that prolong the QT interval is not recommended. However, if concurrent therapy is considered essential, ECG monitoring is recommended. In addition, citalopram is a weak inhibitor of CYP2D6, and increased plasma concentrations of antipsychotics partially metabolized via CYP2D6, such as asenapine, may occur. Decreased metabolism of asenapine may lead to adverse reactions such as extrapyramidal symptoms; however, because asenapine is metabolized by multiple CYP pathways, a clinically significant interaction is less likely to occur.
Clarithromycin: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect, such as clarithromycin. Clarithromycin is associated with an established risk for QT prolongation and torsades de pointes (TdP).
Clemastine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Clevidipine: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Clobazam: (Moderate) Clobazam, a benzodiazepine, should be combined cautiously with atypical antipsychotics because of the potential for additive CNS depressant effects. Antipsychotics may also lower the seizure threshold, which might effect the efficacy of clobazam to treat seizures. Clobazam is a weak inducer of CYP3A4 and may reduce the efficacy of atypical antipsychotics that are significantly metabolized by CYP3A4; consult the atypical antipsychotic product labeling for clinical relevance.
Clofazimine: (Major) Concomitant use of clofazimine and asenapine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Clomipramine: (Moderate) Concurrent use of asenapine and tricyclic antidepressants should be avoided if possible. Asenapine has been associated with a risk for QT prolongation and torsade de pointes, and tricyclics at elevated serum concentrations may produce clinically significant prolongation of the QTc interval. In addition, there is a potential for other interactions, such as augmentation of CNS impairment or orthostatic hypotension. Further, in vitro studies indicate that CYP1A2 and CYP3A4 are involved in the metabolism of asenapine. Inhibitors of these isoenzymes such as imipramine may decrease the elimination of asenapine. During co-administration of a single 75 mg dose of imipramine and a single 5 mg dose of asenapine, the Cmax of asenapine was increased by 17% and the AUC was increased by 10%. No asenapine dose adjustments are required during combined use.
Clonazepam: (Moderate) Drugs that can cause CNS depression, if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when asenapine is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics (including barbiturates), buprenorphine, buprenorphine; naloxone, butorphanol, dronabinol, THC, nabilone, nalbuphine, opiate agonists, pentazocine, acetaminophen; pentazocine, aspirin, ASA; pentazocine, and pentazocine; naloxone.
Clorazepate: (Moderate) Drugs that can cause CNS depression, if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when asenapine is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics (including barbiturates), buprenorphine, buprenorphine; naloxone, butorphanol, dronabinol, THC, nabilone, nalbuphine, opiate agonists, pentazocine, acetaminophen; pentazocine, aspirin, ASA; pentazocine, and pentazocine; naloxone.
Clozapine: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect, such as clozapine. Treatment with clozapine has been associated with QT prolongation, torsade de pointes (TdP), cardiac arrest, and sudden death. Coadministration of asenapine with clozapine may also increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Cobicistat: (Moderate) Caution is warranted when cobicistat is administered with asenapine as there is a potential for increased aspenapine concentrations. Asenapine is a substrate of CYP3A4 and CYP2D6. Cobicistat is an inhibitor of CYP3A4 and CYP2D6.
Codeine: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking asenapine. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Codeine; Guaifenesin: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking asenapine. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Codeine; Guaifenesin; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking asenapine. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Codeine; Phenylephrine; Promethazine: (Major) Asenapine has been associated with QT prolongation. Promethazine, a phenothiazine, is associated with a possible risk for QT prolongation. Due to the risk of additive QT prolongation and potential for serious arrhythmias, asenapine should be avoided in combination with other drugs having an association with QT prolongation. Co-administration of promethazine and antipsychotics may also increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. Although the incidence of tardive dyskinesia from these combinations has not been established and data are very limited, the risk may be increased during combined use versus use of an antipsychotic alone. (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking asenapine. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Codeine; Promethazine: (Major) Asenapine has been associated with QT prolongation. Promethazine, a phenothiazine, is associated with a possible risk for QT prolongation. Due to the risk of additive QT prolongation and potential for serious arrhythmias, asenapine should be avoided in combination with other drugs having an association with QT prolongation. Co-administration of promethazine and antipsychotics may also increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. Although the incidence of tardive dyskinesia from these combinations has not been established and data are very limited, the risk may be increased during combined use versus use of an antipsychotic alone. (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking asenapine. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
COMT inhibitors: (Moderate) Monitor for movement disorders, unusual changes in moods or behavior, and diminished effectiveness of the atypical antipsychotic or COMT inhibitor during coadministration. Due to mutually opposing effects on dopamine, atypical antipsychotics and COMT inhibitors may interfere with the effectiveness of each other. In general, atypical antipsychotics are less likely to interfere with COMT inhibitors and other Parkinson's treatments than traditional antipsychotics. The Beers Criteria recognize quetiapine and clozapine as exceptions to the general recommendation to avoid all antipsychotics in older adults with Parkinson's disease.
Crizotinib: (Major) Avoid coadministration of crizotinib with asenapine due to the risk of QT prolongation. Crizotinib has been associated with concentration-dependent QT prolongation. Asenapine has also been associated with QT prolongation.
Cyproheptadine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Dapagliflozin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Dapagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Dapagliflozin; Saxagliptin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Darunavir: (Moderate) Caution is warranted when darunavir is administered with asenapine as there is a potential for increased aspenapine concentrations. Asenapine is a substrate of CYP3A4 and CYP2D6. Darunavir is an inhibitor of CYP3A4 and CYP2D6.
Darunavir; Cobicistat: (Moderate) Caution is warranted when cobicistat is administered with asenapine as there is a potential for increased aspenapine concentrations. Asenapine is a substrate of CYP3A4 and CYP2D6. Cobicistat is an inhibitor of CYP3A4 and CYP2D6. (Moderate) Caution is warranted when darunavir is administered with asenapine as there is a potential for increased aspenapine concentrations. Asenapine is a substrate of CYP3A4 and CYP2D6. Darunavir is an inhibitor of CYP3A4 and CYP2D6.
Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Moderate) Caution is warranted when cobicistat is administered with asenapine as there is a potential for increased aspenapine concentrations. Asenapine is a substrate of CYP3A4 and CYP2D6. Cobicistat is an inhibitor of CYP3A4 and CYP2D6. (Moderate) Caution is warranted when darunavir is administered with asenapine as there is a potential for increased aspenapine concentrations. Asenapine is a substrate of CYP3A4 and CYP2D6. Darunavir is an inhibitor of CYP3A4 and CYP2D6.
Dasatinib: (Major) Avoid coadministration of dasatinib and asenapine due to the potential for QT prolongation. Asenapine has been associated with QT prolongation. In vitro studies have shown that dasatinib has the potential to prolong the QT interval.
Degarelix: (Major) Avoid using asenapine in combination with degarelix due to the potential for QT prolongation; coadministration may also reduce the efficacy of degarelix. Asenapine has been associated with QT prolongation. Androgen deprivation therapy (i.e., degarelix) may also prolong the QT/QTc interval. Asenapine can also cause hyperprolactinemia, which reduces the number of pituitary gonadotropin releasing hormone (GnRH) receptors; degarelix is a GnRH analog.
Desflurane: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer, asenapine should not be used with other agents also known to have this effect (e.g., halogenated anesthetics). Halogenated anesthetics can prolong the QT interval.
Desipramine: (Moderate) Concurrent use of asenapine and tricyclic antidepressants should be avoided if possible. Asenapine has been associated with a risk for QT prolongation and torsade de pointes, and tricyclics at elevated serum concentrations may produce clinically significant prolongation of the QTc interval. In addition, there is a potential for other interactions, such as augmentation of CNS impairment or orthostatic hypotension. Further, in vitro studies indicate that CYP1A2 and CYP3A4 are involved in the metabolism of asenapine. Inhibitors of these isoenzymes such as imipramine may decrease the elimination of asenapine. During co-administration of a single 75 mg dose of imipramine and a single 5 mg dose of asenapine, the Cmax of asenapine was increased by 17% and the AUC was increased by 10%. No asenapine dose adjustments are required during combined use.
Deutetrabenazine: (Major) Avoid using asenapine in combination with deutetrabenazine due to the potential for QT prolongation. Asenapine has been associated with QT prolongation. Deutetrabenazine may prolong the QT interval, but the degree of QT prolongation is not clinically significant when deutetrabenazine is administered within the recommended dosage range. Also, deutetrabenazine is a reversible, dopamine depleting drug and asenapine is a dopamine antagonist. The risk for parkinsonism, neuroleptic malignant syndrome (NMS), and akathisia may be increased with concomitant administration. Concurrent use may also result in additive CNS depression.
Dexchlorpheniramine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Dexmedetomidine: (Major) Concomitant use of dexmedetomidine and asenapine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Dextromethorphan; Bupropion: (Major) Bupropion is associated with a dose-related risk of seizures. Extreme caution is recommended during concurrent use of other drugs that may lower the seizure threshold such as antipsychotics. The manufacturer of bupropion recommends low initial dosing and slow dosage titration if this combination must be used; the patient should be closely monitored.
Dextromethorphan; Diphenhydramine; Phenylephrine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Dextromethorphan; Quinidine: (Major) Quinidine administration is associated with QT prolongation and torsades de pointes (TdP). Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect.
Diazepam: (Moderate) Drugs that can cause CNS depression, if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when asenapine is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics (including barbiturates), buprenorphine, buprenorphine; naloxone, butorphanol, dronabinol, THC, nabilone, nalbuphine, opiate agonists, pentazocine, acetaminophen; pentazocine, aspirin, ASA; pentazocine, and pentazocine; naloxone.
Diazoxide: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Difelikefalin: (Moderate) Monitor for dizziness, somnolence, mental status changes, and gait disturbances if concomitant use of difelikefalin with CNS depressants is necessary. Concomitant use may increase the risk for these adverse reactions.
Diltiazem: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Dimenhydrinate: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Dipeptidyl Peptidase-4 Inhibitors: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Diphenhydramine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Diphenhydramine; Ibuprofen: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Diphenhydramine; Naproxen: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Diphenhydramine; Phenylephrine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Diphenoxylate; Atropine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when asenapine is given in combination with other centrally-acting medications including opiate agonists.
Disopyramide: (Major) Disopyramide administration is associated with QT prolongation and torsades de pointes (TdP). Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect, such as disopyramide.
Dofetilide: (Major) Coadministration of dofetilide and asenapine is not recommended as concurrent use may increase the risk of QT prolongation. Dofetilide, a Class III antiarrhythmic agent, is associated with a well-established risk of QT prolongation and TdP. Asenapine has been associated with QT prolongation.
Dolasetron: (Major) Due to a possible risk for QT prolongation and torsade de pointes (TdP) dolasetron and asenapine should be avoided. Dolasetron has been associated with a dose-dependent prolongation in the QT, PR, and QRS intervals on an electrocardiogram. Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect. Concomitant use may increase the risk for QT prolongation.
Dolutegravir; Rilpivirine: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation; caution is advised when administering rilpivirine with other drugs that may prolong the QT or PR interval, such as asenapine.
Donepezil: (Major) Case reports indicate that QT prolongation and torsade de pointes (TdP) can occur during donepezil therapy. Donepezil is considered a drug with a known risk of TdP. Drugs with a possible risk for QT prolongation and TdP that should be used cautiously and with close monitoring with donepezil include asenapine.
Donepezil; Memantine: (Major) Case reports indicate that QT prolongation and torsade de pointes (TdP) can occur during donepezil therapy. Donepezil is considered a drug with a known risk of TdP. Drugs with a possible risk for QT prolongation and TdP that should be used cautiously and with close monitoring with donepezil include asenapine.
Dorzolamide; Timolol: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of timolol. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known; the timolol dosage may need to be adjusted.
Doxazosin: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Doxepin: (Moderate) Concurrent use of asenapine and tricyclic antidepressants should be avoided if possible. Asenapine has been associated with a risk for QT prolongation and torsade de pointes, and tricyclics at elevated serum concentrations may produce clinically significant prolongation of the QTc interval. In addition, there is a potential for other interactions, such as augmentation of CNS impairment or orthostatic hypotension. Further, in vitro studies indicate that CYP1A2 and CYP3A4 are involved in the metabolism of asenapine. Inhibitors of these isoenzymes such as imipramine may decrease the elimination of asenapine. During co-administration of a single 75 mg dose of imipramine and a single 5 mg dose of asenapine, the Cmax of asenapine was increased by 17% and the AUC was increased by 10%. No asenapine dose adjustments are required during combined use.
Doxylamine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Doxylamine; Pyridoxine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Dronabinol: (Moderate) Drugs that can cause CNS depression such as dronabinol, if used concomitantly with atypical antipsychotics, can increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Dronedarone: (Contraindicated) Concurrent use of dronedarone and asenapine is contraindicated. Dronedarone administration is associated with a dose-related increase in the QTc interval. The increase in QTc is approximately 10 milliseconds at doses of 400 mg twice daily (the FDA-approved dose) and up to 25 milliseconds at doses of 1600 mg twice daily. Although there are no studies examining the effects of dronedarone in patients receiving other QT prolonging drugs, coadministration of such drugs may result in additive QT prolongation. The concomitant use of dronedarone with other drugs that prolong the QTc may induce Torsade de Pointes (TdP) and is contraindicated. Asenapine has been associated with QT prolongation.
Droperidol: (Major) Droperidol should be administered with extreme caution to patients receiving other agents that may prolong the QT interval. Droperidol administration is associated with an established risk for QT prolongation and torsades de pointes (TdP). Any drug known to have potential to prolong the QT interval should not be coadministered with droperidol. Drugs with a possible risk for QT prolongation and TdP that should be used cautiously with droperidol include asenapine.
Dulaglutide: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Duloxetine: (Moderate) Duloxetine is an inhibitor of CYP2D6 and CYP1A2 and may decrease the clearance of atypical antipsychotics that are CYP2D6 and CYP1A2 substrates including asenapine. Decreased metabolism of asenapine may lead to adverse reactions such as extrapyramidal symptoms. In addition, asenapine is associated with a risk for QT prolongation and torsade de pointes (TdP) and should be used cautiously with CYP2D6 and CYP1A2 inhibitors such as duloxetine. In vitro studies indicate that CYP1A2 is a primary metabolic pathway of asenapine.
Efavirenz: (Major) According to the manufacturer of asenapine, the drug should be avoided in combination with other agents known to cause QT prolongation, such as efavirenz. Both asenapine and efavirenz have been associated with QT prolongation.
Efavirenz; Emtricitabine; Tenofovir Disoproxil Fumarate: (Major) According to the manufacturer of asenapine, the drug should be avoided in combination with other agents known to cause QT prolongation, such as efavirenz. Both asenapine and efavirenz have been associated with QT prolongation.
Efavirenz; Lamivudine; Tenofovir Disoproxil Fumarate: (Major) According to the manufacturer of asenapine, the drug should be avoided in combination with other agents known to cause QT prolongation, such as efavirenz. Both asenapine and efavirenz have been associated with QT prolongation.
Elbasvir; Grazoprevir: (Moderate) Administering asenapine with elbasvir; grazoprevir may result in elevated asenapine plasma concentrations. Asenapine is a substrate of CYP3A; grazoprevir is a weak CYP3A inhibitor. If these drugs are used together, closely monitor for signs of adverse events.
Eliglustat: (Major) Avoid coadministration of asenapine and eliglustat. Eliglustat is predicted to cause PR, QRS, and/or QT prolongation at significantly elevated plasma concentrations. Asenapine increases the QT interval and should be not administered with other drugs that increase the QT interval.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Alafenamide: (Moderate) Caution is warranted when cobicistat is administered with asenapine as there is a potential for increased aspenapine concentrations. Asenapine is a substrate of CYP3A4 and CYP2D6. Cobicistat is an inhibitor of CYP3A4 and CYP2D6.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Moderate) Caution is warranted when cobicistat is administered with asenapine as there is a potential for increased aspenapine concentrations. Asenapine is a substrate of CYP3A4 and CYP2D6. Cobicistat is an inhibitor of CYP3A4 and CYP2D6.
Empagliflozin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Empagliflozin; Linagliptin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Empagliflozin; Linagliptin; Metformin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Empagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Emtricitabine; Rilpivirine; Tenofovir alafenamide: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation; caution is advised when administering rilpivirine with other drugs that may prolong the QT or PR interval, such as asenapine.
Emtricitabine; Rilpivirine; Tenofovir Disoproxil Fumarate: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation; caution is advised when administering rilpivirine with other drugs that may prolong the QT or PR interval, such as asenapine.
Enalapril, Enalaprilat: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Encorafenib: (Major) Avoid coadministration of encorafenib and asenapine due to QT prolongation. Encorafenib is associated with dose-dependent prolongation of the QT interval. Asenapine has also been associated with QT prolongation.
Entacapone: (Moderate) Monitor for movement disorders, unusual changes in moods or behavior, and diminished effectiveness of the atypical antipsychotic or COMT inhibitor during coadministration. Due to mutually opposing effects on dopamine, atypical antipsychotics and COMT inhibitors may interfere with the effectiveness of each other. In general, atypical antipsychotics are less likely to interfere with COMT inhibitors and other Parkinson's treatments than traditional antipsychotics. The Beers Criteria recognize quetiapine and clozapine as exceptions to the general recommendation to avoid all antipsychotics in older adults with Parkinson's disease.
Entrectinib: (Major) Avoid coadministration of entrectinib with asenapine due to the risk of QT prolongation. Both entrectinib and asenapine have been associated with QT prolongation.
Eplerenone: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Epoprostenol: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Eprosartan: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Eribulin: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect. Drugs with a possible risk for QT prolongation and torsade de pointes (TdP) that should be avoided in combination with asenapine include eribulin. If coadministration is necessary, ECG monitoring is recommended; closely monitor the patient for QT interval prolongation.
Ertugliflozin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Ertugliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Ertugliflozin; Sitagliptin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Erythromycin: (Major) Concomitant use of asenapine and erythromycin increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Escitalopram: (Major) Escitalopram has been associated with QT prolongation. Coadministration with other drugs that have a possible risk for QT pr olongation and torsade de pointes (TdP), such as asenapine, should be done with caution and close monitoring. In addition, escitalopram is a modest inhibitor of CYP2D6 and may decrease the clearance of atypical antipsychotics that are CYP2D6 substrates including asenapine. Decreased metabolism of these CYP2D6 substrates may lead to clinically important adverse reactions that are associated with antipsychotic use, such as extrapyramidal symptoms.
Esketamine: (Moderate) Closely monitor patients receiving esketamine and asenapine for sedation and other CNS depressant effects. Instruct patients who receive a dose of esketamine not to drive or engage in other activities requiring alertness until the next day after a restful sleep.
Esmolol: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of esmolol. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known; the esmolol dosage may need to be adjusted.
Estazolam: (Moderate) Drugs that can cause CNS depression, if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when asenapine is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics (including barbiturates), buprenorphine, buprenorphine; naloxone, butorphanol, dronabinol, THC, nabilone, nalbuphine, opiate agonists, pentazocine, acetaminophen; pentazocine, aspirin, ASA; pentazocine, and pentazocine; naloxone.
Eszopiclone: (Moderate) A reduction in the dose of eszopiclone should be considered during co-administration of other CNS depressants, such as antipsychotics, to minimize additive sedative effects. In addition, the risk of next-day psychomotor impairment is increased during co-administration of eszopiclone and other CNS depressants, which may decrease the ability to perform tasks requiring full mental alertness such as driving. Antipsychotics with a higher incidence of sedation, such as olanzapine, clozapine, quetiapine, lurasidone, chlorpromazine, and thioridazine, are more likely to interact with eszopiclone. In one evaluation, concurrent use of eszopiclone and olanzapine reduced psychomotor function as measured by the Digit Symbol Substitution Test (DSST).
Ethacrynic Acid: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Ethanol: (Major) Advise patients to avoid alcohol consumption while taking CNS depressants. Alcohol consumption may result in additive CNS depression.
Exenatide: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Felodipine: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Fenfluramine: (Moderate) Monitor for excessive sedation and somnolence during coadministration of fenfluramine and asenapine. Concurrent use may result in additive CNS depression.
Fenoldopam: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Fentanyl: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Fingolimod: (Major) Asenapine is associated with a possible risk for QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect. If concomitant use cannot be avoided, overnight monitoring with continuous ECG in a medical facility after the first fingolimod dose is advised for patients taking QT prolonging drugs with a known risk of torsades de pointes. Fingolimod has not been studied in patients treated with drugs that prolong the QT interval, but drugs that prolong the QT interval have been associated with cases of torsades de pointes in patients with bradycardia. Fingolimod initiation results in decreased heart rate and may prolong the QT interval.
Flecainide: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer, asenapine should not be used with other agents also known to have this effect (e.g., flecainide). Flecainide is a Class IC antiarrhythmic associated with a possible risk for QT prolongation and/or torsades de pointes (TdP); flecainide increases the QT interval, but largely due to prolongation of the QRS interval. Although causality for TdP has not been established for flecainide, patients receiving concurrent drugs which have the potential for QT prolongation may have an increased risk of developing proarrhythmias.
Fluconazole: (Contraindicated) Due to the risk of life-threatening arrhythmias such as torsade de pointes (TdP), coadministration of fluconazole with drugs that both prolong the QT interval and are CYP3A4 substrates, such as asenapine, is contraindicated. Fluconazole has been associated with QT prolongation and rare cases of TdP. Additonally, fluconazole is an inhibitor of CYP3A4. Coadministration may result in elevated plasma concentrations of asenapine, causing an increased risk for adverse events such as QT prolongation.
Fluoxetine: (Major) Concomitant use of asenapine and fluoxetine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Fluphenazine: (Moderate) Asenapine has been associated with QT prolongation. According to the manufacturer, asenapine should be avoided in combination with other agents also known to have this effect (e.g., fluphenazine). Fluphenazine, a phenothiazine, is associated with a possible risk for QT prolongation. Coadministration of asenapine with phenothiazines may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Flurazepam: (Moderate) Drugs that can cause CNS depression, if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when asenapine is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics (including barbiturates), buprenorphine, buprenorphine; naloxone, butorphanol, dronabinol, THC, nabilone, nalbuphine, opiate agonists, pentazocine, acetaminophen; pentazocine, aspirin, ASA; pentazocine, and pentazocine; naloxone.
Fluvoxamine: (Major) There may be an increased risk for QT prolongation and torsade de pointes (TdP) during concurrent use of fluvoxamine and asenapine. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have these effects. In addition, fluvoxamine is a potent inhibitor of CYP1A2 and a moderate CYP3A4 inhibitor and asenapine is a primary substrate of CYP1A2 with a lesser contribution by CYP3A4. Coadministration may result in increased asenapine exposure. In one trial, coadministration of fluvoxamine 25 mg twice daily resulted in a marginal increase in asenapine exposure; full therapeutic doses of fluvoxamine would be expected to further increase asenapine exposure.
Food: (Major) Advise patients to avoid cannabis use while taking CNS depressants due to the risk for additive CNS depression and potential for other cognitive adverse reactions.
Foscarnet: (Major) When possible, avoid concurrent use of foscarnet with other drugs known to prolong the QT interval, such as asenapine. Foscarnet has been associated with postmarketing reports of both QT prolongation and torsade de pointes (TdP). Asenapine has also been associated with QT prolongation. If these drugs are administered together, obtain an electrocardiogram and electrolyte concentrations before and periodically during treatment.
Fosinopril: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Fostemsavir: (Major) Avoid using asenapine in combination with fostemsavir due to the potential for QT prolongation. Asenapine has been associated with QT prolongation. Supratherapeutic doses of fostemsavir (2,400 mg twice daily, four times the recommended daily dose) have been shown to cause QT prolongation. Fostemsavir causes dose-dependent QT prolongation.
Furosemide: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Gabapentin: (Moderate) Monitor for excessive sedation and somnolence during coadministration of asenapine and gabapentin. Concurrent use may result in additive CNS depression.
Ganirelix: (Moderate) Antipsychotic-induced hyperprolactinemia results in down-regulation of the number of pituitary GnRH receptors and may interfere with the response to ganirelix, a gonadotropin-releasing hormone (GnRH) analog.
Gemifloxacin: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect. Gemifloxacin may prolong the QT interval in some patients. The maximal change in the QTc interval occurs approximately 5 to 10 hours following oral administration of gemifloxacin. The likelihood of QTc prolongation may increase with increasing dose of the drug; therefore, the recommended dose should not be exceeded especially in patients with renal or hepatic impairment where the Cmax and AUC are slightly higher.
Gemtuzumab Ozogamicin: (Major) Avoid coadministration of gemtuzumab ozogamicin with asenapine due to the potential for additive QT interval prolongation and risk of torsade de pointes (TdP). If coadministration is unavoidable, obtain an ECG and serum electrolytes prior to the start of and as needed during treatment. Although QT interval prolongation has not been reported with gemtuzumab, it has been reported with other drugs that contain calicheamicin. Asenapine has been associated with QT prolongation.
Gilteritinib: (Major) Avoid concomitant use of asenapine with gilteritinib due to the potential for additive QT prolongation. Both drugs have been associated with QT prolongation.
Glasdegib: (Major) Avoid coadministration of glasdegib with asenapine due to the potential for additive QT prolongation. If coadministration cannot be avoided, monitor patients for increased risk of QT prolongation with increased frequency of ECG monitoring. Glasdegib therapy may result in QT prolongation and ventricular arrhythmias including ventricular fibrillation and ventricular tachycardia. Asenapine has also been associated with QT prolongation.
Glipizide; Metformin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Glyburide; Metformin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Goserelin: (Major) Avoid coadministration of goserelin with asenapine due to the risk of reduced efficacy of goserelin as well as the risk of QT prolongation. Asenapine can cause hyperprolactinemia, which reduces the number of pituitary gonadotropin releasing hormone (GnRH) receptors; goserelin is a GnRH analog. Additionally, asenapine has been associated with QT prolongation. Androgen deprivation therapy (i.e., goserelin) may also prolong the QT/QTc interval.
Granisetron: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect, such as granisetron. Granisetron has been associated with QT prolongation. According to the manufacturer, the use of granisetron in patients concurrently treated with drugs known to prolong the QT interval (e.g., asenapine) and/or are arrhythmogenic, may result in clinical consequences.
Guaifenesin; Hydrocodone: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking asenapine. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Halogenated Anesthetics: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer, asenapine should not be used with other agents also known to have this effect (e.g., halogenated anesthetics). Halogenated anesthetics can prolong the QT interval.
Haloperidol: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer, asenapine should not be used with other agents also known to have this effect (e.g., haloperidol).
Histrelin: (Major) Avoid coadministration of histrelin with asenapine due to the risk of reduced efficacy of histrelin as well as the risk of QT prolongation. Asenapine can cause hyperprolactinemia, which reduces the number of pituitary gonadotropin releasing hormone (GnRH) receptors; histrelin is a GnRH analog. Additionally, asenapine has been associated with QT prolongation. Androgen deprivation therapy (i.e., histrelin) may also prolong the QT/QTc interval.
Homatropine; Hydrocodone: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking asenapine. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Hydralazine: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Hydralazine; Isosorbide Dinitrate, ISDN: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Hydrochlorothiazide, HCTZ; Methyldopa: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Hydrocodone: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking asenapine. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Hydrocodone; Ibuprofen: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking asenapine. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Hydrocodone; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking asenapine. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Hydromorphone: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Hydroxychloroquine: (Major) Concomitant use of hydroxychloroquine and asenapine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Hydroxyzine: (Major) Avoid coadministration of hydroxyzine and asenapine due to the potential for additive QT prolongation and risk of torsade de pointes (TdP). Additive CNS depression may also occur. Asenapine has been associated with QT prolongation. Postmarketing data indicate that hydroxyzine causes QT prolongation and TdP.
Ibuprofen; Oxycodone: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Ibutilide: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect. Ibutilide administration can cause QT prolongation and torsades de pointes (TdP); proarrhythmic events should be anticipated. The potential for proarrhythmic events with ibutilide increases with the coadministration of other drugs that prolong the QT interval.
Idelalisib: (Major) Avoid concomitant use of idelalisib, a strong CYP3A inhibitor, with asenapine, a CYP3A substrate, as asenapine toxicities may be significantly increased. The AUC of a sensitive CYP3A substrate was increased 5.4-fold when coadministered with idelalisib.
Iloperidone: (Major) Asenapine and Iloperidone have been associated with QT prolongation. According to the manufacturers, the drugs should not be used with other agents also known to have this effect. In addition, Co-administration of asenapine with iloperidone may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Iloprost: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Imipramine: (Moderate) Concurrent use of asenapine and tricyclic antidepressants should be avoided if possible. Asenapine has been associated with a risk for QT prolongation and torsade de pointes, and tricyclics at elevated serum concentrations may produce clinically significant prolongation of the QTc interval. In addition, there is a potential for other interactions, such as augmentation of CNS impairment or orthostatic hypotension. Further, in vitro studies indicate that CYP1A2 and CYP3A4 are involved in the metabolism of asenapine. Inhibitors of these isoenzymes such as imipramine may decrease the elimination of asenapine. During co-administration of a single 75 mg dose of imipramine and a single 5 mg dose of asenapine, the Cmax of asenapine was increased by 17% and the AUC was increased by 10%. No asenapine dose adjustments are required during combined use.
Incretin Mimetics: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Indapamide: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Inotuzumab Ozogamicin: (Major) Avoid coadministration of inotuzumab ozogamicin with asenapine due to the potential for additive QT interval prolongation and risk of torsade de pointes (TdP). If coadministration is unavoidable, obtain an ECG and serum electrolytes prior to the start of treatment, after treatment initiation, and periodically during treatment. Both inotuzumab and asenapine have been associated with QT prolongation.
Insulin Degludec; Liraglutide: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Insulin Glargine; Lixisenatide: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Insulins: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Irbesartan: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Irbesartan; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Isavuconazonium: (Moderate) Concomitant use of isavuconazonium with asenapine may result in increased serum concentrations of asenapine. Asenapine is a substrate of the hepatic isoenzyme CYP3A4; isavuconazole, the active moiety of isavuconazonium, is a moderate inhibitor of this enzyme. Caution and close monitoring are advised if these drugs are used together.
Isoflurane: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer, asenapine should not be used with other agents also known to have this effect (e.g., halogenated anesthetics). Halogenated anesthetics can prolong the QT interval.
Isradipine: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Itraconazole: (Major) Avoid coadministration of asenapine and itraconazole due to the potential for additive effects on the QT interval; increased exposure to asenapine is also possible. Both asenapine and itraconazole are associated with QT prolongation; coadministration may increase this risk. In addition, coadministration of itraconazole (a potent CYP3A4 inhibitor) with asenapine (a CYP3A4 substrate) may result in elevated asenapine plasma concentrations and an increased risk for adverse events, including QT prolongation. If itraconazole therapy is stopped, it may be prudent to continue close monitoring for up to 2 weeks after discontinuing itraconazole. Once discontinued, the plasma concentration of itraconazole decreases to almost undetectable concentrations within 7 to 14 days. The decline in plasma concentrations may be even more gradual in patients with hepatic cirrhosis or who are receiving concurrent CYP3A4 inhibitors.
Ivosidenib: (Major) Avoid coadministration of ivosidenib with asenapine due to an increased risk of QT prolongation. If concomitant use is unavoidable, monitor ECGs for QTc prolongation and monitor electrolytes; correct any electrolyte abnormalities as clinically appropriate. An interruption of therapy and dose reduction of ivosidenib may be necessary if QT prolongation occurs. Prolongation of the QTc interval and ventricular arrhythmias have been reported in patients treated with ivosidenib. Asenapine has been associated with QT prolongation.
Ketoconazole: (Contraindicated) Avoid concomitant use of ketoconazole and asenapine due to an increased risk for torsade de pointes (TdP) and QT/QTc prolongation.
Labetalol: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of labetalol. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known; the labetalol dosage may need to be adjusted.
Lansoprazole; Amoxicillin; Clarithromycin: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect, such as clarithromycin. Clarithromycin is associated with an established risk for QT prolongation and torsades de pointes (TdP).
Lapatinib: (Major) Avoid coadministration of asenapine with lapatinib due to the risk of QT prolongation. Asenapine has been associated with QT prolongation. Lapatinib has been associated with concentration-dependent QT prolongation; ventricular arrhythmias and torsade de pointes (TdP) have been reported in postmarketing experience with lapatinib.
Lasmiditan: (Moderate) Monitor for excessive sedation and somnolence during coadministration of lasmiditan and asenapine. Concurrent use may result in additive CNS depression.
Lefamulin: (Major) Avoid coadministration of lefamulin with asenapine as concurrent use may increase the risk of QT prolongation. If coadministration cannot be avoided, ECG monitoring is recommended during treatment. Lefamulin has a concentration dependent QTc prolongation effect. The pharmacodynamic interaction potential to prolong the QT interval of the electrocardiogram between lefamulin and other drugs that effect cardiac conduction is unknown. Asenapine has been associated with QT prolongation.
Lemborexant: (Moderate) Monitor for excessive sedation and somnolence during coadministration of lemborexant and atypical antipsyhotics. Dosage adjustments of lemborexant and the atypical antipsychotic may be necessary when administered together because of potentially additive CNS effects. The risk of next-day impairment, including impaired driving, is increased if lemborexant is taken with other CNS depressants.
Lenvatinib: (Major) Avoid coadministration of lenvatinib with asenapine due to the risk of QT prolongation. Prolongation of the QT interval has been reported with lenvatinib therapy. Asenapine has also been associated with QT prolongation.
Leuprolide: (Major) Avoid coadministration of leuprolide with asenapine due to the risk of reduced efficacy of leuprolide as well as the risk of QT prolongation. Asenapine can cause hyperprolactinemia, which reduces the number of pituitary gonadotropin releasing hormone (GnRH) receptors; leuprolide is a GnRH analog. Additionally, asenapine has been associated with QT prolongation. Androgen deprivation therapy (i.e., leuprolide) may also prolong the QT/QTc interval.
Leuprolide; Norethindrone: (Major) Avoid coadministration of leuprolide with asenapine due to the risk of reduced efficacy of leuprolide as well as the risk of QT prolongation. Asenapine can cause hyperprolactinemia, which reduces the number of pituitary gonadotropin releasing hormone (GnRH) receptors; leuprolide is a GnRH analog. Additionally, asenapine has been associated with QT prolongation. Androgen deprivation therapy (i.e., leuprolide) may also prolong the QT/QTc interval.
Levamlodipine: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Levocetirizine: (Moderate) Monitor for unusual drowsiness and sedation during coadministration of atypical antipsychotics and cetirizine due to the risk for additive CNS depression.
Levodopa: (Moderate) Monitor for movement disorders, unusual changes in moods or behavior, and diminished effectiveness of the atypical antipsychotic or levodopa during coadministration. Due to mutually opposing effects on dopamine, atypical antipsychotics and levodopa may interfere with the effectiveness of each other. In general, atypical antipsychotics are less likely to interfere with levodopa and other antiparkinson's treatments than traditional antipsychotics.
Levofloxacin: (Major) Concomitant use of levofloxacin and asenapine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Levoketoconazole: (Contraindicated) Avoid concomitant use of ketoconazole and asenapine due to an increased risk for torsade de pointes (TdP) and QT/QTc prolongation.
Levorphanol: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Linagliptin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Linagliptin; Metformin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Liraglutide: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Lisinopril: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Lisinopril; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Lithium: (Major) Some atypical antipsychotics, including asenapine, are indicated as adjunctive therapy to mood stabilizers such as lithium. Because both asenapine and lithium have been associated with QT prolongation, they should be combined cautiously and with close monitoring. It is also advisable to monitor patients for neurotoxicity during co-administration. Neuroleptic malignant syndrome (NMS) has been observed occasionally during concurrent use of lithium and either atypical or conventional antipsychotics. Additive extrapyramidal effects have also been noted. Early case reports described an encephalopathic syndrome consisting of delirium, tremulousness, dyskinesia, seizures, leukocytosis, weakness, hyperpyrexia, confusion, extrapyramidal symptoms, elevations in laboratory values (e.g., liver function tests, blood urea nitrogen, fasting blood sugar) and, in some cases, irreversible brain damage, during use of lithium and conventional antipsychotics, particularly haloperidol. Subsequent rare reports of NMS or NMS-like reactions have been described during co-administration of lithium and atypical antipsychotics (e.g., risperidone, olanzapine, clozapine). Following resolution of NMS, there are isolated instances of re-emergence of symptoms following re-initiation of lithium as monotherapy. Lithium may be a risk factor for antipsychotic-induced NMS; however, this hypothesis has not been confirmed. In many reported cases, confounding factors have been present (e.g., previous history of NMS, high dose therapy). The ability of antipsychotics alone to precipitate NMS and the rarity of the condition further complicate assessment of lithium as a risk factor. Asenapine does not have an effect on the pharmacokinetic parameters of lithium.
Lixisenatide: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Lofexidine: (Major) Monitoring the ECG is recommended if lofexidine and asenapine are used together due to the potential for additive QT prolongation. In addition, torsade de pointes (TdP) has occurred during postmarketing use of lofexidine. Also monitor for additive orthostatic hypotension and sedation if coadministration is required.
Loop diuretics: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Loperamide: (Major) Concomitant use of loperamide and asenapine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Loperamide; Simethicone: (Major) Concomitant use of loperamide and asenapine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Lopinavir; Ritonavir: (Major) Avoid coadministration of lopinavir with asenapine due to the potential for additive QT prolongation. If use together is necessary, obtain a baseline ECG to assess initial QT interval and determine frequency of subsequent ECG monitoring, avoid any non-essential QT prolonging drugs, and correct electrolyte imbalances. Both drugs have been associated with QT prolongation.
Lorazepam: (Moderate) Drugs that can cause CNS depression, if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when asenapine is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics (including barbiturates), buprenorphine, buprenorphine; naloxone, butorphanol, dronabinol, THC, nabilone, nalbuphine, opiate agonists, pentazocine, acetaminophen; pentazocine, aspirin, ASA; pentazocine, and pentazocine; naloxone.
Losartan: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Losartan; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Loxapine: (Major) Caution is advisable during concurrent use of loxapine and other antipsychotics. Loxapine use has been associated with adverse events such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, and seizures. These effects may be potentiated during concurrent use of loxapine and other antipsychotics. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Lumateperone: (Moderate) Coadministration of antipsychotics, such as lumateperone and asenapine, may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. Although the incidence of tardive dyskinesia from antipsychotic combinations has not been established and data are very limited, the risk may be increased during combined use versus use of an antipsychotic alone.
Lurasidone: (Major) Similar to other antipsychotics, lurasidone administration has been associated with drowsiness, dizziness, orthostatic hypotension, extrapyramidal symptoms, neuroleptic malignant syndrome, and seizures. The risk of these adverse effects may be increased during concurrent use of lurasidone with other antipsychotics. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Macimorelin: (Major) Avoid concurrent administration of macimorelin with drugs that prolong the QT interval, such as asenapine. Use of these drugs together may increase the risk of developing torsade de pointes-type ventricular tachycardia. Sufficient washout time of drugs that are known to prolong the QT interval prior to administration of macimorelin is recommended. Treatment with macimorelin has been associated with an increase in the corrected QT (QTc) interval. Asenapine has been also associated with QT prolongation.
Maprotiline: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer, asenapine should hould be avoided in combination with other agents also known to have this effect (e.g., maprotiline). Maprotiline has been reported to prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations). Cases of long QT syndrome and torsade de pointes (TdP) tachycardia have been described with maprotiline use, but rarely occur when the drug is used alone in normal prescribed doses and in the absence of other known risk factors for QT prolongation. Limited data are available regarding the safety of maprotiline in combination with other QT-prolonging drugs.
Mecamylamine: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Meclizine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Mefloquine: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer, asenapine should be avoided in combination with other agents also known to have this effect (e.g., mefloquine). There is evidence that the use of halofantrine after mefloquine causes a significant lengthening of the QTc interval. Mefloquine alone has not been reported to cause QT prolongation. However, due to the lack of clinical data, mefloquine should be used with caution in patients receiving drugs that prolong the QT interval.
Meglitinides: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Meperidine: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Meprobamate: (Moderate) The CNS-depressant effects of meprobamate can be potentiated with concomitant administration of other drugs known to cause CNS depression including antipsychotics.
Metformin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Metformin; Repaglinide: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Metformin; Rosiglitazone: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Metformin; Saxagliptin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Metformin; Sitagliptin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Methadone: (Major) Avoid coadministration of asenapine and methadone due to an additive risk of QT prolongation. Concomitant use of opioid agonists with asenapine may also cause excessive sedation and somnolence. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Asenapine has been associated with QT prolongation. Methadone is associated with an increased risk for QT prolongation and torsade de pointes (TdP), especially at higher doses (> 200 mg/day but averaging approximately 400 mg/day in adult patients). Most cases involve patients being treated for pain with large, multiple daily doses of methadone, although cases have been reported in patients receiving doses commonly used for maintenance treatment of opioid addiction.
Methohexital: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Methyclothiazide: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Metoclopramide: (Contraindicated) Avoid metoclopramide in patients receiving atypical antipsychotics. There is a potential for additive effects, including increased frequency and severity of tardive dyskinesia (TD), other extrapyramidal symptoms (EPS), and neuroleptic malignant syndrome (NMS). Some manufacturer labels for metoclopramide contraindicate the use of these drugs together, while others state avoidance is necessary. If these agents must be used together, monitor closely for movement disorders and additive CNS effects. There also may be additive sedation. Discontinue these medications at the first signs of dyskinesia.
Metolazone: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Metoprolol: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of metoprolol. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known; the metoprolol dosage may need to be adjusted.
Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known. (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of metoprolol. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known; the metoprolol dosage may need to be adjusted.
Metronidazole: (Major) Concomitant use of metronidazole and asenapine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Midazolam: (Moderate) Drugs that can cause CNS depression, if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when asenapine is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics (including barbiturates), buprenorphine, buprenorphine; naloxone, butorphanol, dronabinol, THC, nabilone, nalbuphine, opiate agonists, pentazocine, acetaminophen; pentazocine, aspirin, ASA; pentazocine, and pentazocine; naloxone.
Midostaurin: (Major) Avoid the concomitant use of midostaurin and asenapine; both drugs have been reported to increase the QT interval. If coadministration cannot be avoided, consider obtaining electrocardiograms to monitor the QT interval. In clinical trials, QT prolongation was reported in patients who received midostaurin as single-agent therapy or in combination with cytarabine and daunorubicin.
Mifepristone: (Moderate) Concomitant use of mifepristone and asenapine may increase the risk of QT/QTc prolongation and torsade de pointes (TdP) in some patients. Consider taking steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, especially in patients with additional risk factors for TdP.
Miglitol: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Minoxidil: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Mirabegron: (Moderate) Mirabegron is a moderate CYP2D6 inhibitor. Exposure of drugs metabolized by CYP2D6 isoenzymes such as asenapine may be increased when co-administered with mirabegron. Asenapine has been shown to be a CYP2D6 substrate in vitro. Appropriate monitoring and dose adjustment may be necessary.
Mirtazapine: (Major) Concomitant use of mirtazapine and asenapine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Mitotane: (Minor) Use caution if mitotane and asenapine are used concomitantly. Mitotane is a strong CYP3A4 inducer and asenapine is a CYP3A4 substrate in vitro. Coadministration may result in decreased plasma concentrations of asenapine; however, no dosage adjustment of asenapine is necessary.
Mobocertinib: (Major) Concomitant use of mobocertinib and asenapine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Moexipril: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Molindone: (Major) Close monitoring is advisable during concurrent use of molindone with other antipsychotics. Because molindone shares certain pharmacological properties with other antipsychotics, additive cardiac effects (e.g., hypotension), CNS effects (e.g., drowsiness), anticholinergic effects (e.g., constipation, xerostomia), extrapyramidal effects, neuroleptic malignant syndrome, or seizures may occur. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Monoamine oxidase inhibitors: (Moderate) Monitor blood pressure and for unusual drowsiness and sedation during coadministration of monoamine oxidase inhibitors (MAOIs) and asenapine due to the risk for additive hypotension and CNS depression.
Morphine: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Morphine; Naltrexone: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Moxifloxacin: (Major) Concurrent use of asenapine and moxifloxacin should be avoided due to an increased risk for QT prolongation and torsade de pointes (TdP). Asenapine has been associated with QT prolongation. Moxifloxacin has also been associated with prolongation of the QT interval. Additionally, post-marketing surveillance has identified very rare cases of ventricular arrhythmias including TdP, usually in patients with severe underlying proarrhythmic conditions. The likelihood of QT prolongation may increase with increasing concentrations of moxifloxacin, therefore the recommended dose or infusion rate should not be exceeded.
Nabilone: (Moderate) Drugs that can cause CNS depression, if used concomitantly with atypical antipsychotics, can increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Nadolol: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of nadolol. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known; the nadolol dosage may need to be adjusted.
Nafarelin: (Moderate) Antipsychotics may cause hyperprolactinemia and should not be administered concomitantly with nafarelin since hyperprolactinemia down-regulates the number of pituitary GnRH receptors.
Nalbuphine: (Moderate) Monitor for excessive sedation and somnolence during coadministration of lumateperone and nalbuphine. Concurrent use may result in additive CNS depression.
Nateglinide: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Nebivolol: (Moderate) Monitor for increased toxicity as well as increased therapeutic effect of nebivolol if coadministered with asenapine. Nebivolol is metabolized by CYP2D6. Although data are lacking, CYP2D6 inhibitors, such as asenapine, could potentially increase nebivolol plasma concentrations via CYP2D6 inhibition; the clinical significance of this potential interaction is unknown, but an increase in adverse effects is possible. In addition, secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of nebivolol. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known; the nebivolol dosage may need to be adjusted. Patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position.
Nebivolol; Valsartan: (Moderate) Monitor for increased toxicity as well as increased therapeutic effect of nebivolol if coadministered with asenapine. Nebivolol is metabolized by CYP2D6. Although data are lacking, CYP2D6 inhibitors, such as asenapine, could potentially increase nebivolol plasma concentrations via CYP2D6 inhibition; the clinical significance of this potential interaction is unknown, but an increase in adverse effects is possible. In addition, secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of nebivolol. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known; the nebivolol dosage may need to be adjusted. Patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Nicardipine: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Nifedipine: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Nilotinib: (Major) Coadministration of nilotinib and a drug that prolongs the QT interval, such as asenapine, is not advised; nilotinib prolongs the QT interval. Avoid the concomitant use of nilotinib with other agents that prolong the QT interval, such as asenapine. Additionally, nilotinib is a moderate inhibitor of CYP3A4 and asenapine is a substrate of CYP3A4; administering these drugs together may result in increased asenapine levels. If the use of asenapine is necessary, hold nilotinib therapy. If these drugs are used together, consider an asenapine dose reduction and monitor patients for toxicity (e.g., QT interval prolongation).
Nimodipine: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Nisoldipine: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Nitroprusside: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Non-Ionic Contrast Media: (Major) Use of medications that lower the seizure threshold should be carefully evaluated when considering intrathecal radiopaque contrast agents. Antipsychotics should be discontinued at least 48 hours before myelography and should not be resumed for at least 24 hours post-procedure. The frequency of seizure activity with asenapine was low during clinical trials; however, seizures have been associated with other antipsychotics and caution is advised.
Nortriptyline: (Moderate) Concurrent use of asenapine and tricyclic antidepressants should be avoided if possible. Asenapine has been associated with a risk for QT prolongation and torsade de pointes, and tricyclics at elevated serum concentrations may produce clinically significant prolongation of the QTc interval. In addition, there is a potential for other interactions, such as augmentation of CNS impairment or orthostatic hypotension. Further, in vitro studies indicate that CYP1A2 and CYP3A4 are involved in the metabolism of asenapine. Inhibitors of these isoenzymes such as imipramine may decrease the elimination of asenapine. During co-administration of a single 75 mg dose of imipramine and a single 5 mg dose of asenapine, the Cmax of asenapine was increased by 17% and the AUC was increased by 10%. No asenapine dose adjustments are required during combined use.
Ofloxacin: (Major) Concomitant use of ofloxacin and asenapine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Olanzapine: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer, asenapine should be avoided in combination with other agents also known to have this effect (e.g., olanzapine). Limited data, including some case reports, suggest that olanzapine may be associated with a significant prolongation of the QTc interval in rare instances. In addition, co-administration of olanzapine with asenapine may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Olanzapine; Fluoxetine: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer, asenapine should be avoided in combination with other agents also known to have this effect (e.g., olanzapine). Limited data, including some case reports, suggest that olanzapine may be associated with a significant prolongation of the QTc interval in rare instances. In addition, co-administration of olanzapine with asenapine may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone. (Major) Concomitant use of asenapine and fluoxetine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Olanzapine; Samidorphan: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer, asenapine should be avoided in combination with other agents also known to have this effect (e.g., olanzapine). Limited data, including some case reports, suggest that olanzapine may be associated with a significant prolongation of the QTc interval in rare instances. In addition, co-administration of olanzapine with asenapine may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Oliceridine: (Moderate) Concomitant use of oliceridine with asenapine may cause excessive sedation and somnolence. Limit the use of oliceridine with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Olmesartan: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Olmesartan; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Ondansetron: (Major) Concomitant use of ondansetron and asenapine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. Do not exceed 16 mg of IV ondansetron in a single dose; the degree of QT prolongation associated with ondansetron significantly increases above this dose.
Opicapone: (Moderate) Monitor for movement disorders, unusual changes in moods or behavior, and diminished effectiveness of the atypical antipsychotic or COMT inhibitor during coadministration. Due to mutually opposing effects on dopamine, atypical antipsychotics and COMT inhibitors may interfere with the effectiveness of each other. In general, atypical antipsychotics are less likely to interfere with COMT inhibitors and other Parkinson's treatments than traditional antipsychotics. The Beers Criteria recognize quetiapine and clozapine as exceptions to the general recommendation to avoid all antipsychotics in older adults with Parkinson's disease.
Oritavancin: (Moderate) Asenapine is metabolized by CYP3A4 and CYP2D6; oritavancin is a weak CYP3A4 and CYP2D6 inducer. Plasma concentrations and efficacy of asenapine may be reduced if these drugs are administered concurrently.
Osilodrostat: (Major) Avoid coadministration of osilodrostat and asenapine due to the potential for additive QT prolongation. Asenapine has been associated with QT prolongation. Osilodrostat is associated with dose-dependent QT prolongation.
Osimertinib: (Major) The manufacturer of asenapine recommends avoiding coadministration with other agents known to prolong the QT interval, such as osimertinib. Concentration-dependent QTc prolongation occurred during clinical trials of osimertinib. Asenapine has also been associated with QT prolongation. Concomitant use may increase the risk of QT prolongation.
Oxaliplatin: (Major) Avoid coadministration of asenapine and oxaliplatin due to the risk of QT prolongation. Both asenapine and oxaliplatin have been associated with QT prolongation. Ventricular arrhythmias including fatal torsade de pointes have also been reported with oxaliplatin use in post-marketing experience.
Oxazepam: (Moderate) Drugs that can cause CNS depression, if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when asenapine is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics (including barbiturates), buprenorphine, buprenorphine; naloxone, butorphanol, dronabinol, THC, nabilone, nalbuphine, opiate agonists, pentazocine, acetaminophen; pentazocine, aspirin, ASA; pentazocine, and pentazocine; naloxone.
Oxycodone: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Oxymorphone: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Ozanimod: (Major) In general, do not initiate ozanimod in patients taking asenapine due to the risk of additive bradycardia, QT prolongation, and torsade de pointes (TdP). If treatment initiation is considered, seek advice from a cardiologist. Ozanimod initiation may result in a transient decrease in heart rate and atrioventricular conduction delays. Ozanimod has not been studied in patients taking concurrent QT prolonging drugs; however, QT prolonging drugs have been associated with TdP in patients with bradycardia. Asenapine has been associated with QT prolongation.
Pacritinib: (Major) Concomitant use of pacritinib and asenapine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Paliperidone: (Major) Paliperidone has been associated with QT prolongation; torsade de pointes (TdP) and ventricular fibrillation have been reported in the setting of overdose. According to the manufacturer, since paliperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as asenapine. However, if coadministration is necessary and the patient has known risk factors for cardiac disease or arrhythmias, close monitoring is essential. In addition, the use of paliperidone with asenapine may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures.
Panobinostat: (Major) QT prolongation has been reported with panobinostat therapy in patients with multiple myeloma in a clinical trial; use of panobinostat with other agents that prolong the QT interval is not recommended. Obtain an electrocardiogram at baseline and periodically during treatment. Hold panobinostat if the QTcF increases to >= 480 milliseconds during therapy; permanently discontinue if QT prolongation does not resolve. Drugs with a possible risk for QT prolongation and torsade de pointes that should be used cautiously and with close monitoring with panobinostat include asenapine.
Paroxetine: (Moderate) Monitor for an increase in paroxetine-related adverse reactions, including serotonin syndrome, if concomitant use with asenapine is necessary. Concomitant use may increase paroxetine exposure. Paroxetine is a CYP2D6 substrate and asenapine is a weak CYP2D6 inhibitor.
Pasireotide: (Major) Coadministration of asenapine and pasireotide may have additive effects on the prolongation of the QT interval. Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect.
Pazopanib: (Major) Coadministration of pazopanib and other drugs that prolong the QT interval is not advised; pazopanib and asenapine have been reported to prolong the QT interval. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect. If pazopanib and asenapine must be continued, closely monitor the patient for QT interval prolongation. In addition, pazopanib is a weak inhibitor of CYP3A4. Coadministration of pazopanib and asenapine, a CYP3A4 substrate, may cause an increase in systemic concentrations of asenapine. Use caution when concurrent administration of asenapine and pazopanib is necessary.
Peginterferon Alfa-2b: (Moderate) Peginterferon alfa-2b is an inhibitor of CYP2D6 and CYP1A2 and may decrease the clearance of atypical antipsychotics that are CYP2D6 and CYP1A2 substrates including asenapine. Decreased metabolism of asenapine may lead to adverse reactions such as extrapyramidal symptoms. In addition, asenapine is associated with a risk for QT prolongation and TdP and should be used cautiously with CYP2D6 and CYP1A2 inhibitors.
Pentamidine: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents with a possible risk for QT prolongation whenever possible. Pentamidine has been associated with QT prolongation and should be used cautiously with other agents that may have this effect.
Pentazocine: (Moderate) Coadministration of pentazocine with atypical antipsychotics may result in additive respiratory and CNS depression and anticholinergic effects, such as urinary retention and constipation. Use pentazocine with caution in any patient receiving medication with CNS depressant and/or anticholinergic activity.
Pentazocine; Naloxone: (Moderate) Coadministration of pentazocine with atypical antipsychotics may result in additive respiratory and CNS depression and anticholinergic effects, such as urinary retention and constipation. Use pentazocine with caution in any patient receiving medication with CNS depressant and/or anticholinergic activity.
Pentobarbital: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Perindopril: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Perindopril; Amlodipine: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Perphenazine: (Moderate) Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with drugs with a possible risk for QT prolongation. According to the manufacturer, asenapine should be avoided in combination with other drugs having an association with QT prolongation. Co-administration of perphenazine with atypical agents may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Perphenazine; Amitriptyline: (Moderate) Concurrent use of asenapine and tricyclic antidepressants should be avoided if possible. Asenapine has been associated with a risk for QT prolongation and torsade de pointes, and tricyclics at elevated serum concentrations may produce clinically significant prolongation of the QTc interval. In addition, there is a potential for other interactions, such as augmentation of CNS impairment or orthostatic hypotension. Further, in vitro studies indicate that CYP1A2 and CYP3A4 are involved in the metabolism of asenapine. Inhibitors of these isoenzymes such as imipramine may decrease the elimination of asenapine. During co-administration of a single 75 mg dose of imipramine and a single 5 mg dose of asenapine, the Cmax of asenapine was increased by 17% and the AUC was increased by 10%. No asenapine dose adjustments are required during combined use. (Moderate) Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with drugs with a possible risk for QT prolongation. According to the manufacturer, asenapine should be avoided in combination with other drugs having an association with QT prolongation. Co-administration of perphenazine with atypical agents may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Phenobarbital: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Phenobarbital; Hyoscyamine; Atropine; Scopolamine: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Phenoxybenzamine: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Phentolamine: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Pimavanserin: (Major) Pimavanserin may cause QT prolongation and should generally be avoided in patients receiving other medications known to prolong the QT interval, such as asenapine. Coadministration may increase the risk for QT prolongation.
Pimozide: (Contraindicated) Pimozide is associated with a well-established risk of QT prolongation and torsade de pointes (TdP). Asenapine has a risk of QT prolongation and is contraindicated with pimozide. Concurrent use of pimozide with atypical agents may increase the risk of adverse effects such as drowsiness, sedation, dizziness, orthostatic hypotension, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Pindolol: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of pindolol. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known; the pindolol dosage may need to be adjusted.
Pioglitazone: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Pioglitazone; Glimepiride: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Pioglitazone; Metformin: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Pitolisant: (Major) Avoid coadministration of pitolisant with asenapine as concurrent use may increase the risk of QT prolongation. Pitolisant prolongs the QT interval. Asenapine has been associated with QT prolongation.
Ponesimod: (Major) In general, do not initiate ponesimod in patients taking asenapine due to the risk of additive bradycardia, QT prolongation, and torsade de pointes (TdP). If treatment initiation is considered, seek advice from a cardiologist. Ponesimod initiation may result in a transient decrease in heart rate and atrioventricular conduction delays. Ponesimod has not been studied in patients taking concurrent QT prolonging drugs; however, QT prolonging drugs have been associated with TdP in patients with bradycardia. Asenapine has been associated with QT prolongation.
Posaconazole: (Contraindicated) The concurrent use of posaconazole and asenapine is contraindicated due to the risk of life threatening arrhythmias such as torsades de pointes (TdP). Posaconazole is a potent inhibitor of CYP3A4, an isoenzyme responsible for the metabolism of asenapine. These drugs used in combination may result in elevated asenapine plasma concentrations, causing an increased risk for asenapine-related adverse events, such as QT prolongation. Additionally, posaconazole has been associated with prolongation of the QT interval as well as rare cases of TdP; avoid use with other drugs that may prolong the QT interval and are metabolized through CYP3A4, such as asenapine.
Potassium-sparing diuretics: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Pramipexole: (Moderate) Monitor for movement disorders, unusual changes in moods or behavior, and diminished effectiveness of the atypical antipsychotic or pramipexole during coadministration. Due to mutually opposing effects on dopamine, atypical antipsychotics and pramipexole may interfere with the effectiveness of each other. Additive CNS depressant effects are also possible. In general, atypical antipsychotics are less likely to interfere with pramipexole than traditional antipsychotics. The Beers Criteria recognize quetiapine and clozapine as exceptions to the general recommendation to avoid all antipsychotics in older adults with Parkinson's disease.
Pramlintide: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Prazosin: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Pregabalin: (Moderate) Monitor for excessive sedation and somnolence during coadministration of asenapine and pregabalin. Concurrent use may result in additive CNS depression.
Primaquine: (Major) Due to the potential for QT interval prolongation with primaquine, caution is advised with other drugs that prolong the QT interval. Drugs with a possible risk for QT prolongation and TdP that should be used cautiously and with close monitoring with primaquine include asenapine.
Primidone: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Procainamide: (Major) Procainamide is associated with a well-established risk of QT prolongation and torsades de pointes (TdP). Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect.
Prochlorperazine: (Moderate) Prochlorperazine, a phenothiazine, is associated with a possible risk for QT prolongation. According to the manufacturer, asenapine should be avoided in combination with other drugs having an association with QT prolongation. In addition, co-administration of prochlorperazine with atypical agents (e.g., aripiprazole, lurasidone and others) may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Promethazine: (Major) Asenapine has been associated with QT prolongation. Promethazine, a phenothiazine, is associated with a possible risk for QT prolongation. Due to the risk of additive QT prolongation and potential for serious arrhythmias, asenapine should be avoided in combination with other drugs having an association with QT prolongation. Co-administration of promethazine and antipsychotics may also increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. Although the incidence of tardive dyskinesia from these combinations has not been established and data are very limited, the risk may be increased during combined use versus use of an antipsychotic alone.
Promethazine; Dextromethorphan: (Major) Asenapine has been associated with QT prolongation. Promethazine, a phenothiazine, is associated with a possible risk for QT prolongation. Due to the risk of additive QT prolongation and potential for serious arrhythmias, asenapine should be avoided in combination with other drugs having an association with QT prolongation. Co-administration of promethazine and antipsychotics may also increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. Although the incidence of tardive dyskinesia from these combinations has not been established and data are very limited, the risk may be increased during combined use versus use of an antipsychotic alone.
Promethazine; Phenylephrine: (Major) Asenapine has been associated with QT prolongation. Promethazine, a phenothiazine, is associated with a possible risk for QT prolongation. Due to the risk of additive QT prolongation and potential for serious arrhythmias, asenapine should be avoided in combination with other drugs having an association with QT prolongation. Co-administration of promethazine and antipsychotics may also increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. Although the incidence of tardive dyskinesia from these combinations has not been established and data are very limited, the risk may be increased during combined use versus use of an antipsychotic alone.
Propafenone: (Major) Concomitant use of propafenone and asenapine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Propranolol: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of propranolol. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known; the propranolol dosage may need to be adjusted.
Propranolol; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known. (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of propranolol. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known; the propranolol dosage may need to be adjusted.
Protriptyline: (Moderate) Concurrent use of asenapine and tricyclic antidepressants should be avoided if possible. Asenapine has been associated with a risk for QT prolongation and torsade de pointes, and tricyclics at elevated serum concentrations may produce clinically significant prolongation of the QTc interval. In addition, there is a potential for other interactions, such as augmentation of CNS impairment or orthostatic hypotension. Further, in vitro studies indicate that CYP1A2 and CYP3A4 are involved in the metabolism of asenapine. Inhibitors of these isoenzymes such as imipramine may decrease the elimination of asenapine. During co-administration of a single 75 mg dose of imipramine and a single 5 mg dose of asenapine, the Cmax of asenapine was increased by 17% and the AUC was increased by 10%. No asenapine dose adjustments are required during combined use.
Pseudoephedrine; Triprolidine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Quazepam: (Moderate) Drugs that can cause CNS depression, if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when asenapine is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics (including barbiturates), buprenorphine, buprenorphine; naloxone, butorphanol, dronabinol, THC, nabilone, nalbuphine, opiate agonists, pentazocine, acetaminophen; pentazocine, aspirin, ASA; pentazocine, and pentazocine; naloxone.
Quetiapine: (Major) Concomitant use of quetiapine and asenapine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Quinapril: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Quinapril; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Quinidine: (Major) Quinidine administration is associated with QT prolongation and torsades de pointes (TdP). Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect.
Quinine: (Major) Concurrent use of quinine and asenapine should be avoided due to an increased risk for QT prolongation and torsade de pointes (TdP). Quinine has been associated with prolongation of the QT interval and rare cases of TdP. Asenapine has also been associated with QT prolongation. In addition, concentrations of asenapine may be increased with concomitant use of quinine. Asenapine is a CYP3A4 and CYP2D6 substrate and quinine is an inhibitor of both enzymes.
Quizartinib: (Major) Concomitant use of quizartinib and asenapine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Ramelteon: (Moderate) Drugs that can cause CNS depression, if used concomitantly with asenapine, may increase adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when asenapine is given in combination with anxiolytics, sedatives, and hypnotics.
Ramipril: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Ranolazine: (Major) Ranolazine is associated with dose- and plasma concentration-related increases in the QTc interval. The mean increase in QTc is about 6 milliseconds, measured at the time of the maximum dosage (1000 mg PO twice daily). However, in 5% of the population studied, increases in the QTc of at least 15 milliseconds have been reported. Although there are no studies examining the effects of ranolazine in patients receiving other QT prolonging drugs, such as asenapine, Coadministration may result in additive QT prolongation. In addition, in vitro studies indicate that ranolazine and its metabolite are inhibitors of CYP3A isoenzymes. The impact of coadministering ranolazine with other CYP3A4 substrates has not been studied. Ranolazine may theoretically increase plasma concentrations of CYP3A4 substrates, potentially leading to adverse reactions, such as QT prolongation. Asenapine is a CYP3A4 substrate that also has a possible risk for QT prolongation and TdP and should be used cautiously with ranolazine.
Rasagiline: (Moderate) Monitor for movement disorders, unusual changes in moods or behavior, and diminished effectiveness of the atypical antipsychotic or rasagiline during coadministration. Due to mutually opposing effects on dopamine, atypical antipsychotics and rasagiline may interfere with the effectiveness of each other. In general, atypical antipsychotics are less likely to interfere with rasagiline than traditional antipsychotics. The Beers Criteria recognize quetiapine and clozapine as exceptions to the general recommendation to avoid all antipsychotics in older adults with Parkinson's disease.
Relugolix: (Major) Avoid using asenapine in combination with relugolix due to the potential for QT prolongation. Asenapine has been associated with QT prolongation. Androgen deprivation therapy (i.e., relugolix) may also prolong the QT/QTc interval.
Relugolix; Estradiol; Norethindrone acetate: (Major) Avoid using asenapine in combination with relugolix due to the potential for QT prolongation. Asenapine has been associated with QT prolongation. Androgen deprivation therapy (i.e., relugolix) may also prolong the QT/QTc interval.
Remifentanil: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Remimazolam: (Moderate) Drugs that can cause CNS depression, if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when asenapine is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics (including barbiturates), buprenorphine, buprenorphine; naloxone, butorphanol, dronabinol, THC, nabilone, nalbuphine, opiate agonists, pentazocine, acetaminophen; pentazocine, aspirin, ASA; pentazocine, and pentazocine; naloxone.
Repaglinide: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Ribociclib: (Major) Avoid coadministration of ribociclib with asenapine due to an increased risk for QT prolongation. Ribociclib has been shown to prolong the QT interval in a concentration-dependent manner. Asenapine has also been associated with QT prolongation. Concomitant use may increase the risk for QT prolongation.
Ribociclib; Letrozole: (Major) Avoid coadministration of ribociclib with asenapine due to an increased risk for QT prolongation. Ribociclib has been shown to prolong the QT interval in a concentration-dependent manner. Asenapine has also been associated with QT prolongation. Concomitant use may increase the risk for QT prolongation.
Rilpivirine: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation; caution is advised when administering rilpivirine with other drugs that may prolong the QT or PR interval, such as asenapine.
Risperidone: (Major) Avoid coadministration of risperidone and asenapine due to the potential for additive QT prolongation and risk of torsade de pointes (TdP). Additionally, coadministration may also increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. Risperidone has been associated with a possible risk for QT prolongation and/or TdP, primarily in the overdose setting. Asenapine has also been associated with QT prolongation.
Rolapitant: (Major) Use caution if asenapine and rolapitant are used concurrently, and monitor for asenapine-related adverse effects. Asenapine is a CYP2D6 substrate and rolapitant is a moderate CYP2D6 inhibitor; the inhibitory effect of rolapitant lasts for at least 7 days, and may last longer after single dose administration. The Cmax and AUC of another CYP2D6 substrate, dextromethorphan, were increased by 120% and 160%, respectively, on day 1 with rolapitant, and by 180% and 230%, respectively, on day 8 after rolapitant administration.
Romidepsin: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect, such as romidepsin. Romidepsin has been reported to prolong the QT interval. If romidepsin and asenapine must be coadministered, appropriate cardiovascular monitoring precautions should be considered, such as the monitoring of electrolytes and ECGs at baseline and periodically during treatment.
Ropinirole: (Moderate) Monitor for movement disorders, unusual changes in moods or behavior, and diminished effectiveness of the atypical antipsychotic or ropinirole during coadministration. Due to mutually opposing effects on dopamine, atypical antipsychotics and ropinirole may interfere with the effectiveness of each other. In general, atypical antipsychotics are less likely to interfere with ropinirole than traditional antipsychotics. The Beers Criteria recognize quetiapine and clozapine as exceptions to the general recommendation to avoid all antipsychotics in older adults with Parkinson's disease.
Rosiglitazone: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Rotigotine: (Moderate) Monitor for movement disorders, unusual changes in moods or behavior, excess sedation, and diminished effectiveness of the atypical antipsychotic or rotigotine during coadministration. Due to mutually opposing effects on dopamine, atypical antipsychotics and rotigotine may interfere with the effectiveness of each other. Additive CNS depressant effects are also possible. In general, atypical antipsychotics are less likely to interfere with rotigotine than traditional antipsychotics. The Beers Criteria recognize quetiapine and clozapine as exceptions to the general recommendation to avoid all antipsychotics in older adults with Parkinson's disease.
Sacubitril; Valsartan: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Safinamide: (Moderate) Monitor for movement disorders, unusual changes in moods or behavior, and diminished effectiveness of the atypical antipsychotic or safinamide during coadministration. Due to mutually opposing effects on dopamine, atypical antipsychotics and safinamide may interfere with the effectiveness of each other. In general, atypical antipsychotics are less likely to interfere with safinamide than traditional antipsychotics. The Beers Criteria recognize quetiapine and clozapine as exceptions to the general recommendation to avoid all antipsychotics in older adults with Parkinson's disease.
Saquinavir: (Major) Saquinavir boosted with ritonavir increases the QT interval in a dose-dependent fashion, which may increase the risk for serious arrhythmias such as torsade de pointes (TdP). Avoid administering saquinavir boosted with ritonavir concurrently with other drugs that may prolong the QT interval, such as asenapine. If no acceptable alternative therapy is available, perform a baseline ECG prior to initiation of concomitant therapy and carefully follow monitoring recommendations.
Saxagliptin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Secobarbital: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Selegiline: (Moderate) Monitor for loss of selegiline efficacy, signs and symptoms of serotonin syndrome, particularly during treatment initiation and dosage increase, and unusual drowsiness and sedation during concomitant atypical antipsychotic and selegiline use. Dopamine antagonists, such as atypical antipsychotics, may diminish the effectiveness of selegiline. Concomitant use may increase the risk for serotonin syndrome or additive CNS depression. If serotonin syndrome occurs, discontinue therapy.
Selpercatinib: (Major) Avoid coadministration of asenapine with selpercatinib due to the risk of additive QT prolongation. Monitor ECGs more frequently for QT prolongation if coadministration is necessary. Asenapine has been associated with QT prolongation. Concentration-dependent QT prolongation has been observed with selpercatinib therapy.
Semaglutide: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Sertraline: (Major) Concomitant use of sertraline and asenapine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. The degree of QT prolongation associated with sertraline is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 2 times the maximum recommended dose.
Sevoflurane: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer, asenapine should not be used with other agents also known to have this effect (e.g., halogenated anesthetics). Halogenated anesthetics can prolong the QT interval.
SGLT2 Inhibitors: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Siponimod: (Major) Avoid coadministration of siponimod and asenapine due to the potential for additive QT prolongation. Consult a cardiologist regarding appropriate monitoring if siponimod use is required. Siponimod therapy prolonged the QT interval at recommended doses in a clinical study. Asenapine is associated with QT interval prolongation.
Sitagliptin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Sodium Stibogluconate: (Major) Concomitant use of sodium stibogluconate and asenapine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Solifenacin: (Major) Solifenacin should be avoided in combination with asenapine. Solifenacin has been associated with dose-dependent prolongation of the QT interval. Torsades de pointes (TdP) has been reported with post-marketing use, although causality was not determined. Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect.
Sorafenib: (Major) Avoid coadministration of asenapine with sorafenib due to the risk of QT prolongation. Both drugs have been associated with QT prolongation.
Sotagliflozin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Sotalol: (Major) Concomitant use of sotalol and asenapine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Spironolactone: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Spironolactone; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Stiripentol: (Moderate) Monitor for excessive sedation and somnolence during coadministration of stiripentol and asenapine. CNS depressants can potentiate the effects of stiripentol.
Sufentanil: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Sulfonylureas: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and sulfonylurea use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Sunitinib: (Major) Avoid coadministration of asenapine with sunitinib due to the risk of QT prolongation. Sunitinib can cause dose-dependent QT prolongation, which may increase the risk for ventricular arrhythmias, including torsades de points (TdP). Asenapine has also been associated with QT prolongation.
Suvorexant: (Moderate) Monitor for excessive sedation and somnolence during coadministration of suvorexant and atypical antipsyhotics. Dosage adjustments of suvorexant and the atypical antipsychotic may be necessary when administered together because of potentially additive CNS effects. The risk of next-day impairment, including impaired driving, is increased if suvorexant is taken with other CNS depressants.
Tacrolimus: (Major) Asenapine has been associated with QT prolongation. Tacrolimus causes QT prolongation. Reducing the tacrolimus dose, close monitoring of tacrolimus whole blood concentrations, and monitoring for QT prolongation is recommended when coadministrating tacrolimus with other substrates and/or inhibitors of CYP3A4 that also have the potential to prolong the QT interval, such as asenapine. However, according to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to prolong the QT interval.
Tamoxifen: (Major) Concomitant use of tamoxifen and asenapine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Tapentadol: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Telavancin: (Major) Telavancin and asenapine have been associated with QT prolongation. According to the manufacturer, telavancin should be used with caution when prescribing other agents also known to prolong the QT interval. However, according to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to prolong the QT interval.
Telmisartan: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Telmisartan; Amlodipine: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Telmisartan; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Temazepam: (Moderate) Drugs that can cause CNS depression, if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when asenapine is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics (including barbiturates), buprenorphine, buprenorphine; naloxone, butorphanol, dronabinol, THC, nabilone, nalbuphine, opiate agonists, pentazocine, acetaminophen; pentazocine, aspirin, ASA; pentazocine, and pentazocine; naloxone.
Terazosin: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Tetrabenazine: (Major) Coadministration of asenapine and tetrabenazine should be avoided. Asenapine has been associated with QT prolongation. Tetrabenazine causes a small increase in the corrected QT interval (QTc).
Thiazide diuretics: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Thioridazine: (Contraindicated) Thioridazine, a phenothiazine, is associated with an established risk of QT prolongation and torsade de pointes (TdP) and is contraindicated for use with other drugs that are known to prolong the QT interval, such as asenapine.
Thiothixene: (Major) Caution is advisable during concurrent use of thiothixene and other antipsychotics. Thiothixene use has been associated with adverse events such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, and seizures. These effects may be potentiated during concurrent use of other antipsychotics. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Timolol: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of timolol. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known; the timolol dosage may need to be adjusted.
Tirzepatide: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Tolcapone: (Moderate) Monitor for movement disorders, unusual changes in moods or behavior, and diminished effectiveness of the atypical antipsychotic or COMT inhibitor during coadministration. Due to mutually opposing effects on dopamine, atypical antipsychotics and COMT inhibitors may interfere with the effectiveness of each other. In general, atypical antipsychotics are less likely to interfere with COMT inhibitors and other Parkinson's treatments than traditional antipsychotics. The Beers Criteria recognize quetiapine and clozapine as exceptions to the general recommendation to avoid all antipsychotics in older adults with Parkinson's disease.
Tolterodine: (Major) Concurrent use of asenapine and tolterodine should be avoided due to an increased risk for QT prolongation and torsade de pointes (TdP). Tolterodine has been associated with dose-dependent prolongation of the QT interval, especially in poor CYP2D6 metabolizers. Asenapine has also been associated with QT prolongation.
Toremifene: (Major) Avoid coadministration of asenapine with toremifene due to the risk of additive QT prolongation. Toremifene has been shown to prolong the QTc interval in a dose- and concentration-related manner. Asenapine has also been associated with QT prolongation.
Torsemide: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Tramadol: (Moderate) Concomitant use of tramadol with asenapine may cause excessive sedation, somnolence, and increased risk of seizure. Limit the use of tramadol with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and seizures.
Tramadol; Acetaminophen: (Moderate) Concomitant use of tramadol with asenapine may cause excessive sedation, somnolence, and increased risk of seizure. Limit the use of tramadol with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and seizures.
Trandolapril: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Trandolapril; Verapamil: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Trazodone: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect, such as trazodone. Trazodone can prolong the QT/QTc interval at therapeutic doses. In addition, there are post-marketing reports of torsade de pointes (TdP). Therefore, the manufacturer recommends avoiding trazodone in patients receiving other drugs that increase the QT interval. In addition, coadministration may increase adverse effects such as drowsiness, sedation, and dizziness.
Treprostinil: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Triamterene: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Triamterene; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Triazolam: (Moderate) Drugs that can cause CNS depression, if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when asenapine is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics (including barbiturates), buprenorphine, buprenorphine; naloxone, butorphanol, dronabinol, THC, nabilone, nalbuphine, opiate agonists, pentazocine, acetaminophen; pentazocine, aspirin, ASA; pentazocine, and pentazocine; naloxone.
Triclabendazole: (Major) Concomitant use of triclabendazole and asenapine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Tricyclic antidepressants: (Moderate) Concurrent use of asenapine and tricyclic antidepressants should be avoided if possible. Asenapine has been associated with a risk for QT prolongation and torsade de pointes, and tricyclics at elevated serum concentrations may produce clinically significant prolongation of the QTc interval. In addition, there is a potential for other interactions, such as augmentation of CNS impairment or orthostatic hypotension. Further, in vitro studies indicate that CYP1A2 and CYP3A4 are involved in the metabolism of asenapine. Inhibitors of these isoenzymes such as imipramine may decrease the elimination of asenapine. During co-administration of a single 75 mg dose of imipramine and a single 5 mg dose of asenapine, the Cmax of asenapine was increased by 17% and the AUC was increased by 10%. No asenapine dose adjustments are required during combined use.
Trifluoperazine: (Moderate) Trifluoperazine, a phenothiazine, is associated with a possible risk for QT prolongation. According to the manufacturer, asenapine should not be used with other drugs having an association with QT prolongation. In addition, co-administration of trifluoperazine with atypical agents (e.g., aripiprazole, lurasidone and others) may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Trimipramine: (Moderate) Concurrent use of asenapine and tricyclic antidepressants should be avoided if possible. Asenapine has been associated with a risk for QT prolongation and torsade de pointes, and tricyclics at elevated serum concentrations may produce clinically significant prolongation of the QTc interval. In addition, there is a potential for other interactions, such as augmentation of CNS impairment or orthostatic hypotension. Further, in vitro studies indicate that CYP1A2 and CYP3A4 are involved in the metabolism of asenapine. Inhibitors of these isoenzymes such as imipramine may decrease the elimination of asenapine. During co-administration of a single 75 mg dose of imipramine and a single 5 mg dose of asenapine, the Cmax of asenapine was increased by 17% and the AUC was increased by 10%. No asenapine dose adjustments are required during combined use.
Triprolidine: (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Triptorelin: (Major) Avoid coadministration of triptorelin with asenapine due to the risk of reduced efficacy of triptorelin as well as the risk of QT prolongation. Asenapine can cause hyperprolactinemia, which reduces the number of pituitary gonadotropin releasing hormone (GnRH) receptors; triptorelin is a GnRH analog. Additionally, asenapine has been associated with QT prolongation. Androgen deprivation therapy (i.e., triptorelin) may also prolong the QT/QTc interval.
Valsartan: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Vandetanib: (Major) Avoid coadministration of vandetanib with asenapine due to an increased risk of QT prolongation and torsade de pointes (TdP). Vandetanib can prolong the QT interval in a concentration-dependent manner; TdP and sudden death have been reported in patients receiving vandetanib. Asenapine has also been associated with QT prolongation.
Vardenafil: (Major) Concomitant use of vardenafil and asenapine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Vemurafenib: (Major) Vemurafenib has been associated with QT prolongation. Asenapine is associated with a possible risk for QT prolongation and torsade de pointes. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect. The manufacturer of vemurafenib recommends ECG monitoring if the drug must be coadministered with another QT prolonging drug; closely monitor the patient for QT interval prolongation.
Venlafaxine: (Major) Venlafaxine is associated with a possible risk of QT prolongation. Other atypical antipsychotics associated with a risk for QT prolongation and torsades de pointes (TdP) that should be used cautiously with venlafaxine include asenapine. In addition, venlafaxine is a weak inhibitor of CYP2D6, and increases in plasma concentrations of antipsychotics primarily metabolized via CYP2D6, such as risperidone, may occur. Atypical antipsychotics with partial metabolism via CYP2D6 include asenapine.
Verapamil: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Viloxazine: (Moderate) Monitor for increased asenapine-related adverse effects, such as extrapyramidal symptoms and QT prolongation, if concomitant use of viloxazine is necessary; dosage reduction of asenapine may be necessary. Concomitant use may increase the exposure of asenapine; asenapine is a CYP1A2 substrate and viloxazine is a strong CYP1A2 inhibitor.
Voclosporin: (Major) Avoid concomitant use of asenapine and voclosporin due to the risk of additive QT prolongation. Asenapine has been associated with QT prolongation. Voclosporin has been associated with QT prolongation at supratherapeutic doses.
Vonoprazan; Amoxicillin; Clarithromycin: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect, such as clarithromycin. Clarithromycin is associated with an established risk for QT prolongation and torsades de pointes (TdP).
Voriconazole: (Major) Avoid coadministration of asenapine and voriconazole due to the potential for additive effects on the QT interval; increased exposure to asenapine is also possible. Both drugs have been associated with QT prolongation; coadministration may increase this risk. Voriconazole has also been associated with rare cases of torsades de pointes, cardiac arrest, and sudden death. In addition, coadministration of voriconazole (a CYP3A4 inhibitor) with asenapine (a CYP3A4 substrate) may result in elevated asenapine plasma concentrations and could increase the risk for adverse events, including QT prolongation. If these drugs are given together, closely monitor for prolongation of the QT interval. Rigorous attempts to correct any electrolyte abnormalities (i.e., potassium, magnesium, calcium) should be made before initiating concurrent therapy.
Vorinostat: (Major) Asenapine and vorinostat have been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect.
Zaleplon: (Moderate) Monitor for unusual drowsiness and sedation during coadministration of atypical antipsychotics and zaleplon due to the risk for additive CNS depression and next-day psychomotor impairment; dose adjustments may be necessary.
Ziprasidone: (Major) Concomitant use of ziprasidone and asenapine should be avoided due to the potential for additive QT prolongation. Clinical trial data indicate that ziprasidone causes QT prolongation; there are postmarketing reports of torsade de pointes (TdP) in patients with multiple confounding factors. Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect. In addition, coadministration of ziprasidone with other antipsychotics may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures.
Zolpidem: (Moderate) Monitor for unusual drowsiness and sedation during coadministration of atypical antipsychotics and zolpidem due to the risk for additive CNS depression and next-day psychomotor impairment; dose adjustments may be necessary. Limit the dose of Intermezzo sublingual tablets to 1.75 mg/day.
Zonisamide: (Moderate) Zonisamide may cause decreased sweating (oligohidrosis), elevated body temperature (hyperthermia), heat intolerance, or heat stroke. The manufacturer recommends caution in using concurrent drug therapies that may predispose patients to heat-related disorders such as antipsychotics. Monitor patients for heat intolerance, decreased sweating, or increased body temperature if zonisamide is used with any of these agents.

How Supplied

Asenapine/Saphris Sublingual Tablet, SL: 2.5mg, 5mg, 10mg
SECUADO Transdermal Film ER: 3.8mg, 5.7mg, 7.6mg, 24h

Maximum Dosage
Adults

20 mg/day SL tablet; 7.6 mg/24 hours transdermally.

Geriatric

20 mg/day SL tablet; 7.6 mg/24 hours transdermally.

Adolescents

20 mg/day SL tablet. Safety and efficacy of the transdermal system have not been established.

Children

10 to 12 years: 20 mg/day SL tablet. Safety and efficacy of the transdermal system have not been established.
Less than 10 years: Safety and efficacy have not been established.

Infants

Safety and efficacy have not been established.

Mechanism Of Action

The exact mechanism responsible for the therapeutic effects of antipsychotics is unknown. However, it has been theorized that the efficacy of asenapine in treating schizophrenia is mediated through dopamine (D2) and serotonin (5-HT2A) antagonism. Asenapine exhibits a high affinity for serotonin 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT5, 5-HT6, and 5-HT7 receptors, dopamine D2, D3, D4, and D1 receptors, alpha-1 and alpha-2 adrenergic receptors, and histamine H1 receptors. The drug functions as an antagonist at these receptors. Asenapine has a moderate affinity for H2 receptors. The drug has no appreciable affinity for muscarinic receptors. Serotonin activity may account for activity against the negative symptoms of schizophrenia. Because asenapine exhibits alpha-1 adrenergic receptor antagonism, use may result in orthostatic hypotension, dizziness, tachycardia, and syncope.

Pharmacokinetics

Asenapine is administered orally as sublingual tablets or transdermally. Asenapine is rapidly distributed and has a large volume of distribution. Asenapine is highly bound to plasma proteins (95%). Pharmacological activity is primarily due to the parent drug. Asenapine is extensively metabolized in the liver, primarily by UGT1A4 and CYP1A2, and is metabolized by CYP3A4 and CYP2D6 to a lesser extent. After a single sublingual dose, about 50% of the dose is excreted through the urine and 40% in the feces, predominantly as metabolites including asenapine N-glucuronide, N-desmethylasenapine, and N-desmethylasenapine N-carbamoyl glucuronide. The elimination pathways of the remaining 10% after sublingual administration have not been described. The terminal half-life of the sublingual tablets is about 24 hours. The transdermal system has an elimination half-life of approximately 30 hours.
 
Affected cytochrome P450 (CYP450) isoenzymes and drug transporters: CYP1A2, CYP2D6, CYP3A4, UGT1A4
Asenapine is primarily a substrate for UGT1A4 and CYP1A2, and is metabolized by CYP3A4 and CYP2D6 to a lesser extent. Asenapine is a weak inhibitor of CYP2D6. Inducing effects on CYP1A2 or CYP3A4 have not been observed.

Other Route(s)

Sublingual Route
After sublingual (SL) tablet administration, the absolute bioavailability of the 5 mg SL dose is 35% and peak plasma concentrations occur within 0.5 to 1.5 hours. The extent of exposure and maximum concentrations are less than linear when increasing the dose from 5 mg SL twice daily to 10 mg SL twice daily. Steady-state concentrations are attained within 3 days of beginning twice daily dosing. Drinking water 2 or 5 minutes after administration decreases asenapine exposure by 19% and 10%, respectively. A pharmacokinetic study evaluating the effect of food indicated that consumption of food immediately prior to sublingual administration decreased asenapine exposure by 20%; consumption of food 4 hours after sublingual administration decreased asenapine exposure by about 10%. These effects are likely due to increased hepatic blood flow. Eating or drinking should be avoided for 10 minutes after SL administration. The absolute bioavailability of asenapine when swallowed is low (less than 2% with an oral tablet formulation, which is not marketed). Patients should not swallow the SL tablets whole.
 
Transdermal Route
After transdermal application, about 60% of the asenapine dose is released over 24 hours. Maximum asenapine concentrations are typically reached between 12 and 24 hours, with sustained concentrations during the "wear time" of 24 hours. Steady-state plasma concentrations are achieved about 72 hours after the first application, with a peak to trough ratio of 1.5. Based on relative bioavailability and established dose proportionality, the AUCs for the 3.8 mg/24 hour and 7.6 mg/24 hour transdermal systems were similar to that for sublingual asenapine 5 mg twice daily and 10 mg twice daily, respectively. There is no effect on asenapine kinetics with regard to the recommended application sites. Placement of a heating pad on the transdermal system for 8 hours led to a faster absorption rate (median Tmax of 8 hours) than without a heating pad (median Tmax of about 16 hours) as well as 3.9 times greater mean asenapine exposure over 8 hours.

Pregnancy And Lactation
Pregnancy

Controlled studies have not been conducted with asenapine in human pregnancy and there are no available human data to sufficiently inform regarding drug-associated risks. Pregnant women should be advised of the potential risks to the fetus. Teratogenicity was not observed in animal studies; however, animal data is not always predictive of human response. Neonates exposed to antipsychotics during the third trimester of pregnancy are at risk for extrapyramidal and/or withdrawal symptoms following delivery. There have been reports of agitation, hypertonia, hypotonia, tremor, somnolence, respiratory distress and feeding disorder in these neonates. These complications have varied in severity and have ranged from self-limited to those requiring intensive care unit support and prolonged hospitalization. Neonates exhibiting signs or symptoms of extrapyramidal effects or withdrawal should be carefully monitored. The knowledge about long-term neurobehavioral effects in offspring is limited for all antipsychotic agents and requires further investigation. According to the American Psychiatric Association treatment guidelines for schizophrenia, consider pregnancy testing in women of childbearing potential prior to initiation of an antipsychotic. It is not known if antipsychotics, through their effect on prolactin, would affect labor or obstetric delivery. There is a pregnancy exposure registry that monitors outcomes in pregnant patients exposed to asenapine; information about the registry can be obtained at womensmentalhealth.org/clinical-and-research-programs/pregnancyregistry or by calling 1866-961-2388.