Ativan

Browse PDR's full list of drug information

Ativan

Classes

Anticonvulsants, Benzodiazepines
Anxiolytics, Benzodiazepines
Benzodiazepine Sedative/Hypnotics

Administration
Oral Administration Oral Solid Formulations

Immediate-release Formulations (e.g., tablets)
When given in unequal doses, give the largest dose before bedtime.
 
Extended-release Oral Capsules (e.g., Loreev XR)
Administer in the morning with or without food.
Do not crush or chew. Have patients swallow the ER capsules whole.
If patient has difficulty swallowing: Contents of the ER capsules may be sprinkled over a tablespoon of cool applesauce and consumed without chewing. Follow with water. Consume all the sprinkled contents within 2 hours. Do not store for future use.

Oral Liquid Formulations

Concentrated Oral Solution (2 mg/mL)
Measure dosage using a calibrated oral syringe/dropper.
Dilute the oral concentrate in water, juice, soda, or semi-solid food (e.g., applesauce, pudding) prior to administration. Administer immediately; do not store for future use.
Storage: Protect from light. Store refrigerated at 36 to 46 degrees F. Discard opened bottle after 90 days.

Extemporaneous Compounding-Oral

Compounded Oral Suspension (1 mg/mL)
Place 180 lorazepam 2 mg tablets in a 12-ounce amber glass bottle. Add the minimum volume of sterile water necessary for tablet dispersion. Shake the bottle until a slurry is formed. Add Ora-Plus and Ora-Sweet to bring the suspension to a concentration of 1 mg/mL (i.e., QS to a total volume of 360 mL). The volume of sterile water required will vary depending on the specific tablets used; this will also result in varying amounts of Ora-Plus and Ora-Sweet depending on the product.
In the chemical stability study, 2 different suspensions were made using the following ingredients:
180 lorazepam 2 mg tablets by Mylan Laboratories, 144 mL of sterile water, Ora-Plus 108 mL, and Ora-Sweet 83 mL.
180 lorazepam 2 mg tablets by Watson Laboratories, 48 mL of sterile water, Ora-Plus 156 mL and Ora-Sweet 146 mL.
Each suspension was divided into 1 oz amber glass bottles for stability testing.
Storage: Suspension is stable for 90 days when refrigerated (4 degrees C) or for 60 days at room temperature (22 degrees C).

Injectable Administration

Do not administer lorazepam injection by intra-arterial injection since arteriospasm can occur which may cause tissue damage and/or gangrene.
Visually inspect parenteral products for particulate matter and discoloration prior to administration whenever solution and container permit.

Intravenous Administration

IV Push
Dilute lorazepam with an equal volume of compatible diluent (0.9% Sodium Chloride Injection, 5% Dextrose Injection or Sterile Water for Injection) immediately prior to use. Mix the contents thoroughly by gently inverting the syringe/vial repeatedly until a homogenous solution is obtained; do not shake vigorously.
For neonatal doses: It may be necessary to make a less concentrated dilution to accurately measure the prescribed dose; some experts recommend dilution to limit the amount of benzyl alcohol administered (some products contain benzyl alcohol 20 mg/mL).
The following dilutions may be prepared using the 2 mg/mL concentration of lorazepam ONLY (do not use lorazepam 4 mg/mL to prepare; precipitation may occur) :
Lorazepam 0.2 mg/mL dilution: Add 1 mL of lorazepam (2 mg/mL) to 9 mL of 5% Dextrose Injection or NS (benzyl alcohol content = 2 mg/mL if using a lorazepam product containing 2% benzyl alcohol).
Lorazepam 0.5 mg/mL dilution: Add 1 mL of lorazepam (2 mg/mL) to 3 mL of 5% Dextrose Injection or NS (benzyl alcohol content = 5 mg/mL if using a lorazepam product containing 2% benzyl alcohol).
After dilution, inject directly into a vein or into the tubing of a freely-flowing compatible IV infusion. Direct IV injection should be made with repeated aspiration to ensure that none of the drug is injected intra-arterially and that perivascular extravasation does not occur.
Inject slowly over 1-5 minutes; do not exceed 2 mg/minute.
Storage: Lorazepam diluted with 5% Dextrose Injection or 0.9% Sodium Chloride Injection at a concentration of 0.2 mg/mL, 0.5 mg/mL, or 1 mg/mL is stable for 24 hours when stored in polypropylene syringes. Dilutions not prepared in a sterile environment should not be stored; discard immediately.
 
Continuous IV Infusion
NOTE: Lorazepam is not FDA-approved for administration by continuous IV infusion.
Use of glass or polyolefin containers is recommended; polypropylene syringes have also been used. Use of PVC containers results in significant drug loss; PVC administration sets can also be expected to contribute to sorption losses.
Dilute lorazepam injection with a compatible diluent such as 5% Dextrose Injection (preferred) or 0.9% Sodium Chloride Injection to a final concentration of 0.2 mg/mL. For fluid restricted patients, data suggest that a concentration of 0.5 mg/mL or 1 mg/mL is stable for up to 24 hours and may be used.
ASHP Recommended Standard Concentrations for Adult Continuous Infusions: 1 mg/mL.[64020]
Lorazepam stability is very specific to the product used and is concentration-dependent. Even at the recommended concentrations, precipitation has occurred in some situations. Carefully evaluate each syringe/bag before administration.
Storage: Lorazepam diluted with 5% Dextrose Injection or 0.9% Sodium Chloride Injection at a concentration of 0.2 mg/mL, 0.5 mg/mL, or 1 mg/mL is stable for 24 hours when stored in polypropylene syringes or glass containers.

Intramuscular Administration

NOTE: For status epilepticus, IV administration is preferred over IM because therapeutic blood concentrations are reached more quickly with IV administration.
When IV access is available, IV is the preferred route of administration due to injection site pain and slower onset associated with IM administration.
When used as a premedication to produce lack of recall, IM lorazepam should be administered at least 2 hours before procedure.
No dilution is needed.
Inject deeply into a large muscle mass (e.g., anterolateral thigh or deltoid [children and adolescents only]).[41537]

Adverse Reactions
Severe

coma / Early / 0.1-1.2
seizures / Delayed / 0-1.0
apnea / Delayed / 1.0
muscle paralysis / Delayed / Incidence not known
suicidal ideation / Delayed / Incidence not known
neuroleptic malignant syndrome-like symptoms / Delayed / Incidence not known
pulmonary edema / Early / Incidence not known
respiratory arrest / Rapid / Incidence not known
pulmonary hypertension / Delayed / Incidence not known
pneumothorax / Early / Incidence not known
GI bleeding / Delayed / Incidence not known
tissue necrosis / Early / Incidence not known
renal tubular necrosis / Delayed / Incidence not known
SIADH / Delayed / Incidence not known
lactic acidosis / Delayed / Incidence not known
anaphylactoid reactions / Rapid / Incidence not known
pericardial effusion / Delayed / Incidence not known
heart failure / Delayed / Incidence not known
cardiac arrest / Early / Incidence not known
bradycardia / Rapid / Incidence not known
AV block / Early / Incidence not known
hearing loss / Delayed / Incidence not known
pancytopenia / Delayed / Incidence not known
agranulocytosis / Delayed / Incidence not known
coagulopathy / Delayed / Incidence not known
neonatal respiratory depression / Rapid / Incidence not known
neonatal abstinence syndrome / Early / Incidence not known

Moderate

erythema / Early / 2.0-2.4
hypotension / Rapid / 0.1-2.4
confusion / Early / 0.1-1.3
depression / Delayed / 1.3-1.3
delirium / Early / 1.3-1.3
hypoventilation / Rapid / 0.1-1.2
ataxia / Delayed / 0.1-1.0
hallucinations / Early / 0.1-1.0
elevated hepatic enzymes / Delayed / 0-1.0
cystitis / Delayed / 0-1.0
metabolic acidosis / Delayed / 0-1.0
dysarthria / Delayed / Incidence not known
euphoria / Early / Incidence not known
amnesia / Delayed / Incidence not known
memory impairment / Delayed / Incidence not known
psychosis / Early / Incidence not known
hostility / Early / Incidence not known
mania / Early / Incidence not known
hyperreflexia / Delayed / Incidence not known
respiratory depression / Rapid / Incidence not known
hypoxia / Early / Incidence not known
myoclonia / Delayed / Incidence not known
jaundice / Delayed / Incidence not known
hyperbilirubinemia / Delayed / Incidence not known
constipation / Delayed / Incidence not known
hyponatremia / Delayed / Incidence not known
urinary incontinence / Early / Incidence not known
impotence (erectile dysfunction) / Delayed / Incidence not known
sinus tachycardia / Rapid / Incidence not known
hypertension / Early / Incidence not known
blurred vision / Early / Incidence not known
leukopenia / Delayed / Incidence not known
thrombocytopenia / Delayed / Incidence not known
tolerance / Delayed / Incidence not known
psychological dependence / Delayed / Incidence not known
withdrawal / Early / Incidence not known
physiological dependence / Delayed / Incidence not known

Mild

injection site reaction / Rapid / 0.5-17.0
drowsiness / Early / 1.5-15.9
dizziness / Early / 6.9-6.9
weakness / Early / 4.2-4.2
restlessness / Early / 1.3-1.3
headache / Early / 0.1-1.2
asthenia / Delayed / 0.1-1.0
agitation / Early / 0.1-1.0
tremor / Early / 0.1-1.0
hyperventilation / Early / 0.1-1.0
nausea / Early / 0-1.0
hypersalivation / Early / 0.1-1.0
vomiting / Early / 0-1.0
infection / Delayed / 0-1.0
chills / Rapid / 0-1.0
vertigo / Early / Incidence not known
fatigue / Early / Incidence not known
insomnia / Early / Incidence not known
anxiety / Delayed / Incidence not known
nightmares / Early / Incidence not known
irritability / Delayed / Incidence not known
hyperactivity / Early / Incidence not known
diarrhea / Early / Incidence not known
hypothermia / Delayed / Incidence not known
libido decrease / Delayed / Incidence not known
orgasm dysfunction / Delayed / Incidence not known
rash / Early / Incidence not known
alopecia / Delayed / Incidence not known
diplopia / Early / Incidence not known

Boxed Warning
Chronic lung disease (CLD), chronic obstructive pulmonary disease (COPD), CNS depression, coadministration with other CNS depressants, pulmonary disease, respiratory depression, respiratory insufficiency, sleep apnea

As with other benzodiazepines, lorazepam causes CNS depression that may lead to respiratory effects and should be used with extreme caution in patients with significant pulmonary disease such as respiratory insufficiency resulting from chronic lung disease (CLD), chronic obstructive pulmonary disease (COPD) or sleep apnea. Lorazepam injection is contraindicated in patients with sleep apnea syndrome or severe respiratory insufficiency who are not receiving mechanical ventilation. Additionally, avoid coadministration with other CNS depressants, especially opioids, when possible, as this significantly increases the risk for profound sedation, respiratory depression, low blood pressure, and death. Reserve concomitant use of these drugs for patients in whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations possible and monitor patients closely for signs and symptoms of respiratory depression and sedation. In addition, hypercarbia and hypoxia can occur after lorazepam administration. Carefully monitor respiratory status and oxygen saturation in at risk patients.

Abrupt discontinuation, alcoholism, benzodiazepine dependence, substance abuse

Use lorazepam with caution in patients with a history of alcoholism or substance abuse due to the potential for psychological dependence. The use of benzodiazepines exposes users to risks of abuse, misuse, and addiction, which can lead to overdose or death. Assess patients for risks of addiction, abuse, or misuse before drug initiation, and monitor patients who receive benzodiazepines routinely for development of these behaviors or conditions. A potential risk of abuse should not preclude appropriate treatment in any patient, but requires more intensive counseling and monitoring. To discourage abuse, the smallest appropriate quantity of the benzodiazepine should be prescribed, and proper disposal instructions for unused drug should be given to patients. Avoid or minimize concomitant use of CNS depressants or other medications associated with addiction or abuse. Abuse and misuse of benzodiazepines commonly involve concomitant use of other medications, alcohol, and/or illicit substances, which is associated with an increased frequency of serious adverse outcomes, including respiratory depression, overdose, and death. Advise patients to seek immediate medical attention if they experience symptoms such as trouble breathing. Generally, benzodiazepines should be prescribed for short periods (2 to 4 weeks) with continued reevaluation of the need for treatment. Abrupt discontinuation or rapid dosage reduction of benzodiazepines after continued use may precipitate acute withdrawal reactions, which can be life-threatening. The risks of physiological dependence and withdrawal increase with longer treatment duration and higher daily dose. Benzodiazepine dependence can occur after administration of therapeutic doses for as few as 1 to 2 weeks and withdrawal symptoms may be seen after the discontinuation of therapy. To reduce the risk of acute withdrawal reactions, use a gradual taper to reduce the dosage or to discontinue benzodiazepines. No standard benzodiazepine tapering schedule is suitable for all patients; therefore, create a patient-specific plan to gradually reduce the dosage. If a patient develops withdrawal reactions, consider pausing the taper or increasing the dosage to the previous tapered dosage level. Subsequently, decrease the dosage more slowly. Patients with a history of a seizure disorder should not be withdrawn abruptly from benzodiazepines due to the risk of precipitating seizures; status epilepticus has also been reported. Clinicians should be aware that the use of flumazenil may increase the risk of seizures, particularly in long-term users of benzodiazepines. [63534]

Common Brand Names

Ativan, Loreev XR

Dea Class

Rx, schedule IV

Description

Oral and parenteral intermediate-acting benzodiazepine with no active metabolites
Approved for anxiety, status epilepticus, perioperative sedation or amnesia induction, and the short-term treatment of insomnia in adults; several off-label uses
Avoid coadministration with opioids if possible due to potential for profound sedation, respiratory depression, coma, and death

Dosage And Indications
For the treatment of generalized anxiety disorder (GAD) or for the short-term relief of the symptoms of anxiety. Oral dosage (immediate-release) Adults

2 to 3 mg/day PO in 2 to 3 divided doses, initially. May increase the dose gradually as needed. Usual dose: 2 to 6 mg/day. Max: 10 mg/day. When a higher dosage is needed, increase the evening dose before the daytime doses. Efficacy of long-term use (more than 4 months) for anxiety disorders has not been evaluated. To discontinue, taper the dose gradually.

Older Adults

1 to 2 mg/day PO in 2 to 3 divided doses, initially. May increase the dose gradually as needed. Usual dose: 2 to 6 mg/day. Max: 10 mg/day. When a higher dosage is needed, increase the evening dose before the daytime doses. Efficacy of long-term use (more than 4 months) for anxiety disorders has not been evaluated. To discontinue, taper the dose gradually The federal Omnibus Budget Reconciliation Act (OBRA) regulates the use of anxiolytics in long-term care facility (LTCF) residents and 2 mg/day is the recommended maximum dose in residents meeting the criteria for treatment, except when documentation is provided showing that higher doses are necessary to maintain or improve the resident's functional status.

Children and Adolescents 12 to 17 years

2 to 3 mg/day PO in 2 to 3 divided doses, initially. May increase the dose gradually as needed. Usual dose: 2 to 6 mg/day. Max: 10 mg/day. When a higher dosage is needed, increase the evening dose before the daytime doses. Efficacy of long-term use (more than 4 months) for anxiety disorders has not been evaluated. To discontinue, taper the dose gradually.

Children† 1 to 11 years

Dosage not available for anxiety disorders; however, lorazepam 0.025 to 0.05 mg/kg/dose PO as needed (no more frequently than every 4 hours) has been used in burn patients with anxiety related to being in the hospital, dressing changes, etc. In older pediatric patients, the daily dosage for anxiety disorders is typically divided into 2 to 3 doses with a maximum of 10 mg/day.

Oral dosage [extended-release, (i.e., Loreev XR)] in persons receiving stable, evenly divided, 3 times daily dosing with immediate-release products Adults

Initiate extended-release (ER) dosing with the total daily dose of lorazepam given PO once daily in the morning. Administer the morning after the day of discontinuation of a lorazepam immediate-release (IR) product. If an increase is needed, discontinue the ER capsules and increase the dosage using lorazepam IR. Once adequate response is achieved, resume treatment with the ER capsules. Max: 10 mg/day. To discontinue, taper or decrease dose gradually.

Older Adults

Initiate extended-release (ER) dosing with the total daily dose of lorazepam PO once daily in the morning. Administer the morning after the day of discontinuation of a lorazepam immediate-release (IR) product. If an increase is needed, discontinue the ER capsules and increase the dosage using lorazepam IR. Once adequate response is achieved, resume treatment with the ER capsules. Max: 10 mg/day. To discontinue, taper or decrease dose gradually. The federal Omnibus Budget Reconciliation Act (OBRA) regulates the use of anxiolytics in long-term care facility (LTCF) residents and 2 mg/day is the recommended maximum dose in residents meeting the criteria for treatment, except when documentation is provided showing that higher doses are necessary to maintain or improve the resident's functional status.

For the short-term treatment of insomnia due to anxiety or transient situational stress. Oral dosage Adults, Adolescents, and Children 12 years and older

2 to 4 mg PO at bedtime as needed. Efficacy of long-term use (more than 4 months) has not been evaluated.

Geriatric Adults

Initially, use a low dosage (i.e., 1 to 2 mg PO) and titrate slowly in the geriatric patient. Usual adult dose range is 2 to 4 mg PO at bedtime as needed; use for more than 4 months has not been evaluated. The federal Omnibus Budget Reconciliation Act (OBRA) regulates the use of sedative/hypnotics in long-term care facility (LTCF) residents. In residents meeting the criteria for treatment, the dose of lorazepam should not exceed 1 mg/day PO, except when documentation is provided showing that higher doses are necessary to maintain or improve the resident's functional status. All sleep medications should be used in accordance with approved product labeling. If the sleep agent is used routinely and is beyond the manufacturer's recommendations for duration of use, the facility should attempt a quarterly taper, unless clinically contraindicated as defined in the OBRA guidelines.

For procedural sedation or preoperative sedation induction. For operative amnesia induction in adult patients. Intravenous dosage Adults

Up to 0.05 mg/kg IV (Max: 4 mg) during surgery or the procedure.

For preoperative sedation induction and/or relief of preoperative anxiety in adult patients. Intravenous or Intramuscular dosage Adults

0.044 mg/kg IV (Max: 2 mg) 15 to 20 minutes prior to surgery or the procedure. Alternatively, 0.05 mg/kg IM (Max: 4 mg) administered 2 hours prior to surgery or the procedure.

For amnesia induction† and anxiety relief in pediatric patients. Oral dosage Infants, Children, and Adolescents

0.05 mg/kg PO as a single dose (Max: 4 mg) 45 to 90 minutes prior to procedure. Dose range: 0.02 to 0.09 mg/kg/dose.

Intravenous or Intramuscular dosage Infants, Children, and Adolescents

0.05 to 0.1 mg/kg IV or IM as a single dose (Max: 2 to 4 mg). Dose range: 0.02 to 0.1 mg/kg/dose. For optimum lack of recall, administer IV dose 15 to 20 minutes prior to procedure and IM dose 2 hours prior to procedure.[41537] [52925] [64934]

For the treatment of status epilepticus.
NOTE: IV administration is preferred because therapeutic concentrations are not reached as quickly with IM administration; however, if IV access is not available, IM administration may be useful.
Intravenous or Intramuscular dosage Adults

0.1 mg/kg/dose (Max: 4 mg/dose) IV or IM as a single dose; may repeat dose once in 5 to 15 minutes.[41537]

Infants†, Children†, and Adolescents†

0.05 to 0.1 mg/kg/dose (Max: 4 mg/dose) IV or IM as a single dose; may repeat dose once in 5 to 15 minutes.

Neonates†

0.05 to 0.1 mg/kg/dose IV or IM as a single dose; may repeat dose once in 10 to 15 minutes.

For sedation maintenance† in mechanically-ventilated patients. Intermittent Intravenous dosage Adults

0.044 mg/kg/dose (e.g., 2 to 4 mg) IV every 2 to 4 hours, as needed; however, the required dosage is highly variable and should be titrated to desired degree of sedation.[25032] A single dose should not exceed 4 mg IV.

Infants, Children, and Adolescents

0.05 mg/kg/dose IV every 2 to 8 hours as needed (Max initial dose: 2 mg). Dose range: 0.025 to 0.1 mg/kg/dose. Due to a prolonged half-life, infants may require doses at less frequent intervals (e.g., every 6 to 8 hours) compared to children and adolescents.

Neonates

0.05 mg/kg/dose IV every 2 to 8 hours as needed. Dose range: 0.025 to 0.1 mg/kg/dose. Due to a prolonged half-life, neonates may require doses at less frequent intervals (e.g., every 6 to 8 hours) compared to children and adolescents.

Continuous IV Infusion† dosage Adults

The usual dosage range is 0.5 to 8 mg/hour (or 0.01 to 0.1 mg/kg/hour); titrated to effect. The required dosage is highly variable and should be titrated to desired degree of sedation. A loading dose (i.e., 2 to 4 mg IV) is generally required.

Infants, Children, and Adolescents

Limited published data are available in the pediatric population. An initial infusion rate of 0.025 to 0.05 mg/kg/hour IV is recommended by some experts. Max initial rate: 2 mg/hour. A published sedation protocol for pediatric mechanically ventilated patients recommends an initial infusion rate of 0.01 mg/kg/hour IV. If 3 intermittent boluses of lorazepam are needed in a 6 hour time period, increase the infusion rate by 0.005 mg/kg/hour (50% of initial rate). If no additional boluses are needed, consider reducing the infusion rate. Titrate to desired level of sedation. High doses and prolonged infusions may increase the risk of propylene glycol toxicity; monitor patients carefully.

For the treatment of alcohol withdrawal†. For the treatment of non-severe alcohol withdrawal†. Oral dosage (immediate-release, fixed-dose) Adults

2 mg PO every 8 hours on days 1 and 2, then 1 mg PO every 8 hours on day 3, then 1 mg PO every 12 hours on day 4, and then 1 mg PO once daily at bedtime on day 5.

Oral dosage (immediate-release, symptom-triggered) Adults

2 mg PO every 6 hours as needed on days 1 and 2, then 1 mg PO every 8 hours as needed on day 3, and then 1 mg PO every 12 hours as needed on days 4 and 5.

For the treatment of severe alcohol withdrawal†. Intravenous dosage Adults

4 mg IV every 15 to 20 minutes for 2 doses, then 8 mg IV every 15 to 20 minutes for 2 doses, then 16 mg IV every 15 to 20 minutes for 3 doses as needed. If the patient is hyperdynamic and agitated after lorazepam 40 mg within 3 hours, consider phenobarbital or propofol.

Continuous Intravenous Infusion dosage Adults

1 to 20 mg/hour continuous IV infusion. Titrate dose to target clinical score. Average dose: 14 mg/hour.

For chemotherapy-induced nausea/vomiting prophylaxis† as an adjunct to antiemetics. Intravenous dosage Adults

Doses of 0.025 mg/kg IV have been reported to be effective in reducing emesis and anxiety due to chemotherapy with minimal adverse effects. Alternatively, 1.5 mg/m2 (Usual Max: 3 mg) IV can be given 45 minutes prior to initiation of chemotherapy. Dosage generally produces some amnesia of short-term memory.

Children and Adolescents

0.04 to 0.05 mg/kg IV as a single dose administered 30 minutes prior to chemotherapy. Infuse over 15 to 20 minutes. Max: 4 mg/dose. Alternatively, 0.025 to 0.05 mg/kg/dose IV every 6 hours as needed for management of anticipatory or breakthrough nausea/vomiting. Max: 4 mg/dose.

Oral dosage Children and Adolescents

Limited data available; 0.025 to 0.05 mg/kg/dose PO every 6 hours as needed for management of anticipatory nausea/vomiting. Max: 4 mg/dose. May start 12 to 24 hours prior to chemotherapy.

For the treatment of agitation†. Oral dosage Adults

2 mg PO every 30 to 60 minutes as needed.

Children and Adolescents

0.05 to 0.1 mg/kg/dose (Max: 2 mg/dose) PO every 30 to 60 minutes as needed.[64934]

Intramuscular dosage Adults

2 to 4 mg IM every 30 to 60 minutes as needed.

Children and Adolescents

0.05 to 0.1 mg/kg/dose (Max: 2 mg/dose) IM every 30 to 60 minutes as needed.[64934]

Intravenous dosage Adults

2 mg IV every 30 to 60 minutes as needed.

Children and Adolescents

0.05 to 0.1 mg/kg/dose (Max: 2 mg/dose) IV every 30 to 60 minutes as needed.[64934]

For the treatment of cocaine-associated acute coronary syndromes†, including acute myocardial infarction, NSTEMI† or unstable angina†. Intravenous dosage Adults

1 mg IV as a single dose, initially; may repeat dose after 5 minutes if chest pain persists.

For the treatment of cyclic vomiting syndrome†. Intravenous dosage Adults

1 to 2 mg IV as a single dose plus diphenhydramine for additional sedation. May continue lorazepam for 24 to 48 hours if initially effective and needed.

Children and Adolescents

0.05 to 0.1 mg/kg/dose (Max: 2 mg/dose) IV every 6 hours as needed.

†Indicates off-label use

Dosing Considerations
Hepatic Impairment

Lorazepam dosage should be modified based on clinical response and degree of hepatic impairment; a smaller dosage may be sufficient for patients with severe insufficiency. No quantitative recommendations are available.

Renal Impairment

Lorazepam dosage should be modified depending on clinical response and degree of renal impairment. No quantitative recommendations are available. Patients with renal impairment receiving high doses of intravenous lorazepam may be more likely to develop propylene glycol toxicity.

Drug Interactions

Acetaminophen; Aspirin, ASA; Caffeine: (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Acetaminophen; Aspirin; Diphenhydramine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Acetaminophen; Caffeine: (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Acetaminophen; Caffeine; Dihydrocodeine: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines. (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Acetaminophen; Caffeine; Pyrilamine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination. (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Acetaminophen; Chlorpheniramine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Acetaminophen; Chlorpheniramine; Dextromethorphan: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination. (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Acetaminophen; Chlorpheniramine; Phenylephrine : (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination. (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Acetaminophen; Codeine: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Acetaminophen; Dextromethorphan; Doxylamine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Acetaminophen; Dextromethorphan; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Acetaminophen; Diphenhydramine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Acetaminophen; Guaifenesin; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Acetaminophen; Hydrocodone: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
Acetaminophen; Oxycodone: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Acetaminophen; Pamabrom; Pyrilamine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Acetaminophen; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Acrivastine; Pseudoephedrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Aldesleukin, IL-2: (Moderate) Aldesleukin, IL-2 may affect CNS function significantly. Therefore, psychotropic pharmacodynamic interactions could occur following concomitant administration of drugs with significant CNS activity. Use with caution.
Alfentanil: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Alprazolam: (Moderate) Concomitant administration of alprazolam with CNS-depressant drugs, such as lorazepam, can potentiate the CNS effects of either agent.
Amobarbital: (Moderate) Additive CNS and/or respiratory depression may occur with concurrent use.
Amoxapine: (Moderate) Amoxapine may enhance the response to the effects of benzodiazepines and other CNS depressants. Patients should be warned of the possibility of drowsiness that may impair performance of potentially hazardous tasks such as driving an automobile or operating machinery.
Apomorphine: (Moderate) Apomorphine causes significant somnolence. Concomitant administration of apomorphine and benzodiazepines could result in additive depressant effects.
Apraclonidine: (Minor) No specific drug interactions were identified with systemic agents and apraclonidine during clinical trials. Theoretically, apraclonidine might potentiate the effects of CNS depressant drugs such as the anxiolytics, sedatives, and hypnotics, including barbiturates or benzodiazepines.
Aripiprazole: (Moderate) Monitor blood pressure and for unusual drowsiness and sedation during coadministration of aripiprazole and benzodiazepines. Intensity of sedation and orthostatic hypotension were greater with the combination of oral aripiprazole and lorazepam compared to aripiprazole alone.
Asenapine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when asenapine is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics (including barbiturates), buprenorphine, buprenorphine; naloxone, butorphanol, dronabinol, THC, nabilone, nalbuphine, opiate agonists, pentazocine, acetaminophen; pentazocine, aspirin, ASA; pentazocine, and pentazocine; naloxone.
Aspirin, ASA; Butalbital; Caffeine: (Moderate) Additive CNS and/or respiratory depression may occur with concurrent use. (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Aspirin, ASA; Caffeine: (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Aspirin, ASA; Caffeine; Orphenadrine: (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Aspirin, ASA; Carisoprodol; Codeine: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Aspirin, ASA; Oxycodone: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Atazanavir: (Moderate) Monitor for an increase in lorazepam-related adverse reactions and consider reducing the dose of lorazepam if concomitant use of lorazepam and atazanavir is necessary. Avoid lorazepam extended-release capsules and utilize lorazepam immediate-release dosage forms that can be easily titrated. Lorazepam is an UGT substrate and atazanavir is an UGT inhibitor.
Atazanavir; Cobicistat: (Moderate) Monitor for an increase in lorazepam-related adverse reactions and consider reducing the dose of lorazepam if concomitant use of lorazepam and atazanavir is necessary. Avoid lorazepam extended-release capsules and utilize lorazepam immediate-release dosage forms that can be easily titrated. Lorazepam is an UGT substrate and atazanavir is an UGT inhibitor.
Atropine; Difenoxin: (Moderate) Concomitant administration of benzodiazepines with CNS-depressant drugs, such as diphenoxylate/difenoxin, can potentiate the CNS effects of either agent.
Azelastine: (Moderate) Monitor for excessive sedation and somnolence during coadministration of azelastine and benzodiazepines. Concurrent use may result in additive CNS depression.
Azelastine; Fluticasone: (Moderate) Monitor for excessive sedation and somnolence during coadministration of azelastine and benzodiazepines. Concurrent use may result in additive CNS depression.
Barbiturates: (Moderate) Additive CNS and/or respiratory depression may occur with concurrent use.
Belladonna; Opium: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Benzhydrocodone; Acetaminophen: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If benzhydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Benztropine: (Moderate) CNS depressants, such as anxiolytics, sedatives, and hypnotics, can increase the sedative effects of benztropine.
Brexanolone: (Moderate) Concomitant use of brexanolone with CNS depressants like the benzodiazepines may increase the likelihood or severity of adverse reactions related to sedation and additive CNS depression. Monitor for excessive sedation, dizziness, and a potential for loss of consciousness during brexanolone use.
Brimonidine: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of the anxiolytics, sedatives, and hypnotics including benzodiazepines.
Brimonidine; Brinzolamide: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of the anxiolytics, sedatives, and hypnotics including benzodiazepines.
Brimonidine; Timolol: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of the anxiolytics, sedatives, and hypnotics including benzodiazepines.
Brompheniramine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Brompheniramine; Dextromethorphan; Phenylephrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination. (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Brompheniramine; Phenylephrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination. (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Brompheniramine; Pseudoephedrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Brompheniramine; Pseudoephedrine; Dextromethorphan: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Buprenorphine: (Major) Concomitant use of mixed opiate agonists/antagonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of mixed opiate agonists/antagonists with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If a mixed opiate agonist/antagonist is initiated for pain in a patient taking a benzodiazepine, use a lower initial dose of the mixed opiate agonist/antagonist and titrate to clinical response. Reduce injectable buprenorphine dose by 1/2, and for the buprenorphine transdermal patch, start therapy with the 5 mcg/hour patch. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking a mixed opiate agonist/antagonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. In patients treated with buprenorphine for opioid use disorder, cessation of benzodiazepines or other CNS depressants is preferred in most cases. Consider alternatives to benzodiazepines for conditions such as anxiety or insomnia in patients receiving buprenorphine maintenance treatment. Educate patients about the risks and symptoms of respiratory depression and sedation.
Buprenorphine; Naloxone: (Major) Concomitant use of mixed opiate agonists/antagonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of mixed opiate agonists/antagonists with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If a mixed opiate agonist/antagonist is initiated for pain in a patient taking a benzodiazepine, use a lower initial dose of the mixed opiate agonist/antagonist and titrate to clinical response. Reduce injectable buprenorphine dose by 1/2, and for the buprenorphine transdermal patch, start therapy with the 5 mcg/hour patch. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking a mixed opiate agonist/antagonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. In patients treated with buprenorphine for opioid use disorder, cessation of benzodiazepines or other CNS depressants is preferred in most cases. Consider alternatives to benzodiazepines for conditions such as anxiety or insomnia in patients receiving buprenorphine maintenance treatment. Educate patients about the risks and symptoms of respiratory depression and sedation.
Butabarbital: (Moderate) Additive CNS and/or respiratory depression may occur with concurrent use.
Butalbital; Acetaminophen: (Moderate) Additive CNS and/or respiratory depression may occur with concurrent use.
Butalbital; Acetaminophen; Caffeine: (Moderate) Additive CNS and/or respiratory depression may occur with concurrent use. (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Butalbital; Acetaminophen; Caffeine; Codeine: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines. (Moderate) Additive CNS and/or respiratory depression may occur with concurrent use. (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Butalbital; Aspirin; Caffeine; Codeine: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines. (Moderate) Additive CNS and/or respiratory depression may occur with concurrent use. (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Butorphanol: (Major) Concomitant use of mixed opiate agonists/antagonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of mixed opiate agonists/antagonists with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If a mixed opiate agonist/antagonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the mixed opiate agonist/antagonist and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking a mixed opiate agonist/antagonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Caffeine: (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Caffeine; Sodium Benzoate: (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Calcium, Magnesium, Potassium, Sodium Oxybates: (Contraindicated) Sodium oxybate should not be used in combination with CNS depressant anxiolytics, sedatives, and hypnotics or other sedative CNS depressant drugs. Specifically, sodium oxybate use is contraindicated in patients being treated with sedative hypnotic drugs. Sodium oxybate (GHB) has the potential to impair cognitive and motor skills. For example, the concomitant use of barbiturates and benzodiazepines increases sleep duration and may contribute to rapid onset, pronounced CNS depression, respiratory depression, or coma when combined with sodium oxybate.
Cannabidiol: (Moderate) Monitor for an increase in lorazepam-related adverse reactions and consider reducing the dose of lorazepam if concomitant use of lorazepam and cannabidiol is necessary. Avoid lorazepam extended-release capsules and utilize lorazepam immediate-release dosage forms that can be easily titrated. Lorazepam is a UGT2B7 substrate. In vitro data predicts inhibition of UGT2B7 by cannabidiol, potentially resulting in clinically significant interactions.
Carbinoxamine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Cariprazine: (Moderate) Due to the CNS effects of cariprazine, caution should be used when cariprazine is given in combination with other centrally-acting medications including benzodiazepines and other anxiolytics, sedatives, and hypnotics.
Celecoxib; Tramadol: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Cenobamate: (Moderate) Monitor for excessive sedation and somnolence during coadministration of cenobamate and benzodiazepines. Concurrent use may result in additive CNS depression.
Cetirizine: (Moderate) Concurrent use of cetirizine/levocetirizine with benzodiazepines should generally be avoided. Coadministration may increase the risk of CNS depressant-related side effects. If concurrent use is necessary, monitor for excessive sedation and somnolence.
Cetirizine; Pseudoephedrine: (Moderate) Concurrent use of cetirizine/levocetirizine with benzodiazepines should generally be avoided. Coadministration may increase the risk of CNS depressant-related side effects. If concurrent use is necessary, monitor for excessive sedation and somnolence.
Chlophedianol; Dexbrompheniramine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Chlorcyclizine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Chlorpheniramine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Chlorpheniramine; Codeine: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines. (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Chlorpheniramine; Dextromethorphan: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination. (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines. (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination. (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Chlorpheniramine; Hydrocodone: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines. (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Chlorpheniramine; Phenylephrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination. (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Chlorpheniramine; Pseudoephedrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Chlorthalidone; Clonidine: (Moderate) Clonidine has CNS depressive effects and can potentiate the actions of other CNS depressants including benzodiazepines.
Cisapride: (Moderate) Cisapride may enhance the sedative effects of benzodiazepines. Patients should not drive or operate heavy machinery until they know how the combination affects them. Patient counseling is important, as cisapride alone does not cause drowsiness or affect psychomotor function.
Clemastine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Clobazam: (Major) Use clobazam with other benzodiazepines with caution due to the risk for additive CNS depression.
Clonidine: (Moderate) Clonidine has CNS depressive effects and can potentiate the actions of other CNS depressants including benzodiazepines.
Clozapine: (Moderate) If concurrent therapy with clozapine and a benzodiazepine is necessary, it is advisable to begin with the lowest possible benzodiazepine dose and closely monitor the patient, particularly at initiation of treatment and following dose increases. Although the combination has been used safely, adverse reactions such as confusion, ataxia, somnolence, delirium, collapse, cardiac arrest, respiratory arrest, and death have occurred rarely in patients receiving clozapine concurrently or following benzodiazepine therapy. Several benzodiazepines, including clonazepam, oxazepam, flurazepam, diazepam, clobazam, flunitrazepam, and lorazepam have been implicated in these reactions. At least one case of sudden death was reported following intravenous administration of lorazepam to a patient receiving clozapine.
Codeine: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Codeine; Guaifenesin: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Codeine; Guaifenesin; Pseudoephedrine: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Codeine; Phenylephrine; Promethazine: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines. (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Codeine; Promethazine: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Colesevelam: (Moderate) Colesevelam may decrease the absorption of anticonvulsants. To minimize potential for interactions, consider administering oral anticonvulsants at least 1 hour before or at least 4 hours after colesevelam.
COMT inhibitors: (Major) Concomitant administration of benzodiazepines with other drugs have CNS depressant properties, including COMT inhibitors, can potentiate the CNS effects of either agent. COMT inhibitors have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment. Patients should be advised to avoid driving or other tasks requiring mental alertness until they know how the combination affects them.
Cyclizine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Cyproheptadine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Daridorexant: (Major) Monitor for excessive sedation and somnolence during use of daridorexant with benzodiazepines. Dosage adjustments may be necessary when administered together because of potentially additive CNS effects. Use of more than 2 hypnotics should be avoided due to the additive CNS depressant and complex sleep-related behaviors that may occur. While anxiolytic medications may be used concurrently with daridorexant, a reduction in dose of one or both agents may be needed. The risk of next-day impairment, including impaired driving, is increased if daridorexant is taken with other CNS depressants.
Desflurane: (Moderate) Concurrent use with benzodiazepines can decrease the minimum alveolar concentration (MAC) of desflurane needed to produce anesthesia.
Desogestrel; Ethinyl Estradiol: (Minor) Ethinyl estradiol may enhance the metabolism of lorazepam. It appears glucuronide conjugation of lorazepam is increased in the presence of combined hormonal oral contraceptives; the clinical significance of this interaction is not determined.
Deutetrabenazine: (Moderate) Advise patients that concurrent use of deutetrabenazine and drugs that can cause CNS depression, such as lorazepam, may have additive effects and worsen drowsiness or sedation.
Dexbrompheniramine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Dexbrompheniramine; Pseudoephedrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Dexchlorpheniramine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Dexmedetomidine: (Moderate) Concurrent use of dexmedetomidine and benzodiazepines may result in additive CNS depression. A reduction in dosage of dexmedetomidine or the benzodiazepine may be required.
Dextromethorphan; Diphenhydramine; Phenylephrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination. (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Dichlorphenamide: (Moderate) Use dichlorphenamide and lorazepam together with caution. Metabolic acidosis is associated with the use of dichlorphenamide and has been reported rarely with the use of lorazepam injection for the treatment of status epilepticus. Concurrent use may increase the severity of metabolic acidosis. Measure sodium bicarbonate concentrations at baseline and periodically during dichlorphenamide treatment. If metabolic acidosis occurs or persists, consider reducing the dose or discontinuing dichlorphenamide therapy.
Dicyclomine: (Moderate) Dicyclomine can cause drowsiness, so it should be used cautiously in patients receiving CNS depressants like benzodiazepines.
Difelikefalin: (Moderate) Monitor for dizziness, somnolence, mental status changes, and gait disturbances if concomitant use of difelikefalin with CNS depressants is necessary. Concomitant use may increase the risk for these adverse reactions.
Dimenhydrinate: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Diphenhydramine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Diphenhydramine; Ibuprofen: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Diphenhydramine; Naproxen: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Diphenhydramine; Phenylephrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination. (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Diphenoxylate; Atropine: (Moderate) Concomitant administration of benzodiazepines with CNS-depressant drugs, such as diphenoxylate/difenoxin, can potentiate the CNS effects of either agent.
Doxylamine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Doxylamine; Pyridoxine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Dronabinol: (Moderate) Use caution if the use of benzodiazepines are necessary with dronabinol, and monitor for additive dizziness, confusion, somnolence, and other CNS effects.
Droperidol: (Major) Droperidol administration is associated with an established risk for QT prolongation and torsades de pointes. In December 2001, the FDA issued a black box warning regarding the use of droperidol and its association with QT prolongation and potential for cardiac arrhythmias based on post-marketing surveillance data. Risk factors for the development of prolonged QT syndrome may include the use of benzodiazepines. Also, droperidol and benzodiazepines can both cause CNS depression. If used with a benzodiazepine, droperidol should be initiated at a low dose and adjusted upward, with caution, as needed to achieve the desired effect.
Drospirenone; Ethinyl Estradiol: (Minor) Ethinyl estradiol may enhance the metabolism of lorazepam. It appears glucuronide conjugation of lorazepam is increased in the presence of combined hormonal oral contraceptives; the clinical significance of this interaction is not determined.
Drospirenone; Ethinyl Estradiol; Levomefolate: (Minor) Ethinyl estradiol may enhance the metabolism of lorazepam. It appears glucuronide conjugation of lorazepam is increased in the presence of combined hormonal oral contraceptives; the clinical significance of this interaction is not determined.
Ergotamine; Caffeine: (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Erlotinib: (Moderate) Monitor for an increase in lorazepam-related adverse reactions and consider reducing the dose of lorazepam if concomitant use of lorazepam and erlotinib is necessary. Avoid lorazepam extended-release capsules and utilize lorazepam immediate-release dosage forms that can be easily titrated. Lorazepam is an UGT substrate and erlotinib is an UGT inhibitor.
Esketamine: (Major) Closely monitor patients receiving esketamine and benzodiazepines for sedation and other CNS depressant effects. Instruct patients who receive a dose of esketamine not to drive or engage in other activities requiring alertness until the next day after a restful sleep.
Eszopiclone: (Moderate) Concomitant administration of benzodiazepines with eszopiclone can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. The concurrent use of eszopiclone with other anxiolytics, sedatives, and hypnotics at bedtime or in the middle of the night is not recommended. In addition, the risk of next-day psychomotor impairment is increased during co-administration of eszopiclone and other CNS depressants, which may decrease the ability to perform tasks requiring full mental alertness such as driving. If used together, a reduction in the dose of one or both drugs may be needed.
Ethanol: (Major) Advise patients to avoid alcohol consumption while taking CNS depressants. Alcohol consumption may result in additive CNS depression. Alcohol may also increase drug exposure and the risk for overdose by disrupting extended-release lorazepam capsules. (Major) Avoid concomitant use of medications formulated with alcohol and extended-release lorazepam capsules. Co-ingestion may disrupt the extended-release formulation resulting in increased lorazepam exposure and increasing the risk for lorazepam overdose. An in vitro study demonstrated significant increases in lorazepam release from the extended-release capsule 2 hours post-dose with approximately 91%-95% and 37 -42% of drug release in the presence of 40% and 20% alcohol, respectively. Effects of 5% and 10% alcohol on drug release were not significant 2 hours post-dose.
Ethinyl Estradiol; Norelgestromin: (Minor) Ethinyl estradiol may enhance the metabolism of lorazepam. It appears glucuronide conjugation of lorazepam is increased in the presence of combined hormonal oral contraceptives; the clinical significance of this interaction is not determined.
Ethinyl Estradiol; Norethindrone Acetate: (Minor) Ethinyl estradiol may enhance the metabolism of lorazepam. It appears glucuronide conjugation of lorazepam is increased in the presence of combined hormonal oral contraceptives; the clinical significance of this interaction is not determined.
Ethinyl Estradiol; Norgestrel: (Minor) Ethinyl estradiol may enhance the metabolism of lorazepam. It appears glucuronide conjugation of lorazepam is increased in the presence of combined hormonal oral contraceptives; the clinical significance of this interaction is not determined.
Ethynodiol Diacetate; Ethinyl Estradiol: (Minor) Ethinyl estradiol may enhance the metabolism of lorazepam. It appears glucuronide conjugation of lorazepam is increased in the presence of combined hormonal oral contraceptives; the clinical significance of this interaction is not determined.
Etomidate: (Moderate) Concomitant administration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent.
Etonogestrel; Ethinyl Estradiol: (Minor) Ethinyl estradiol may enhance the metabolism of lorazepam. It appears glucuronide conjugation of lorazepam is increased in the presence of combined hormonal oral contraceptives; the clinical significance of this interaction is not determined.
Fenfluramine: (Moderate) Monitor for excessive sedation and somnolence during coadministration of fenfluramine and benzodiazepines. Concurrent use may result in additive CNS depression.
Fentanyl: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Flumazenil: (Major) Flumazenil competes with benzodiazepines for binding at the GABA/benzodiazepine-receptor complex, the specific binding site of benzodiazepines. Because binding at the receptor is competitive and flumazenil has a much shorter duration of action than do most benzodiazepines, it is possible for the effects of flumazenil to dissipate sooner than the effects of the benzodiazepine. Flumazenil does not affect the pharmacokinetics of the benzodiazepines. Abrupt awakening can cause dysphoria, agitation, and possibly increased adverse effects. If administered to patients who have received a benzodiazepine chronically, abrupt interruption of benzodiazepine agonism by flumazenil can induce benzodiazepine withdrawal including seizures. Flumazenil has minimal effects on benzodiazepine-induced respiratory depression; suitable ventilatory support should be available, especially in treating acute benzodiazepine overdose. Flumazenil does not reverse the actions of barbiturates, opiate agonists, or tricyclic antidepressants.
Food: (Major) Advise patients to avoid cannabis use while taking CNS depressants due to the risk for additive CNS depression and potential for other cognitive adverse reactions.
Gabapentin: (Major) Concomitant use of benzodiazepines with gabapentin may cause excessive sedation, somnolence, and respiratory depression. If concurrent use is necessary, initiate gabapentin at the lowest recommended dose and monitor patients for symptoms of respiratory depression and sedation. Educate patients about the risks and symptoms of excessive CNS depression and respiratory depression.
Gemfibrozil: (Moderate) Monitor for an increase in lorazepam-related adverse reactions and consider reducing the dose of lorazepam if concomitant use of lorazepam and gemfibrozil is necessary. Avoid lorazepam extended-release capsules and utilize lorazepam immediate-release dosage forms that can be easily titrated. Lorazepam is an UGT substrate and gemfibrozil is an UGT inhibitor.
General anesthetics: (Moderate) Concomitant administration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent.
Glecaprevir; Pibrentasvir: (Moderate) Monitor for an increase in lorazepam-related adverse reactions and consider reducing the dose of lorazepam if concomitant use of lorazepam and glecaprevir is necessary. Avoid lorazepam extended-release capsules and utilize lorazepam immediate-release dosage forms that can be easily titrated. Lorazepam is an UGT substrate and glecaprevir is an UGT inhibitor. (Moderate) Monitor for an increase in lorazepam-related adverse reactions and consider reducing the dose of lorazepam if concomitant use of lorazepam and pibrentasvir is necessary. Avoid lorazepam extended-release capsules and utilize lorazepam immediate-release dosage forms that can be easily titrated. Lorazepam is an UGT substrate and pibrentasvir is an UGT inhibitor.
Green Tea: (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products, such as green tea, prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Guaifenesin; Hydrocodone: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
Guaifenesin; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Guanfacine: (Moderate) Guanfacine has been associated with sedative effects and can potentiate the actions of other CNS depressants including benzodiazepines.
Haloperidol: (Moderate) Haloperidol can potentiate the actions of other CNS depressants, such as benzodiazepines, Caution should be exercised with simultaneous use of these agents due to potential excessive CNS effects.
Homatropine; Hydrocodone: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated i

n a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
Hydrochlorothiazide, HCTZ; Methyldopa: (Moderate) Methyldopa is associated with sedative effects. Methyldopa can potentiate the effects of CNS depressants such as barbiturates, benzodiazepines, opiate agonists, or phenothiazines when administered concomitantly.
Hydrocodone: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
Hydrocodone; Ibuprofen: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
Hydrocodone; Pseudoephedrine: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
Hydromorphone: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydromorphone is initiated in a patient taking a benzodiazepine, reduce the initial dosage of hydromorphone and titrate to clinical response; for hydromorphone extended-release tablets, use 1/3 to 1/2 of the estimated hydromorphone starting dose. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Hydroxychloroquine: (Moderate) Monitor persons with epilepsy for seizure activity during concomitant lorazepam and hydroxychloroquine use. Hydroxychloroquine can lower the seizure threshold; therefore, the activity of antiepileptic drugs may be impaired with concomitant use.
Hydroxyzine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Ibuprofen; Oxycodone: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Iloperidone: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics.
Indinavir: (Moderate) Monitor for an increase in lorazepam-related adverse reactions and consider reducing the dose of lorazepam if concomitant use of lorazepam and indinavir is necessary. Avoid lorazepam extended-release capsules and utilize lorazepam immediate-release dosage forms that can be easily titrated. Lorazepam is an UGT substrate and indinavir is an UGT inhibitor.
Iohexol: (Moderate) The use of intrathecal radiopaque contrast agents is associated with a risk of seizures. Patients should be instructed to continue using benzodiazepines during procedures or exams that require the use of intrathecal radiopaque contrast agents as abrupt discontinuation of benzodiazepines may also increase seizure risk.
Iopamidol: (Moderate) The use of intrathecal radiopaque contrast agents is associated with a risk of seizures. Patients should be instructed to continue using benzodiazepines during procedures or exams that require the use of intrathecal radiopaque contrast agents as abrupt discontinuation of benzodiazepines may also increase seizure risk.
Isoflurane: (Moderate) Concomitant administration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent.
Ketamine: (Moderate) Concomitant administration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent.
Lasmiditan: (Moderate) Monitor for excessive sedation and somnolence during coadministration of lasmiditan and benzodiazepines. Concurrent use may result in additive CNS depression.
Lemborexant: (Moderate) Monitor for excessive sedation and somnolence during use of lemborexant with benzodiazepines. Dosage adjustments may be necessary when administered together because of potentially additive CNS effects. Use of more than 2 hypnotics should be avoided due to the additive CNS depressant and complex sleep-related behaviors that may occur. While anxiolytic medications may be used concurrently with lemborexant, a reduction in dose of one or both agents may be needed. The risk of next-day impairment, including impaired driving, is increased if lemborexant is taken with other CNS depressants.
Levocetirizine: (Moderate) Concurrent use of cetirizine/levocetirizine with benzodiazepines should generally be avoided. Coadministration may increase the risk of CNS depressant-related side effects. If concurrent use is necessary, monitor for excessive sedation and somnolence.
Levomilnacipran: (Moderate) Concurrent use of many CNS active drugs, including benzodiazepines, with levomilnacipran has not been evaluated by the manufacturer. Therefore, caution is advisable when combining anxiolytics, sedatives, and hypnotics or other psychoactive medications with levomilnacipran.
Levonorgestrel; Ethinyl Estradiol: (Minor) Ethinyl estradiol may enhance the metabolism of lorazepam. It appears glucuronide conjugation of lorazepam is increased in the presence of combined hormonal oral contraceptives; the clinical significance of this interaction is not determined.
Levonorgestrel; Ethinyl Estradiol; Ferrous Bisglycinate: (Minor) Ethinyl estradiol may enhance the metabolism of lorazepam. It appears glucuronide conjugation of lorazepam is increased in the presence of combined hormonal oral contraceptives; the clinical significance of this interaction is not determined.
Levonorgestrel; Ethinyl Estradiol; Ferrous Fumarate: (Minor) Ethinyl estradiol may enhance the metabolism of lorazepam. It appears glucuronide conjugation of lorazepam is increased in the presence of combined hormonal oral contraceptives; the clinical significance of this interaction is not determined.
Levorphanol: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If levorphanol is initiated in a patient taking a benzodiazepine, reduce the initial dose of levorphanol by approximately 50% or more. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Lofexidine: (Moderate) Monitor for excessive hypotension and sedation during coadministration of lofexidine and benzodiazepines. Lofexidine can potentiate the effects of CNS depressants such as benzodiazepines.
Loxapine: (Moderate) The combination of loxapine and lorazepam has been associated with acute respiratory depression, stupor, and/or hypotension in several patients. Lorazepam, and possibly other benzodiazepines, should be used cautiously in patients receiving loxapine.
Lumateperone: (Moderate) Monitor for excessive sedation and somnolence during coadministration of lumateperone and benzodiazepines. Concurrent use may result in additive CNS depression.
Lurasidone: (Moderate) Due to the CNS effects of lurasidone, caution should be used when lurasidone is given in combination with other centrally acting medications such as anxiolytics, sedatives, and hypnotics, including benzodiazepines. In one study, co-administration of lurasidone and midazolam increased the Cmax and AUC of midazolam by about 21% and 44%, respectively, compared to midazolam alone; however, dosage adjustment of midazolam based upon pharmacokinetic parameters is not required during concurrent use of lurasidone.
Maprotiline: (Moderate) Benzodiazepines or other CNS depressants should be combined cautiously with maprotiline because they could cause additive depressant effects and possible respiratory depression or hypotension. The combination of benzodiazepines and maprotiline is commonly used clinically and is considered to be safe as long as patients are monitored for excessive adverse effects from either agent. Maprotiline may lower the seizure threshold, so when benzodiazepines are used for anticonvulsant effects the patient should be monitored for desired clinical outcomes.
Meclizine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Mefloquine: (Moderate) Coadministration of mefloquine and anticonvulsants may result in lower than expected anticonvulsant concentrations and loss of seizure control. Monitoring of the anticonvulsant serum concentration is recommended. Dosage adjustments may be required during and after therapy with mefloquine.
Melatonin: (Major) Use caution when combining melatonin with the benzodiazepines; when the benzodiazepine is used for sleep, co-use of melatonin should be avoided. Use of more than 1 agent for hypnotic purposes may increase the risk for over-sedation, CNS effects, or sleep-related behaviors. Be alert for unusual changes in moods or behaviors. Use caution when combining melatonin with benzodiazepines for other uses. Patients reporting unusual sleep-related behaviors should likely discontinue melatonin use. In animal studies, melatonin has been shown to increase benzodiazepine binding to receptor sites. In one case report, a benzodiazepine-dependent woman with an 11 year history of insomnia weaned and discontinued her benzodiazepine prescription within a few days without rebound insomnia or apparent benzodiazepine withdrawal when melatonin was given. In another case report, the ingestion of excessive melatonin along with normal doses of chlordiazepoxide and an antidepressant resulted in lethargy and short-term amnestic responses. Both cases suggest additive pharmacodynamic effects. In a clinical trial, there was clear evidence for a transitory pharmacodynamic interaction between melatonin and another hypnotic agent one hour following co-dosing. Concomitant administration resulted in increased impairment of attention, memory and coordination compared to the hypnotic agent alone.
Meperidine: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Meprobamate: (Moderate) Concomitant administration of benzodiazepines with meprobamate can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. If used together, a reduction in the dose of one or both drugs may be needed.
Methadone: (Major) Concurrent use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective dose and minimum duration possible. If methadone is initiated for pain in an opioid-naive patient taking a benzodiazepine, use an initial methadone dose of 2.5 mg PO every 12 hours. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial benzodiazepine dose and titrate to response. In patients treated with methadone for opioid use disorder, cessation of benzodiazepines or other CNS depressants is preferred in most cases. Consider alternatives to benzodiazepines for conditions such as anxiety or insomnia during methadone maintenance treatment. Educate patients about the risks and symptoms of respiratory depression and sedation.
Methocarbamol: (Moderate) Concurrent use of benzodiazepines and other CNS active medications including skeletal muscle relaxants, can potentiate the CNS effects of either agent. Lower doses of one or both agents may be required. The severity of this interaction may be increased when additional CNS depressants are given.
Methohexital: (Moderate) Additive CNS and/or respiratory depression may occur with concurrent use.
Methscopolamine: (Moderate) CNS depression can be increased when methscopolamine is combined with other CNS depressants such as any anxiolytics, sedatives, and hypnotics.
Methyldopa: (Moderate) Methyldopa is associated with sedative effects. Methyldopa can potentiate the effects of CNS depressants such as barbiturates, benzodiazepines, opiate agonists, or phenothiazines when administered concomitantly.
Metoclopramide: (Minor) Combined use of metoclopramide and other CNS depressants, such as anxiolytics, sedatives, and hypnotics, can increase possible sedation.
Metyrapone: (Moderate) Metyrapone may cause dizziness and/or drowsiness. Other drugs that may also cause drowsiness, such as benzodiazepines, should be used with caution. Additive drowsiness and/or dizziness is possible.
Metyrosine: (Moderate) The concomitant administration of metyrosine with benzodiazepines can result in additive sedative effects.
Milnacipran: (Moderate) Concurrent use of many CNS-active drugs with milnacipran or levomilnacipran has not been evaluated by the manufacturer. Therefore, caution is advisable when combining anxiolytics, sedatives, and hypnotics or other psychoactive medications with these medications.
Minocycline: (Minor) Injectable minocycline contains magnesium sulfate heptahydrate. Because of the CNS-depressant effects of magnesium sulfate, additive central-depressant effects can occur following concurrent administration with CNS depressants such as benzodiazepines. Caution should be exercised when using these agents concurrently.
Mirtazapine: (Moderate) Monitor for unusual drowsiness and sedation during coadministration of benzodiazepines and mirtazapine due to the risk for additive CNS depression.
Molindone: (Moderate) Consistent with the pharmacology of molindone, additive effects may occur with other CNS active drugs such as anticonvulsants. In addition, seizures have been reported during the use of molindone, which is of particular significance in patients with a seizure disorder receiving anticonvulsants. Adequate dosages of anticonvulsants should be continued when molindone is added; patients should be monitored for clinical evidence of loss of seizure control or the need for dosage adjustments of either molindone or the anticonvulsant.
Monoamine oxidase inhibitors: (Moderate) Monitor for unusual drowsiness and sedation during coadministration of benzodiazepines and monoamine oxidase inhibitors (MAOIs) due to the risk for additive CNS depression.
Morphine: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If morphine is initiated in a patient taking a benzodiazepine, reduce initial dosages and titrate to clinical response. For extended-release tablets, start with morphine 15 mg PO every 12 hours, and for extended-release capsules, start with 30 mg PO every 24 hours or less. Use an initial morphine; naltrexone dose of 20 mg/0.8 mg PO every 24 hours. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Morphine; Naltrexone: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If morphine is initiated in a patient taking a benzodiazepine, reduce initial dosages and titrate to clinical response. For extended-release tablets, start with morphine 15 mg PO every 12 hours, and for extended-release capsules, start with 30 mg PO every 24 hours or less. Use an initial morphine; naltrexone dose of 20 mg/0.8 mg PO every 24 hours. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Nabilone: (Major) Nabilone should not be taken with benzodiazepines or other sedative/hypnotic agents because these substances can potentiate the central nervous system effects of nabilone. Additive drowsiness and CNS depression can occur.
Nalbuphine: (Major) Concomitant use of mixed opiate agonists/antagonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of mixed opiate agonists/antagonists with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If a mixed opiate agonist/antagonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the mixed opiate agonist/antagonist and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking a mixed opiate agonist/antagonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Nitroglycerin: (Minor) Nitroglycerin can cause hypotension. This action may be additive with other agents that can cause hypotension such as benzodiazepines. Patients should be monitored more closely for hypotension if nitroglycerin is used concurrently with benzodiazepines.
Norethindrone Acetate; Ethinyl Estradiol; Ferrous fumarate: (Minor) Ethinyl estradiol may enhance the metabolism of lorazepam. It appears glucuronide conjugation of lorazepam is increased in the presence of combined hormonal oral contraceptives; the clinical significance of this interaction is not determined.
Norethindrone; Ethinyl Estradiol: (Minor) Ethinyl estradiol may enhance the metabolism of lorazepam. It appears glucuronide conjugation of lorazepam is increased in the presence of combined hormonal oral contraceptives; the clinical significance of this interaction is not determined.
Norethindrone; Ethinyl Estradiol; Ferrous fumarate: (Minor) Ethinyl estradiol may enhance the metabolism of lorazepam. It appears glucuronide conjugation of lorazepam is increased in the presence of combined hormonal oral contraceptives; the clinical significance of this interaction is not determined.
Norgestimate; Ethinyl Estradiol: (Minor) Ethinyl estradiol may enhance the metabolism of lorazepam. It appears glucuronide conjugation of lorazepam is increased in the presence of combined hormonal oral contraceptives; the clinical significance of this interaction is not determined.
Olanzapine: (Major) Concurrent use of intramuscular olanzapine and parenteral benzodiazepines is not recommended due to the potential for adverse effects from the combination including excess sedation and/or cardiorespiratory depression. Although oral formulations of olanzapine and benzodiazepines may be used together, additive effects on respiratory depression and/or CNS depression are possible. Drugs that can cause CNS depression, if used concomitantly with olanzapine, can increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, dizziness, and orthostatic hypotension. Besides ethanol, clinicians should use other anxiolytics, sedatives, and hypnotics cautiously with olanzapine.
Olanzapine; Fluoxetine: (Major) Concurrent use of intramuscular olanzapine and parenteral benzodiazepines is not recommended due to the potential for adverse effects from the combination including excess sedation and/or cardiorespiratory depression. Although oral formulations of olanzapine and benzodiazepines may be used together, additive effects on respiratory depression and/or CNS depression are possible. Drugs that can cause CNS depression, if used concomitantly with olanzapine, can increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, dizziness, and orthostatic hypotension. Besides ethanol, clinicians should use other anxiolytics, sedatives, and hypnotics cautiously with olanzapine.
Olanzapine; Samidorphan: (Major) Concurrent use of intramuscular olanzapine and parenteral benzodiazepines is not recommended due to the potential for adverse effects from the combination including excess sedation and/or cardiorespiratory depression. Although oral formulations of olanzapine and benzodiazepines may be used together, additive effects on respiratory depression and/or CNS depression are possible. Drugs that can cause CNS depression, if used concomitantly with olanzapine, can increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, dizziness, and orthostatic hypotension. Besides ethanol, clinicians should use other anxiolytics, sedatives, and hypnotics cautiously with olanzapine.
Oliceridine: (Major) Concomitant use of oliceridine with lorazepam may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with lorazepam to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Oxycodone: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Oxymorphone: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxymorphone is initiated in a patient taking a benzodiazepine, use an initial dose of oxymorphone at 1/3 to 1/2 the usual dosage and titrate to clinical response. If the extended-release oxymorphone tablets are used concurrently with a CNS depressant, use an initial dosage of 5 mg PO every 12 hours. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Paliperidone: (Moderate) Drugs that can cause CNS depression, such as benzodiazepines, can increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness when coadministered with paliperidone. Monitor for signs and symptoms of CNS depression and advise patients to avoid driving or engaging in other activities requiring mental alertness until they know how this combination affects them.
Papaverine: (Moderate) Concurrent use of papaverine with potent CNS depressants such as benzodiazepines could lead to enhanced sedation.
Pentazocine: (Major) Concomitant use of mixed opiate agonists/antagonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of mixed opiate agonists/antagonists with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If a mixed opiate agonist/antagonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the mixed opiate agonist/antagonist and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking a mixed opiate agonist/antagonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Pentazocine; Naloxone: (Major) Concomitant use of mixed opiate agonists/antagonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of mixed opiate agonists/antagonists with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If a mixed opiate agonist/antagonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the mixed opiate agonist/antagonist and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking a mixed opiate agonist/antagonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Pentobarbital: (Moderate) Additive CNS and/or respiratory depression may occur with concurrent use.
Perampanel: (Moderate) Patients taking benzodiazepines with perampanel may experience increased CNS depression. Monitor patients for adverse effects; dose adjustment of either drug may be necessary. Use of midazolam in healthy subjects who received perampanel 6 mg once daily for 20 days decreased the AUC and Cmax of midazolam by 13% and 15%, respectively, possibly due to weak induction of CYP3A4 by perampanel; the specific clinical significance of this interaction is unknown.
Phenobarbital: (Moderate) Additive CNS and/or respiratory depression may occur with concurrent use.
Phenobarbital; Hyoscyamine; Atropine; Scopolamine: (Moderate) Additive CNS and/or respiratory depression may occur with concurrent use. (Moderate) Scopolamine may cause dizziness and drowsiness. Concurrent use of scopolamine and CNS depressants can adversely increase the risk of CNS depression.
Phenothiazines: (Major) Limit dosage and duration of benzodiazepines during concomitant phenothiazine use and monitor for unusual drowsiness and sedation due to the risk for additive CNS depression.
Phentermine; Topiramate: (Moderate) Topiramate has the potential to cause CNS depression as well as other cognitive and/or neuropsychiatric adverse reactions. The CNS depressant effects of topiramate can be potentiated pharmacodynamically by concurrent use of CNS depressant agents such as the benzodiazepines.
Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Pimozide: (Moderate) Due to the effects of pimozide on cognition, it should be used cautiously with other CNS depressants including benzodiazepines.
Pramipexole: (Major) Concomitant administration of benzodiazepines with CNS-depressant drugs, including pramipexole, can potentiate the CNS effects.
Prasterone, Dehydroepiandrosterone, DHEA (Dietary Supplements): (Major) Prasterone, dehydroepiandrosterone, DHEA may inhibit the metabolism of benzodiazepines (e.g., alprazolam, estazolam, midazolam) which undergo CYP3A4-mediated metabolism. In one study of elderly volunteers, half of the patients received DHEA 200 mg/day PO for 2 weeks, followed by a single dose of triazolam 0.25 mg. Triazolam clearance was reduced by close to 30% in the DHEA-pretreated patients vs. the control group; however, the effect of DHEA on CYP3A4 metabolism appeared to vary widely among subjects. While more study is needed, benzodiazepine-induced CNS sedation and other adverse effects might be increased in some individuals if DHEA is co-administered.
Prasterone, Dehydroepiandrosterone, DHEA (FDA-approved): (Major) Prasterone, dehydroepiandrosterone, DHEA may inhibit the metabolism of benzodiazepines (e.g., alprazolam, estazolam, midazolam) which undergo CYP3A4-mediated metabolism. In one study of elderly volunteers, half of the patients received DHEA 200 mg/day PO for 2 weeks, followed by a single dose of triazolam 0.25 mg. Triazolam clearance was reduced by close to 30% in the DHEA-pretreated patients vs. the control group; however, the effect of DHEA on CYP3A4 metabolism appeared to vary widely among subjects. While more study is needed, benzodiazepine-induced CNS sedation and other adverse effects might be increased in some individuals if DHEA is co-administered.
Pregabalin: (Major) Concomitant use of benzodiazepines with pregabalin may cause excessive sedation, somnolence, and respiratory depression. If concurrent use is necessary, initiate pregabalin at the lowest recommended dose and monitor patients for symptoms of respiratory depression and sedation. Educate patients about the risks and symptoms of excessive CNS depression and respiratory depression.
Primidone: (Moderate) Additive CNS and/or respiratory depression may occur with concurrent use.
Probenecid: (Moderate) Monitor for an increase in lorazepam-related adverse reactions and consider reducing the dose of lorazepam if concomitant use of lorazepam and probenecid is necessary. Avoid lorazepam extended-release capsules and utilize lorazepam immediate-release dosage forms that can be easily titrated. Coadministration of lorazepam with probenecid may cause a more rapid onset or prolonged effect of lorazepam due to increased half-life and decreased total clearance. Lorazepam is an UGT substrate and probenecid is an UGT inhibitor.
Probenecid; Colchicine: (Moderate) Monitor for an increase in lorazepam-related adverse reactions and consider reducing the dose of lorazepam if concomitant use of lorazepam and probenecid is necessary. Avoid lorazepam extended-release capsules and utilize lorazepam immediate-release dosage forms that can be easily titrated. Coadministration of lorazepam with probenecid may cause a more rapid onset or prolonged effect of lorazepam due to increased half-life and decreased total clearance. Lorazepam is an UGT substrate and probenecid is an UGT inhibitor.
Procarbazine: (Minor) CNS depressants benzodiazepines can potentiate the CNS depression caused by procarbazine therapy, so these drugs should be used together cautiously.
Promethazine; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Propofol: (Moderate) Concomitant administration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent.
Pseudoephedrine; Triprolidine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Pyrilamine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Pyrimethamine: (Moderate) Mild hepatotoxicity has been reported when pyrimethamine was coadministered with lorazepam.
Quetiapine: (Moderate) Monitor for excessive sedation and somnolence during coadministration of alprazolam and quetiapine. Concurrent use may result in additive CNS depression. Quetiapine decreases lorazepam clearance by about 20%.
Ramelteon: (Moderate) Ramelteon is a sleep-promoting agent; therefore, additive pharmacodynamic effects are possible when combining ramelteon with benzodiazepines or other miscellaneous anxiolytics, sedatives, and hypnotics. Pharmacokinetic interactions have been observed with the use of zolpidem. Use of ramelteon 8 mg/day for 11 days and a single dose of zolpidem 10 mg resulted in an increase in the median Tmax of zolpidem of about 20 minutes; exposure to zolpidem was unchanged. Ramelteon use with hypnotics of any kind is considered duplicative therapy and these drugs are generally not co-administered.
Rasagiline: (Moderate) The CNS-depressant effects of MAOIs can be potentiated with concomitant administration of other drugs known to cause CNS depression including buprenorphine, butorphanol, dronabinol, THC, nabilone, nalbuphine, and anxiolytics, sedatives, and hypnotics. Use these drugs cautiously with MAOIs; warn patients to not drive or perform other hazardous activities until they know how a particular drug combination affects them. In some cases, the dosages of the CNS depressants may need to be reduced.
Remifentanil: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Benzodiazepine doses may need to be reduced up to 75% during coadministration with remifentanil. Educate patients about the risks and symptoms of respiratory depression and sedation.
Remimazolam: (Major) The sedative effect of remimazolam can be accentuated by lorazepam. Titrate the dose of remimazolam to the desired clinical response and continuously monitor sedated patients for hypotension, airway obstruction, hypoventilation, apnea, and oxygen desaturation.
Risperidone: (Moderate) Due to the primary CNS effects of risperidone, caution should be used when risperidone is given in combination with other centrally acting medications including anxiolytics, sedatives, and hypnotics.
Ropinirole: (Moderate) Concomitant use of ropinirole with other CNS depressants can potentiate the sedation effects of ropinirole.
Rotigotine: (Major) Concomitant use of rotigotine with other CNS depressants, such as benzodiazepines, can potentiate the sedative effects of rotigotine.
Safinamide: (Moderate) Dopaminergic medications, including safinamide, may cause a sudden onset of somnolence which sometimes has resulted in motor vehicle accidents. Patients may not perceive warning signs, such as excessive drowsiness, or they may report feeling alert immediately prior to the event. Because of possible additive effects, advise patients about the potential for increased somnolence during concurrent use of safinamide with other sedating medications, such as benzodiazepines.
Scopolamine: (Moderate) Scopolamine may cause dizziness and drowsiness. Concurrent use of scopolamine and CNS depressants can adversely increase the risk of CNS depression.
Secobarbital: (Moderate) Additive CNS and/or respiratory depression may occur with concurrent use.
Sedating H1-blockers: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Segesterone Acetate; Ethinyl Estradiol: (Minor) Ethinyl estradiol may enhance the metabolism of lorazepam. It appears glucuronide conjugation of lorazepam is increased in the presence of combined hormonal oral contraceptives; the clinical significance of this interaction is not determined.
Selegiline: (Moderate) Monitor for unusual drowsiness and sedation during coadministration of benzodiazepines and selegiline due to the risk for additive CNS depression.
Sevoflurane: (Moderate) Concomitant administration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent.
Sincalide: (Moderate) Sincalide-induced gallbladder ejection fraction may be affected by benzodiazepines. False study results are possible in patients with drug-induced hyper- or hypo-responsiveness; thorough patient history is important in the interpretation of procedure results.
Skeletal Muscle Relaxants: (Moderate) Concomitant use of skeletal muscle relaxants with benzodiazepines can result in additive CNS depression. The severity of this interaction may be increased when additional CNS depressants are given. Monitor patients who take benzodiazepines with another CNS depressant for symptoms of excess sedation.
Sodium Oxybate: (Contraindicated) Sodium oxybate should not be used in combination with CNS depressant anxiolytics, sedatives, and hypnotics or other sedative CNS depressant drugs. Specifically, sodium oxybate use is contraindicated in patients being treated with sedative hypnotic drugs. Sodium oxybate (GHB) has the potential to impair cognitive and motor skills. For example, the concomitant use of barbiturates and benzodiazepines increases sleep duration and may contribute to rapid onset, pronounced CNS depression, respiratory depression, or coma when combined with sodium oxybate.
Sorafenib: (Moderate) Monitor for an increase in lorazepam-related adverse reactions and consider reducing the dose of lorazepam if concomitant use of lorazepam and sorafenib is necessary. Avoid lorazepam extended-release capsules and utilize lorazepam immediate-release dosage forms that can be easily titrated. Lorazepam is an UGT substrate and sorafenib is an UGT inhibitor.
Stiripentol: (Moderate) Monitor for excessive sedation and somnolence during coadministration of stiripentol and lorazepam. CNS depressants can potentiate the effects of stiripentol.
Sufentanil: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Suvorexant: (Moderate) CNS depressant drugs may have cumulative effects when administered concurrently and they should be used cautiously with suvorexant. A reduction in dose of the CNS depressant may be needed in some cases. These agents include the benzodiazepines.
Tapentadol: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If tapentadol is initiated in a patient taking a benzodiazepine, a reduced initial dosage of tapentadol is recommended. If the extended-release tapentadol tablets are used concurrently with a benzodiazepine, use an initial tapentadol dose of 50 mg PO every 12 hours. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Teduglutide: (Moderate) Altered mental status has been observed in patients taking teduglutide and benzodiazepines in the adult clinical studies for teduglutide. Careful monitoring and possible dose adjustment of the benzodiazepine agent may be required. Teduglutide has direct effects on the gut that may increase benzodiazepine exposure by improving oral absorption.
Tetrabenazine: (Moderate) Concurrent use of tetrabenazine and drugs that can cause CNS depression, such as benzodiazepines, can increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, dizziness, and orthostatic hypotension.
Thalidomide: (Major) The use of benzodiazepine anxiolytics, sedatives, or hypnotics with thalidomide may cause an additive sedative effect and should be avoided. Thalidomide frequently causes drowsiness and somnolence. Dose reductions may be required. Patients should be instructed to avoid situations where drowsiness may be a problem and not to take other medications that may cause drowsiness without adequate medical advice. Advise patients as to the possible impairment of mental and/or physical abilities required for the performance of hazardous tasks, such as driving a car or operating other complex or dangerous machinery.
Theophylline, Aminophylline: (Minor) Aminophylline or Theophylline have been reported to counteract the pharmacodynamic effects of diazepam and possibly other benzodiazepines. The clinical significance of this interaction is not certain. A proposed mechanism is competitive binding of these methylxanthines to adenosine receptors in the brain. If such therapy is initiated or discontinued, monitor the clinical response to the benzodiazepine.
Thiothixene: (Moderate) Thiothixene can potentiate the CNS-depressant action of other drugs such as benzodiazepines. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects or additive hypotension.
Tiagabine: (Moderate) Because of the possible additive effects of drugs that depress the central nervous system, benzodiazepines should be used with caution in patients receiving tiagabine.
Tizanidine: (Moderate) Concurrent use of tizanidine and CNS depressants like the benzodiazepines can cause additive CNS depression. The severity of this interaction may be increased when additional CNS depressants are given.
Topiramate: (Moderate) Topiramate has the potential to cause CNS depression as well as other cognitive and/or neuropsychiatric adverse reactions. The CNS depressant effects of topiramate can be potentiated pharmacodynamically by concurrent use of CNS depressant agents such as the benzodiazepines.
Tramadol: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Tramadol; Acetaminophen: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Trazodone: (Major) Monitor for excessive sedation and somnolence during coadministration of trazodone and benzodiazepines. Concurrent use may result in additive CNS depression.
Tricyclic antidepressants: (Major) Limit dosage and duration of benzodiazepines during concomitant use with tricyclic antidepressants, and monitor patients closely for respiratory depression and sedation. Additive CNS depression may occur.
Trihexyphenidyl: (Moderate) CNS depressants, such as anxiolytics, sedatives, and hypnotics, can increase the sedative effects of trihexyphenidyl.
Trimethobenzamide: (Moderate) The concurrent use of trimethobenzamide with other medications that cause CNS depression, like the benzodiazepines, may potentiate the effects of either trimethobenzamide or the benzodiazepine.
Triprolidine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Valerian, Valeriana officinalis: (Major) Any substances that act on the CNS, including psychoactive drugs and drugs used as anesthetic adjuvants (e.g., barbiturates, benzodiazepines), may theoretically interact with valerian, Valeriana officinalis. The valerian derivative, dihydrovaltrate, binds at barbiturate binding sites; valerenic acid has been shown to inhibit enzyme-induced breakdown of GABA in the brain; the non-volatile monoterpenes (valepotriates) have sedative activity. These interactions are probably pharmacodynamic in nature. There is a possibility of interaction with valerian at normal prescription dosages of anxiolytics, sedatives, and hypnotics (including barbiturates and benzodiazepines). Patients who are taking barbiturates or other sedative/hypnotic drugs should avoid concomitant administration of valerian. Patients taking medications such as tricyclic antidepressants, lithium, MAOIs, skeletal muscle relaxants, SSRIs and serotonin norepinephrine reuptake inhibitors (e.g., duloxetine, venlafaxine) should discuss the use of herbal supplements with their health care professional prior to consuming valerian; combinations should be approached with caution in the absence of clinical data. Patients should not abruptly stop taking their prescribed psychoactive medications.
Valproic Acid, Divalproex Sodium: (Moderate) Monitor for an increase in lorazepam-related adverse reactions and consider reducing the dose of lorazepam if concomitant use of lorazepam and valproic acid is necessary. Avoid lorazepam extended-release capsules and utilize lorazepam immediate-release dosage forms that can be easily titrated. Coadminstration of lorazepam with valproic acid causes increased plasma concentrations and reduced clearance of lorazepam. Lorazepam is an UGT substrate and valproic acid is an UGT inhibitor.
Vancomycin: (Moderate) The concurrent administration of vancomycin and anesthetics has been associated with erythema, histamine-like flushing, and anaphylactoid reactions.
Vigabatrin: (Moderate) Vigabatrin may cause somnolence and fatigue. Drugs that can cause CNS depression, if used concomitantly with vigabatrin, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when vigabatrin is given in combination with benzodiazepines.
Vilazodone: (Moderate) Due to the CNS effects of vilazodone, caution should be used when vilazodone is given in combination with other centrally acting medications such as the benzodiazepines.
Zaleplon: (Major) Monitor for excessive sedation and somnolence during coadministration of zaleplon and benzodiazepines. Concurrent use may result in additive CNS depression. If used together, a reduction in the dose of one or both drugs may be needed.
Ziprasidone: (Moderate) Ziprasidone has the potential to impair cognitive and motor skills. Additive CNS depressant effects are possible when ziprasidone is used concurrently with any CNS depressant.
Zolpidem: (Major) Concomitant administration of benzodiazepines with zolpidem can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. If used together, a reduction in the dose of one or both drugs may be needed. For Intermezzo brand of sublingual zolpidem tablets, reduce the dose to 1.75 mg/night. Concurrent use of zolpidem with other sedative-hypnotics, including other zolpidem products, at bedtime or the middle of the night is not recommended. In addition, sleep-related behaviors, such as sleep-driving, are more likely to occur during concurrent use of zolpidem and other CNS depressants than with zolpidem alone.

How Supplied

Ativan/Lorazepam Intramuscular Inj Sol: 1mL, 2mg, 4mg
Ativan/Lorazepam Intravenous Inj Sol: 1mL, 2mg, 4mg
Ativan/Lorazepam Oral Tab: 0.5mg, 1mg, 2mg
Lorazepam Oral Sol: 1mL, 2mg
Loreev XR Oral Cap ER: 1mg, 1.5mg, 2mg, 3mg

Maximum Dosage
Adults

10 mg/day PO; maximum IM and IV dose highly variable dependent upon indication.

Geriatric

10 mg/day PO; maximum IM and IV dose highly variable depending upon indication.

Adolescents

Up to 10 mg/day PO for anxiety disorders; 4 mg/day PO for insomnia. Safety and efficacy of extended-release capsules and parenteral lorazepam have not been established. Specific maximum dosage information not available; the dose required is dependent on route of administration, indication, and clinical response.

Children

12 years: Up to 10 mg/day PO for anxiety disorders; 4 mg/day PO for insomnia. Safety and efficacy of extended-release capsules and parenteral lorazepam have not been established. Specific maximum dosage information not available; the dose required is dependent on route of administration, indication, and clinical response.
1 to 11 years: Safety and efficacy have not been established. Specific maximum dosage information not available; the dose required is dependent on route of administration, indication, and clinical response.

Infants

Safety and efficacy have not been established. Specific maximum dosage information not available; the dose required is dependent on route of administration, indication, and clinical response.

Neonates

Safety and efficacy have not been established. Specific maximum dosage information not available; the dose required is dependent on route of administration, indication, and clinical response.

Mechanism Of Action

Benzodiazepines act at the level of the limbic, thalamic, and hypothalamic regions of the CNS, and can produce any level of CNS depression required including sedation, hypnosis, skeletal muscle relaxation, anticonvulsant activity, and coma. The action of these drugs is mediated through the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). Central benzodiazepine receptors interact allosterically with GABA receptors, potentiating the effects of GABA and thereby increasing the inhibition of the ascending reticular activating system. Benzodiazepine activity shows the highest affinity for GABA subtype A receptor modulation compared to subtype B receptors. Benzodiazepines block the cortical and limbic arousal that occurs following stimulation of the reticular pathways. Studies in healthy volunteers show that in single high doses, lorazepam has a tranquilizing action on the central nervous system with usually no appreciable effect on the respiratory or cardiovascular systems.

Pharmacokinetics

Lorazepam is administered orally and parenterally. The drug has also been given sublingually; although, specific sublingual dosage forms are not available in the United States. Lorazepam is lipophilic; it is widely distributed and crosses the blood-brain barrier. It is approximately 85% protein-bound. In healthy adults, reported mean volume of distributions (Vd) are 1.3 L/kg following parenteral administration and 117 L following a single 3 mg dose of the extended-release capsules under fasting conditions. The Vd is smaller in neonates and slightly larger in non-neonatal pediatric patients. Lorazepam is conjugated by the liver via UDP-glucuronosyltransferase (UGT) to lorazepam glucuronide, an inactive metabolite. There is no evidence of accumulation of lorazepam with administration up to 6 months. Reported elimination half-lives are 12 hours, 14 +/- 5 hours, and 20.2 +/- 7.2 hours for immediate-release oral formulations, the parenteral formulation, and the extended-release capsules, respectively. Lorazepam clearance is significantly slower in neonates compared to adults; clearance in older children is dependent on the specific population and varies from slightly slower to slightly faster than that of adults. Lorazepam in excreted in the urine primarily as the inactive glucuronide metabolite; lorazepam also undergoes enterohepatic recirculation. Oral mean plasma clearance (CL/F) is approximately 72 mL/minute in adults following a single 3 mg dose of the extended-release capsules.
 
Affected cytochrome P450 isoenzymes and drug transporters: UGT
Lorazepam is a substrate of UDP-glucuronosyltransferase (UGT). Concurrent administration of lorazepam with a UGT inhibitor may result in increased plasma concentrations, reduced clearance, and prolonged half-life of lorazepam.

Oral Route

Immediate-release tablets and solution: Lorazepam is readily absorbed following an oral dose, with an absolute bioavailability of 90% reported following administration of immediate-release tablets. Subjective central nervous system effects occur within 1 to 2 hours; peak plasma concentrations occur 2 hours following administration. Mean area under concentration curve (AUCTau), Cmax, and Cmin were 765 ng x hour/mL, 41 ng/mL and 29 ng/mL, respectively, following 3 times daily administration of 1 mg tablets.
 
Extended-release (ER) capsules: Pharmacokinetics of the extended-release capsules are dose proportional over the dose range of 1 to 3 mg. Steady-state is usually achieved following 5 days of administration. At steady state, AUCTau, Cmax, and Cmin were 694 ng x hour/mL, 35 ng/mL and 25 ng/mL, respectively, following once daily administration of the 3 mg ER capsules. Median Tmax was 14 hours (range 7 to 24 hours) following a single 3 mg dose of the extended-release capsules. Administration of the extended-release capsules with a high-fat and high calorie meal delayed median Tmax by approximately 2 hours and did not affect overall drug exposure. Administration of the extended-release capsules by sprinkling the contents in 15 mL of applesauce did not significantly affect overall drug exposure or Tmax.

Intravenous Route

Optimum anxiolytic and sedative effects occur within 15 to 20 minutes after administration; however, the onset of effect occurs more rapidly. The degree of sedation is dependent on the dose administered and the presence or absence of other medications. When used as an anticonvulsant, cessation of seizure activity may occur within 5 minutes. After IV administration of a 4 mg dose to adult patients, initial concentrations are approximately 70 ng/mL. Plasma concentrations are proportional to the dose given. Based on non-neonatal pediatric pharmacokinetic models, lorazepam 0.1 mg/kg (up to 4 mg) is expected to achieve a Cmax of 100 ng/mL; concentrations greater than 30 ng/mL are expected to be maintained for 6 to 12 hours for most pediatric patients. After the initial dose, a second dose of 0.05 mg/kg (up to 2 mg) is expected to maintain a typical desired concentration for seizure suppression (more than 50 ng/mL) for approximately 12 hours. The duration of the sedative effect is approximately 6 to 12 hours for most patients.

Intramuscular Route

Lorazepam is absorbed rapidly and completely after intramuscular injection with a bioavailability more than 90%. Optimum anxiolytic and sedative effects occur approximately 1 to 2 hours after administration, with the degree of sedation dependent on the dose administered and the presence or absence of other medications. After administration of 4 mg IM to adult patients, peak concentrations of approximately 48 ng/mL are reached within 3 hours.

Pregnancy And Lactation
Pregnancy

Lorazepam is excreted into human breast milk in low concentrations. Monitor breastfed infants exposed to benzodiazepines through breast milk for sedation, poor feeding, and poor weight gain. Consider the developmental and health benefits of breast-feeding along with the clinical need for lorazepam and any potential adverse effects on the breastfed infant from lorazepam or the underlying condition. In a study of 4 lactating women, concentrations of free lorazepam in breast milk 4 hours after a single 3.5 mg oral dose were found to be 8 to 9 ng/mL, which accounted for 14.8% to 25.7% of the mother's plasma concentration. In a separate report, a woman taking lorazepam 2.5 mg PO twice daily for the first 5 days postpartum had milk concentrations of free and conjugated lorazepam of 12 and 35 mcg/L, respectively, at an unspecified time on day 5, and her infant showed no signs of sedation. In a retrospective cohort study of breast-feeding mothers using a benzodiazepine (n = 124), sedation was not reported in any infant exposed to lorazepam through breast milk (52% of participants). Neonatal metabolism of benzodiazepines occurs more slowly than in adults, and when used chronically, accumulation may occur producing sedation, nausea, poor feeding, or other adverse effects, particularly with long-acting benzodiazepines (e.g., diazepam, chlordiazepoxide). If a benzodiazepine must be used, a short-acting agent such as oxazepam or lorazepam should be selected if appropriate, and prescribed at the lowest effective dosage and duration. The infant should be monitored regularly, and if sedation, nausea, reduced suckling, or other signs of toxicity are observed, either breast-feeding or the benzodiazepine should be discontinued.