Sudafed Children's Nasal Decongestant

Browse PDR's full list of drug information

Sudafed Children's Nasal Decongestant

Classes

Decongestants

Administration
Oral Administration

Pseudoephedrine products may be administered without regard to meals.

Oral Solid Formulations

Regular-release pseudoephedrine tablets or liquid-filled capsules:
Administer last dose 2 hours before bedtime to minimize insomnia.
 
Extended-release preparations:
Administer whole; do not crush, break, or chew.
Extended-release 24-hour preparations: The empty tablet shell may be found in the stool and is not cause for concern.

Oral Liquid Formulations

Oral solutions or syrups:
Use a calibrated dropper, oral syringe, or other calibrated measuring device to measure pseudoephedrine dosage.
Administer last dose 2 hours before bedtime to minimize insomnia.

Adverse Reactions
Severe

seizures / Delayed / Incidence not known
myocardial infarction / Delayed / Incidence not known
stroke / Early / Incidence not known
arrhythmia exacerbation / Early / Incidence not known
ocular hypertension / Delayed / Incidence not known
bowel ischemia / Delayed / Incidence not known
acute generalized exanthematous pustulosis (AGEP) / Delayed / Incidence not known

Moderate

psychosis / Early / Incidence not known
hallucinations / Early / Incidence not known
hypertension / Early / Incidence not known
premature ventricular contractions (PVCs) / Early / Incidence not known
supraventricular tachycardia (SVT) / Early / Incidence not known
angina / Early / Incidence not known
palpitations / Early / Incidence not known
sinus tachycardia / Rapid / Incidence not known
photophobia / Early / Incidence not known
colitis / Delayed / Incidence not known
erythema / Early / Incidence not known
contact dermatitis / Delayed / Incidence not known
urinary retention / Early / Incidence not known

Mild

restlessness / Early / 1.0-10.0
headache / Early / 1.0-10.0
dizziness / Early / 1.0-10.0
insomnia / Early / 1.0-10.0
nausea / Early / 1.0-10.0
anxiety / Delayed / Incidence not known
abdominal pain / Early / Incidence not known
rash / Early / Incidence not known
urticaria / Rapid / Incidence not known

Common Brand Names

Drixoral, ElixSure Cold, ElixSure Congestion, Genaphed, Myfedrine, NASAL Decongestant, Nexafed, Pseudo-Time, Silfedrine, Sudafed, Sudafed 12 Hour, Sudafed Children's, Sudafed Children's Nasal Decongestant, Sudafed Congestion, Sudafed Sinus Congestion, Sudogest, Sudogest 12 Hour, Sudogest Children's, Tylenol Children's Simply Stuffy, Zephrex-D

Dea Class

OTC

Description

Oral sympathomimetic decongestant agent
Primarily used in adults and pediatric patients 4 years and older to temporarily relieve nasal congestion due to the common cold, allergic rhinitis, or other upper respiratory conditions
Due to potential for diversion as a substrate for the illegal synthesis of amphetamine and methamphetamine, sales of pseudoephedrine-containing products are regulated by the Combat Methamphetamine Epidemic Act

Dosage And Indications
For the temporary relief of the symptoms of sinus and nasal congestion due to the common cold, allergic rhinitis or other upper respiratory allergies or conditions, including eustachian tube congestion. Oral dosage (regular-release tablets or liquid-filled capsules) Adults, Adolescents, and Children 12 years and older

60 mg PO every 4 to 6 hours (Max: 240 mg/day).

Children 6 to 11 years

30 mg PO every 4 to 6 hours (Max: 120 mg/day).

Oral dosage (12 Hour extended-release tablets; e.g., Sudafed 12-hour extended release tablets) Adults, Adolescents, and Children 12 years and older

120 mg PO (1 tablet) every 12 hours (Max: 240 mg/day).

Oral dosage (24 hour extended release tablets; e.g., Sudafed 24-Hour extended-release tablets) Adults, Adolescents, and Children 12 years and older

240 mg PO every 24 hours (Max: 240 mg/day).

Oral dosage (oral solutions containing 15 mg pseudoephedrine per 5 mL OR 30 mg pseudoephedrine per 5 mL) Adults, Adolescents, and Children 12 years and older

 60 mg PO every 4 to 6 hours (Max: 240 mg/day).

Children 6 to 11 years

 30 mg PO every 4 to 6 hours (Max: 120 mg/day).

Children 4 to 5 years

15 mg PO every 4 to 6 hours (Max: 60 mg/day).

For otalgia prophylaxis† prior to air-pressure changes induced by jet-travel. Oral dosage (12 hour extended-release tablets; e.g., Sudafed 12 Hour extended-release tablets) Adults, Adolescents, and Children 12 years and older

120 mg PO as a single dose administered 30 to 60 minutes prior to departure. Oral pseudoephedrine seems more effective than placebo at reducing the symptoms of barotrauma during air travel, such as ear pain and hearing loss, in adults with a history of ear pain during flight.

For the treatment of urinary incontinence† in adult patients with stress incontinence due to urethral sphincter weakness. Oral dosage (immediate-release tablets, liquid-filled capsules, or oral liquids) Adults

Doses of 30 to 60 mg PO, given up to 4 times daily.

Geriatric

Doses of 15 to 30 mg PO, given up to 3 times daily. Lower doses are suggested for elderly patients since they are more likely to have adverse reactions to sympathetic amines.

†Indicates off-label use

Dosing Considerations
Hepatic Impairment

Specific guidelines for dosage adjustments in hepatic impairment are not available; it appears that no dosage adjustments are needed.

Renal Impairment

Pseudoephedrine should be used with caution in patients with renal impairment.
Intermittent hemodialysis
See dosage adjustment for patients with renal impairment. Hemodialysis minimally removes pseudoephedrine from the circulation; no supplemental dosage is needed.

Drug Interactions

Acarbose: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acebutolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Acetaminophen; Aspirin, ASA; Caffeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acetaminophen; Caffeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acetaminophen; Caffeine; Dihydrocodeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acetaminophen; Caffeine; Pyrilamine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Acetaminophen; Chlorpheniramine; Phenylephrine : (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Acetaminophen; Dextromethorphan; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Acetaminophen; Guaifenesin; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Acetaminophen; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Acetazolamide: (Moderate) Acetazolamide and methazolamide can decrease excretion and enhance the effects of pseudoephedrine. Carbonic anhydrase inhibitors increase the alkalinity of the urine, thereby increasing the amount of nonionized pseudoephedrine available for renal tubular reabsorption. Use caution if acetazolamide or methazolamide is coadministered; monitor for excessive pseudoephedrine-related adverse effects.
Aclidinium; Formoterol: (Moderate) Monitor blood pressure and heart rate during concomitant pseudoephedrine and formoterol use. Concomitant use may potentiate sympathetic effects.
Albuterol: (Moderate) Monitor blood pressure and heart rate during concomitant albuterol and pseudoephedrine use. Concomitant use may potentiate sympathetic effects.
Albuterol; Budesonide: (Moderate) Monitor blood pressure and heart rate during concomitant albuterol and pseudoephedrine use. Concomitant use may potentiate sympathetic effects.
Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Alkalinizing Agents: (Minor) Pseudoephedrine renal elimination is susceptible to changes in urinary pH. Urinary alkalinizers allow for increased tubular reabsorption of pseudoephedrine. Concomitant administration of pseudoephedrine with urinary alkalinizers may increase the likelihood of pseudoephedrine adverse reactions.
Alogliptin; Metformin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Alogliptin; Pioglitazone: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking thiazolidinediones. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Alpha-blockers: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by alpha-blockers. Monitor blood pressure and heart rate.
Alpha-glucosidase Inhibitors: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Aluminum Hydroxide: (Minor) It appears that antacids containing aluminum hydroxide may increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If aluminum-based antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Aluminum Hydroxide; Magnesium Carbonate: (Minor) It appears that antacids containing aluminum hydroxide may increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If aluminum-based antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Aluminum Hydroxide; Magnesium Hydroxide: (Minor) It appears that antacids containing aluminum hydroxide may increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If aluminum-based antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Aluminum Hydroxide; Magnesium Hydroxide; Simethicone: (Minor) It appears that antacids containing aluminum hydroxide may increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If aluminum-based antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Aluminum Hydroxide; Magnesium Trisilicate: (Minor) It appears that antacids containing aluminum hydroxide may increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If aluminum-based antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Amlodipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Amlodipine; Atorvastatin: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Amlodipine; Benazepril: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Amlodipine; Celecoxib: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Amlodipine; Olmesartan: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Amlodipine; Valsartan: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Amoxapine: (Major) Concomitant use of amoxapine with sympathomimetics should be avoided whenever possible; use with caution when concurrent use cannot be avoided. One drug information reference suggests that cyclic antidepressants potentiate the pharmacologic effects of direct-acting sympathomimetics, but decrease the pressor response to indirect-acting sympathomimetics, however, the data are not consistent.
Angiotensin II receptor antagonists: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure.
Angiotensin II: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Angiotensin-converting enzyme inhibitors: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Arformoterol: (Moderate) Caution and close observation should be used when arformoterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Articaine; Epinephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Aspirin, ASA; Butalbital; Caffeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Aspirin, ASA; Caffeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Aspirin, ASA; Caffeine; Orphenadrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Atenolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Atenolol; Chlorthalidone: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Atomoxetine: (Moderate) Use atomoxetine with caution and monitor blood pressure in patients receiving concomitant pseudoephedrine due to potential effects on blood pressure.
Atropine: (Major) Atropine blocks the vagal reflex bradycardia caused by pseudoephedrine, and increases its pressor effect. Patients need to be asked whether they have taken pseudoephedrine before receiving atropine.
Atropine; Difenoxin: (Major) Atropine blocks the vagal reflex bradycardia caused by pseudoephedrine, and increases its pressor effect. Patients need to be asked whether they have taken pseudoephedrine before receiving atropine.
Azilsartan; Chlorthalidone: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Benazepril: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Beta-blockers: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Betaxolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Bethanechol: (Moderate) Bethanechol offsets the effects of sympathomimetics at sites where sympathomimetic and cholinergic receptors have opposite effects.
Bisoprolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Bretylium: (Moderate) Monitor blood pressure and heart rate closely when sympathomimetics are administered with bretylium. The pressor and arrhythmogenic effects of catecholamines are enhanced by bretylium.
Brimonidine; Timolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Bromocriptine: (Moderate) One case report documented worsening headache, hypertension, premature ventricular complexes, and ventricular tachycardia in a post-partum patient receiving bromocriptine for lactation suppression who was subsequently prescribed acetaminophen; dichloralphenazone; isometheptene for a headache. A second case involved a post-partum patient receiving bromocriptine who was later prescribed phenylpropanolamine; guaifenesin and subsequently developed hypertension, tachycardia, seizures, and cerebral vasospasm. Also, ergot alkaloids, which are chemically related to bromocriptine, should not be administered with other vasoconstrictors. Therefore, until more data become available, concurrent use of bromocriptine and some sympathomimetics such as vasopressors (e.g., norepinephrine, dopamine, phenylephrine), cocaine, epinephrine, phenylpropanolamine, ephedra, ma huang, ephedrine, pseudoephedrine, amphetamines, and phentermine should be approached with caution.
Brompheniramine; Dextromethorphan; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Brompheniramine; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Budesonide; Formoterol: (Moderate) Monitor blood pressure and heart rate during concomitant pseudoephedrine and formoterol use. Concomitant use may potentiate sympathetic effects.
Budesonide; Glycopyrrolate; Formoterol: (Moderate) Monitor blood pressure and heart rate during concomitant pseudoephedrine and formoterol use. Concomitant use may potentiate sympathetic effects.
Bumetanide: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Bupivacaine; Epinephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Bupropion: (Moderate) Use extreme caution when coadministering bupropion with other drugs that lower the seizure threshold, such as pseudoephedrine. Use low initial doses of bupropion and increase the dose gradually.
Bupropion; Naltrexone: (Moderate) Use extreme caution when coadministering bupropion with other drugs that lower the seizure threshold, such as pseudoephedrine. Use low initial doses of bupropion and increase the dose gradually.
Butalbital; Acetaminophen; Caffeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Butalbital; Acetaminophen; Caffeine; Codeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Butalbital; Aspirin; Caffeine; Codeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Caffeine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Caffeine; Sodium Benzoate: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Calcium Carbonate: (Minor) It appears that antacids increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Calcium Carbonate; Famotidine; Magnesium Hydroxide: (Minor) It appears that antacids increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Calcium Carbonate; Magnesium Hydroxide: (Minor) It appears that antacids increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Calcium Carbonate; Magnesium Hydroxide; Simethicone: (Minor) It appears that antacids increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Calcium Carbonate; Simethicone: (Minor) It appears that antacids increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Calcium; Vitamin D: (Minor) It appears that antacids increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Calcium-channel blockers: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Canagliflozin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Canagliflozin; Metformin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Captopril: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Captopril; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Carteolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Carvedilol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Chlorothiazide: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Chlorpheniramine; Dextromethorphan; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Chlorpheniramine; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Chlorthalidone: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Chlorthalidone; Clonidine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) Sympathomimetics, such as pseudoephedrine, can antagonize the antihypertensive effects of clonidine when administered concomitantly. Patients should be monitored for loss of blood pressure control.
Clevidipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Clonidine: (Moderate) Sympathomimetics, such as pseudoephedrine, can antagonize the antihypertensive effects of clonidine when administered concomitantly. Patients should be monitored for loss of blood pressure control.
Cocaine: (Major) Avoid concomitant use of additional vasoconstrictor agents with cocaine. If unavoidable, prolonged vital sign and ECG monitoring may be required. Myocardial ischemia, myocardial infarction, and ventricular arrhythmias have been reported after concomitant administration of topical intranasal cocaine and vasoconstrictor agents during nasal and sinus surgery. The risk for nervousness, irritability, convulsions, and other cardiac arrhythmias may increase during coadministration.
Codeine; Phenylephrine; Promethazine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Colchicine: (Minor) The response to sympathomimetics may be enhanced by colchicine.
Dapagliflozin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dapagliflozin; Metformin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dapagliflozin; Saxagliptin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dextromethorphan; Bupropion: (Moderate) Use extreme caution when coadministering bupropion with other drugs that lower the seizure threshold, such as pseudoephedrine. Use low initial doses of bupropion and increase the dose gradually.
Dextromethorphan; Diphenhydramine; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Dextromethorphan; Guaifenesin; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Dihydroergotamine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Diltiazem: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Dipeptidyl Peptidase-4 Inhibitors: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Diphenhydramine; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Diphenoxylate; Atropine: (Major) Atropine blocks the vagal reflex bradycardia caused by pseudoephedrine, and increases its pressor effect. Patients need to be asked whether they have taken pseudoephedrine before receiving atropine.
Dopamine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Dorzolamide; Timolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Dronabinol: (Moderate) Concurrent use of dronabinol, THC with sympathomimetics may result in additive hypertension, tachycardia, and possibly cardiotoxicity. Dronabinol, THC has been associated with occasional hypotension, hypertension, syncope, and tachycardia. In a study of 7 adult males, combinations of IV cocaine and smoked marijuana, 1 g marijuana cigarette, 0 to 2.7% delta-9-THC, increased the heart rate above levels seen with either agent alone, with increases plateauing at 50 bpm.
Droxidopa: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Dulaglutide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Empagliflozin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Empagliflozin; Linagliptin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Empagliflozin; Linagliptin; Metformin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Empagliflozin; Metformin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Enalapril, Enalaprilat: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Ephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Ephedrine; Guaifenesin: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Epinephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Epoprostenol: (Major) Avoid use of sympathomimetic agents with epoprostenol. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including epoprostenol. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications.
Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Ergoloid Mesylates: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Ergot alkaloids: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Ergotamine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Ergotamine; Caffeine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Ertugliflozin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Ertugliflozin; Metformin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Ertugliflozin; Sitagliptin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Esmolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Ethacrynic Acid: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Exenatide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Felodipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Fluticasone; Salmeterol: (Moderate) Monitor blood pressure and heart rate during concomitant salmeterol and pseudoephedrine use. Concomitant use may potentiate sympathetic effects.
Fluticasone; Umeclidinium; Vilanterol: (Moderate) Administer sympathomimetics with caution with beta-agonists such as vilanterol. The cardiovascular effects of beta-2 agonists may be potentiated by concomitant use. Monitor the patient for tremors, nervousness, increased heart rate, or other additive side effects.
Fluticasone; Vilanterol: (Moderate) Administer sympathomimetics with caution with beta-agonists such as vilanterol. The cardiovascular effects of beta-2 agonists may be potentiated by concomitant use. Monitor the patient for tremors, nervousness, increased heart rate, or other additive side effects.
Formoterol: (Moderate) Monitor blood pressure and heart rate during concomitant pseudoephedrine and formoterol use. Concomitant use may potentiate sympathetic effects.
Formoterol; Mometasone: (Moderate) Monitor blood pressure and heart rate during concomitant pseudoephedrine and formoterol use. Concomitant use may potentiate sympathetic effects.
Fosinopril: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Furosemide: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Ginger, Zingiber officinale: (Minor) In vitro studies have demonstrated the positive inotropic effects of certain gingerol constituents of ginger; but it is unclear if whole ginger root exhibits these effects clinically in humans. It is theoretically possible that excessive doses of ginger could affect the action of vasopressors like pseudoephedrine; however, no clinical data are available.
Glipizide; Metformin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Glyburide; Metformin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Glycopyrrolate; Formoterol: (Moderate) Monitor blood pressure and heart rate during concomitant pseudoephedrine and formoterol use. Concomitant use may potentiate sympathetic effects.
Green Tea: (Moderate) Some, but not all, green tea products contain caffeine. Caffeine should be avoided or used cautiously with pseudoephedrine. CNS stimulants and sympathomimetics are associated with adverse effects such as nervousness, irritability, insomnia, and cardiac arrhythmias.
Guaifenesin; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Halogenated Anesthetics: (Major) Avoid administration of pseudoephedrine products to patients who have recently undergone, or will soon undergo, a procedure or treatment that requires general anesthesia. Specifically, halogenated anesthetics may sensitize the myocardium to the effects of sympathomimetics, including pseudoephedrine.
Haloperidol: (Moderate) Non-cardiovascular drugs with alpha-blocking activity such as haloperidol directly counteract the effects of pseudoephedrine and can counter the desired pharmacologic effect. They also can be used to treat excessive pseudoephedrine-induced hypertension.
Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Hydrochlorothiazide, HCTZ; Methyldopa: (Major) Sympathomimetics, such as pseudoephedrine, can antagonize the antihypertensive effects of methyldopa when administered concomitantly. Blood pressure should be monitored closely to confirm that the desired antihypertensive effect is achieved. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Iloprost: (Major) Avoid use of sympathomimetic agents with iloprost. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including iloprost. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications.
Incretin Mimetics: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Indacaterol: (Moderate) Administer sympathomimetics with caution with beta-agonists such as indacaterol. The cardiovascular effects of beta-2 agonists may be potentiated by concomitant use. Monitor the patient for tremors, nervousness, increased heart rate, or other additive side effects.
Indacaterol; Glycopyrrolate: (Moderate) Administer sympathomimetics with caution with beta-agonists such as indacaterol. The cardiovascular effects of beta-2 agonists may be potentiated by concomitant use. Monitor the patient for tremors, nervousness, increased heart rate, or other additive side effects.
Indapamide: (Moderate) Sympathomimetics can antagonize the antihypertensive effects of vasodilators when administered concomitantly. Patients should be monitored to confirm that the desired antihypertensive effect is achieved.
Insulin Degludec; Liraglutide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when

administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Insulin Glargine; Lixisenatide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Insulins: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Iobenguane I 123: (Major) Discontinue medications that decrease norepinephrine uptake, such as pseudoephedrine, for at least 5 biological half-lives prior to iobenguane I 123 administration. Consider medication tapering or additional supportive therapy as appropriate to minimize the risk for precipitating pseudoephedrine withdrawal symptoms. Medications that decrease the uptake of norepinephrine can cause false negative imaging results. Increasing the dose of iobenguane I 123 will not overcome any potential uptake limiting effect of this medication.
Iobenguane I 131: (Major) Discontinue sympathomimetics for at least 5 half-lives before the administration of the dosimetry dose or a therapeutic dose of iobenguane I-131. Do not restart sympathomimetics until at least 7 days after each iobenguane I-131 dose. Drugs that reduce catecholamine uptake or deplete catecholamine stores, such as sympathomimetics, may interfere with iobenguane I-131 uptake into cells and interfere with dosimetry calculations resulting in altered iobenguane I-131 efficacy.
Ipratropium; Albuterol: (Moderate) Monitor blood pressure and heart rate during concomitant albuterol and pseudoephedrine use. Concomitant use may potentiate sympathetic effects.
Irbesartan; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Isocarboxazid: (Contraindicated) In general, sympathomimetics should be avoided in patients receiving MAOIs due to an increased risk of hypertensive crisis. This applies to sympathomimetics including stimulants for ADHD, narcolepsy or weight loss, nasal, oral, and ophthalmic decongestants and cold products, and respiratory sympathomimetics (e.g., beta agonist drugs). Some local anesthetics also contain a sympathomimetic (e.g., epinephrine). In general, medicines containing sympathomimetic agents should not be used concurrently with MAOIs or within 14 days before or after their use.
Isradipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Ketamine: (Moderate) Closely monitor vital signs when ketamine and pseudoephedrine are coadministered; consider dose adjustment individualized to the patient's clinical situation. Pseudoephedrine may enhance the sympathomimetic effects of ketamine.
Labetalol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Levalbuterol: (Moderate) Monitor blood pressure and heart rate during concomitant albuterol and pseudoephedrine use. Concomitant use may potentiate sympathetic effects.
Levamlodipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Levobunolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Levothyroxine: (Moderate) Monitor hemodynamic parameters during concomitant sympathomimetic agent and thyroid hormone use; dosage adjustments may be necessary. Concomitant use may increase the effects of sympathomimetics or thyroid hormone.
Levothyroxine; Liothyronine (Porcine): (Moderate) Monitor hemodynamic parameters during concomitant sympathomimetic agent and thyroid hormone use; dosage adjustments may be necessary. Concomitant use may increase the effects of sympathomimetics or thyroid hormone.
Levothyroxine; Liothyronine (Synthetic): (Moderate) Monitor hemodynamic parameters during concomitant sympathomimetic agent and thyroid hormone use; dosage adjustments may be necessary. Concomitant use may increase the effects of sympathomimetics or thyroid hormone.
Lidocaine; Epinephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Linagliptin; Metformin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Linezolid: (Moderate) Linezolid may enhance the hypertensive effect of pseudoephedrine. Closely monitor for increased blood pressure during coadministration. Linezolid is an antibiotic that is also a weak, reversible nonselective inhibitor of monoamine oxidase (MAO). Therefore, linezolid has the potential for interaction with adrenergic agents, such as pseudoephedrine.
Liothyronine: (Moderate) Monitor hemodynamic parameters during concomitant sympathomimetic agent and thyroid hormone use; dosage adjustments may be necessary. Concomitant use may increase the effects of sympathomimetics or thyroid hormone.
Liraglutide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Lisinopril: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Lisinopril; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Lixisenatide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Loop diuretics: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Losartan; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Macitentan: (Major) Avoid use of sympathomimetic agents with macitentan. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including macitentan. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications.
Maprotiline: (Moderate) Use maprotiline and sympathomimetics together with caution and close clinical monitoring. Regularly assess blood pressure, heart rate, the efficacy of treatment, and the emergence of sympathomimetic/adrenergic adverse events. Carefully adjust dosages as clinically indicated. Maprotiline has pharmacologic activity similar to tricyclic antidepressant agents and may cause additive sympathomimetic effects when combined with agents with adrenergic/sympathomimetic activity.
Mecamylamine: (Major) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by mecamylamine. Close monitoring of blood pressure or the selection of alternative therapeutic agents may be needed.
Meglitinides: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Metaproterenol: (Major) Caution and close observation should also be used when metaproterenol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Metformin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Metformin; Repaglinide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Metformin; Rosiglitazone: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking thiazolidinediones. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Metformin; Saxagliptin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Metformin; Sitagliptin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Methazolamide: (Moderate) Methazolamide can decrease the urinary excretion and enhance the clinical effects of pseudoephedrine. Use caution if methazolamide is coadministered; monitor for excessive pseudoephedrine-related adverse effects.
Methyclothiazide: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Methyldopa: (Major) Sympathomimetics, such as pseudoephedrine, can antagonize the antihypertensive effects of methyldopa when administered concomitantly. Blood pressure should be monitored closely to confirm that the desired antihypertensive effect is achieved.
Methylergonovine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Metolazone: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Metoprolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Midodrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Miglitol: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Moexipril: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Monoamine oxidase inhibitors: (Contraindicated) In general, sympathomimetics should be avoided in patients receiving MAOIs due to an increased risk of hypertensive crisis. This applies to sympathomimetics including stimulants for ADHD, narcolepsy or weight loss, nasal, oral, and ophthalmic decongestants and cold products, and respiratory sympathomimetics (e.g., beta agonist drugs). Some local anesthetics also contain a sympathomimetic (e.g., epinephrine). In general, medicines containing sympathomimetic agents should not be used concurrently with MAOIs or within 14 days before or after their use.
Nabilone: (Moderate) Concurrent use of nabilone with sympathomimetics (e.g., amphetamine or cocaine) may result in additive hypertension, tachycardia, and possibly cardiotoxicity. In a study of 7 adult males, combinations of cocaine (IV) and smoked marijuana (1 g marijuana cigarette, 0 to 2.7% delta-9-THC) increased the heart rate above levels seen with either agent alone, with increases reaching a plateau at 50 bpm.
Nadolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Nebivolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Nebivolol; Valsartan: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Nicardipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Nicotine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e., nicotine nasal spray); however, no dosage adjustments are recommended.
Nifedipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Nimodipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Nisoldipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Nitrates: (Moderate) Sympathomimetics can antagonize the antianginal effects of nitrates, and can increase blood pressure and/or heart rate. Anginal pain may be induced when coronary insufficiency is present.
Norepinephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Olmesartan; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Ozanimod: (Major) Coadministration of ozanimod with sympathomimetics such as pseudoephedrine is not routinely recommended due to the potential for hypertensive crisis. If coadministration is medically necessary, closely monitor the patient for hypertension. An active metabolite of ozanimod inhibits MAO-B, which may increase the potential for hypertensive crisis. Sympathomimetics may increase blood pressure by increasing norepinephrine concentrations and monoamine oxidase inhibitors (MAOIs) are known to potentiate these effects. Concomitant use of ozanimod with pseudoephedrine did not potentiate the effects on blood pressure. However, hypertensive crisis has occurred with administration of ozanimod alone and also during coadministration of sympathomimetic medications and other selective or nonselective MAO inhibitors.
Perindopril: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Perindopril; Amlodipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Phenelzine: (Contraindicated) In general, sympathomimetics should be avoided in patients receiving MAOIs due to an increased risk of hypertensive crisis. This applies to sympathomimetics including stimulants for ADHD, narcolepsy or weight loss, nasal, oral, and ophthalmic decongestants and cold products, and respiratory sympathomimetics (e.g., beta agonist drugs). Some local anesthetics also contain a sympathomimetic (e.g., epinephrine). In general, medicines containing sympathomimetic agents should not be used concurrently with MAOIs or within 14 days before or after their use.
Phenobarbital; Hyoscyamine; Atropine; Scopolamine: (Major) Atropine blocks the vagal reflex bradycardia caused by pseudoephedrine, and increases its pressor effect. Patients need to be asked whether they have taken pseudoephedrine before receiving atropine.
Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Pindolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Pioglitazone: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking thiazolidinediones. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Pioglitazone; Glimepiride: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking thiazolidinediones. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Pioglitazone; Metformin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking thiazolidinediones. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Potassium-sparing diuretics: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Pramlintide: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Prilocaine; Epinephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Probenecid; Colchicine: (Minor) The response to sympathomimetics may be enhanced by colchicine.
Procarbazine: (Major) Because procarbazine exhibits some monoamine oxidase inhibitory (MAOI) activity, sympathomimetic drugs should be avoided. As with MAOIs, the use of a sympathomimetic drug with procarbazine may precipitate hypertensive crisis or other serious side effects. In the presence of MAOIs, drugs that cause release of norepinephrine induce severe cardiovascular and cerebrovascular responses. In general, do not use a sympathomimetic drug unless clinically necessary (e.g., medical emergencies, agents like dopamine) within the 14 days prior, during or 14 days after procarbazine therapy. If use is necessary within 2 weeks of the MAOI drug, in general the initial dose of the sympathomimetic agent must be greatly reduced. Patients should be counseled to avoid non-prescription (OTC) decongestants and other drug products, weight loss products, and energy supplements that contain sympathomimetic agents.
Promethazine; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Propranolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Propranolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Quinapril: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Quinapril; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Racepinephrine: (Major) Racepinephrine is a sympathomimetic drug with agonist actions at both the alpha and beta receptors. Patients using racepinephrine inhalation are advised to avoid other non-prescription products containing sympathomimetics since additive adverse effects on the cardiovascular and nervous system are possible, some which may be undesirable. Side effects such as nausea, tremor, nervousness, difficulty with sleep, and increased heart rate or blood pressure may be additive. Patients should avoid use of non-prescription decongestants, such as phenylephrine and pseudoephedrine, while using racepinephrine inhalations. Patients should avoid dietary supplements containing ingredients that are reported or claimed to have a stimulant or weight-loss effect, such as ephedrine and ephedra, Ma huang, and phenylpropanolamine. Patients taking prescription sympathomimetic or stimulant medications (including amphetamines, methylphenidate, dexmethylphenidate, isometheptane, epinephrine) should seek health care professional advice prior to the use of racepinephrine inhalations; consider therapeutic alternatives to racepinephrine for these patients.
Ramipril: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Rasagiline: (Moderate) The concomitant use of rasagiline and sympathomimetics was not allowed in clinical studies; therefore, caution is advised during concurrent use of rasagiline and sympathomimetics including stimulants for ADHD and weight loss, non-prescription nasal, oral, and ophthalmic decongestants, and weight loss dietary supplements containing Ephedra. Although sympathomimetics are contraindicated for use with other non-selective monoamine oxidase inhibitors (MAOIs), hypertensive reactions generally are not expected to occur during concurrent use with rasagiline because of the selective monoamine oxidase-B (MAO-B) inhibition of rasagiline at manufacturer recommended doses. One case of elevated blood pressure has been reported in a patient during concurrent use of the recommended dose of rasagiline and ophthalmic tetrahydrozoline. One case of hypertensive crisis has been reported in a patient taking the recommended dose of another MAO-B inhibitor, selegiline, in combination with ephedrine. It should be noted that the MAO-B selectivity of rasagiline decreases in a dose-related manner as increases are made above the recommended daily dose and interactions with sympathomimetics may be more likely to occur at these higher doses.
Riociguat: (Major) Avoid use of sympathomimetic agents with riociguat. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including riociguat. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications.
Rosiglitazone: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking thiazolidinediones. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Safinamide: (Moderate) Severe hypertensive reactions, including hypertensive crisis, have been reported in patients taking monoamine oxidase inhibitors (MAOIs), such as safinamide concurrently with sympathomimetic medications, such as pseudoephedrine. If concomitant use of safinamide and pseudoephedrine is necessary, monitor for hypertension and hypertensive crisis.
Salmeterol: (Moderate) Monitor blood pressure and heart rate during concomitant salmeterol and pseudoephedrine use. Concomitant use may potentiate sympathetic effects.
Selegiline: (Contraindicated) The product label for pseudoephedrine contraindicates use with monoamine oxidase inhibitors (MAOIs) due to the risk of hypertensive crisis. Pseudoephedrine should generally not be used concurrently with MAOIs or within 14 days before or after their use. Uncontrolled hypertension has been reported when taking the recommended dose of oral selegiline and a sympathomimetic medication. The manufacturers of selegiline products recommend caution and monitoring of blood pressure during concurrent use with sympathomimetics.
Selexipag: (Major) Avoid use of sympathomimetic agents with selexipag. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including selexipag. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications.
Semaglutide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
SGLT2 Inhibitors: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Solriamfetol: (Moderate) Monitor blood pressure and heart rate during routine coadministration of solriamfetol, a norepinephrine and dopamine reuptake inhibitor, and pseudoephedrine, a CNS stimulant. Concurrent use of solriamfetol and other medications that increase blood pressure and/or heart rate may increase the risk of such effects. Coadministration of solriamfetol with other drugs that increase blood pressure or heart rate has not been evaluated.
Sotagliflozin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Sotalol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Spironolactone; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
St. John's Wort, Hypericum perforatum: (Moderate) Monitor blood pressure during concomitant use of pseudoephedrine and St. John's Wort. St. John's Wort has been shown to weakly inhibit monoamine oxidase and may potentiate the effects of pseudoephedrine on blood pressure.
Sulfonylureas: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Telmisartan; Amlodipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Telmisartan; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Terbutaline: (Major) Concomitant use of sympathomimetics with beta-agonists might result in additive cardiovascular effects such as increased blood pressure and heart rate.
Theophylline, Aminophylline: (Moderate) Concurrent administration of theophylline or aminophylline with some sympathomimetics can produce excessive stimulation and effects such as nervousness, irritability, or insomnia. Seizures or cardiac arrhythmias are also possible. (Moderate) Concurrent administration of theophylline or aminophylline with sympathomimetics can produce excessive stimulation manifested by skeletal muscle activity, agitation, and hyperactivity.
Thiazide diuretics: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Thiazolidinediones: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking thiazolidinediones. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Thyroid hormones: (Moderate) Monitor hemodynamic parameters during concomitant sympathomimetic agent and thyroid hormone use; dosage adjustments may be necessary. Concomitant use may increase the effects of sympathomimetics or thyroid hormone.
Timolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Tirzepatide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Torsemide: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Trandolapril: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Trandolapril; Verapamil: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Tranylcypromine: (Contraindicated) In general, sympathomimetics should be avoided in patients receiving MAOIs due to an increased risk of hypertensive crisis. This applies to sympathomimetics including stimulants for ADHD, narcolepsy or weight loss, nasal, oral, and ophthalmic decongestants and cold products, and respiratory sympathomimetics (e.g., beta agonist drugs). Some local anesthetics also contain a sympathomimetic (e.g., epinephrine). In general, medicines containing sympathomimetic agents should not be used concurrently with MAOIs or within 14 days before or after their use.
Treprostinil: (Major) Avoid use of sympathomimetic agents with treprostinil. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including treprostinil. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications.
Triamterene; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Tricyclic antidepressants: (Major) Avoid use of pseudoephedrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the effects of catecholamines.
Umeclidinium; Vilanterol: (Moderate) Administer sympathomimetics with caution with beta-agonists such as vilanterol. The cardiovascular effects of beta-2 agonists may be potentiated by concomitant use. Monitor the patient for tremors, nervousness, increased heart rate, or other additive side effects.
Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Vasodilators: (Moderate) Use sympathomimetic agents with caution in patients receiving therapy for hypertension. Patients should be monitored to confirm that the desired antihypertensive effect is achieved. Sympathomimetics can increase blood pressure and heart rate, and antagonize the antihypertensive effects of vasodilators when administered concomitantly. Anginal pain may be induced when coronary insufficiency is present.
Vasopressin, ADH: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Vasopressors: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Verapamil: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.

How Supplied

Drixoral/Pseudoephedrine/Pseudoephedrine Hydrochloride/Sudafed 12 Hour/Sudafed Sinus Congestion/Sudogest 12 Hour Oral Tab ER: 120mg, 240mg
ElixSure Cold/ElixSure Congestion/Pseudoephedrine/Pseudoephedrine Hydrochloride/Silfedrine/Sudafed Children's/Sudafed Children's Nasal Decongestant/Tylenol Children's Simply Stuffy Oral Liq: 5mL, 15mg
ElixSure Cold/Myfedrine/NASAL Decongestant/Pseudoephedrine/Pseudoephedrine Hydrochloride/Sudafed Children's Nasal Decongestant/Sudogest Children's Oral Sol: 5mL, 15mg, 30mg
Genaphed/NASAL Decongestant/Nexafed/Pseudoephedrine/Pseudoephedrine Hydrochloride/Pseudo-Time/Sudafed/Sudafed Congestion/Sudafed Sinus Congestion/Sudogest/Zephrex-D Oral Tab: 30mg, 60mg
Pseudoephedrine/Pseudoephedrine Hydrochloride/Zephrex-D Oral Cap: 30mg

Maximum Dosage
Adults

240 mg/day PO.

Geriatric

240 mg/day PO.

Adolescents

240 mg/day PO.

Children

12 years: 240 mg/day PO.
6 to 11 years: 120 mg/day PO.
4 to 5 years: 60 mg/day PO.
2 to 3 years: Safety and efficacy have not been established for non-prescription (OTC) use. Consult doctor prior to use. Previously recommended maximum dose was 60 mg/day PO.
Less than 2 years: Safety and efficacy have not been established.

Infants

Safety and efficacy have not been established.

Mechanism Of Action

Pseudoephedrine acts directly on both alpha- and, to a lesser degree, beta-adrenergic receptors. Like ephedrine, pseudoephedrine also has an indirect effect by releasing norepinephrine from its storage sites. By acting directly on alpha-adrenergic receptors in the mucosa of the respiratory tract, pseudoephedrine produces vasoconstriction, which shrinks swollen nasal mucous membranes; reduces tissue hyperemia, edema, and nasal congestion; and increases nasal airway patency. Also, drainage of sinus secretions is increased, and obstructed eustachian ostia may be opened. Pseudoephedrine can relax bronchial smooth muscle by stimulating beta-2 adrenergic receptors; however, bronchodilation has not been consistently demonstrated upon oral administration. Pseudoephedrine has been used to treat urinary incontinence due to its alpha adrenergic agonist effects.
 
Pseudoephedrine produced minimum changes in pulse and blood pressure after single doses of 60 mg. Higher single doses of 180 mg produced minor elevations in systolic blood pressure (about 7 mmHg), minor increases in heart rate (about 9 beats/minute), and no changes in diastolic blood pressure in normal subjects. Pseudoephedrine may increase irritability of the heart muscle and may affect ventricular conduction, especially with high doses administered to patients with preexisting cardiac disease. Tachycardia, palpitation, and/or multifocal premature ventricular contractions may also occur following pseudoephedrine use.

Pharmacokinetics

Pseudoephedrine is administered orally.
Pseudoephedrine is presumed to cross the placenta as well as the blood brain barrier. Pseudoephedrine may also be distributed into breast milk. Pseudoephedrine is incompletely metabolized in the liver to norpseudoephedrine, the primary active metabolite of the parent. The drug and metabolite are excreted in the urine; with 55 to 75% excreted as unchanged drug. The elimination half-life of the drug ranges from 9 to 16 hours dependent primarily upon urinary pH. The rate of urinary excretion is accelerated upon urinary acidification to a pH near 5. Upon alkalinization of the urine to a pH of approximately 8, some of the drug is reabsorbed into the kidney tubule and the rate of urinary excretion is slowed.

Oral Route

After oral administration of 60 mg of pseudoephedrine hydrochloride as tablets or oral solution, nasal decongestion occurs within 30 minutes and persists for 4 to 6 hours. Nasal decongestion may persist for 8 hours following oral administration of 60 mg and up to 12 hours following 120 mg of the drug in extended-release capsules.

Pregnancy And Lactation
Pregnancy

Oral decongestants such as pseudoephedrine should be avoided during the first trimester of pregnancy, and should be used cautiously at any time during pregnancy. Pseudoephedrine may reduce blood flow to the placenta and the fetus, and there is some evidence use may be associated with birth defects if used during early pregnancy. Evidence from case-control studies in human pregnancy indicate there may be an increased risk of gastroschisis, small intestinal atresia, and hemifacial microsomia in babies exposed in utero to pseudoephedrine, particularly in the first trimester. Non-pharmacologic methods (e.g., fluids and rest) are recommended to be tried first for symptomatic relief of congestion during pregnancy.

Pseudoephedrine should be used with caution during lactation. Treatment with non-systemic decongestant preparations such as intranasal sodium chloride or temporary use of intranasal decongestants should be considered prior to using an oral decongestant, including pseudoephedrine, during lactation. If use is necessary, monitor for potential adverse effects on the nursing infant or reduction in milk production. Pseudoephedrine is excreted into breast milk. Peak milk concentrations occur 1 to 1.5 hours after a maternal oral dosage, and peak milk concentrations usually exceed those of maternal plasma. The total amount of pseudoephedrine (measured by AUC) in milk is 2 to 3 times that of plasma. However, only 0.5% of a maternal dose would probably be ingested by an infant during breast-feeding within any 24 hours. Sympathomimetic adverse effects (irritability, excessive crying, and altered sleeping patterns) have been reported in a breast-fed infant following maternal administration of pseudoephedrine; symptoms resolved within 12 hours of drug discontinuation. Lactating women may want to avoid breast-feeding during times of peak concentrations (i.e., within 1 to 2 hours after an oral dose) when possible. Another study estimated that a breastfed infant would receive 4.3% of the maternal weight-adjusted dose based on concentrations in breast milk and assuming a maternal pseudoephedrine dose of 240 mg/day PO. This study also showed milk production over a 24-hour period was reduced by an average of 24% compared to placebo after a single 60 mg dose of pseudoephedrine. The data from this study suggest that mothers whose lactation is not yet well established or mothers who are having difficulties producing sufficient milk should not receive pseudoephedrine. Consider the benefits of breast-feeding, the risk of potential infant drug exposure, and the risk of an untreated or inadequately treated condition.