Femring
Classes
Estrogens, Excluding Hormonal Contraceptives
Administration
Hazardous Drugs Classification
NIOSH 2016 List: Group 2
NIOSH (Draft) 2020 List: Table 2
Observe and exercise appropriate precautions for handling, preparation, administration, and disposal of hazardous drugs.
INJECTABLES: Use double chemotherapy gloves and a protective gown. Prepare in a biological safety cabinet or compounding aseptic containment isolator with a closed system drug transfer device. Eye/face and respiratory protection may be needed during preparation and administration.
ORAL TABLETS/CAPSULES/ORAL LIQUID: Use gloves to handle. Cutting, crushing, or otherwise manipulating tablets/capsules will increase exposure and require additional protective equipment. Oral liquid drugs require double chemotherapy gloves and protective gown; may require eye/face protection.
TOPICAL/TRANSDERMAL/VAGINAL: Use double chemotherapy gloves and protective gown. Eye/face and respiratory protection may be needed during preparation and administration.
Administer at approximately the same time each day.
May administer with or without food.
Estradiol cypionate and estradiol valerate are administered intramuscularly. These products are NOT for intravenous or subcutaneous administration.
Injections are oil based. No reconstitution is necessary.
Visually inspect parenteral products for particulate matter and discoloration prior to administration whenever solution and container permit.
Estradiol cypionate, estradiol valerate: Roll vial and syringe between the palms to ensure even dispersion prior to withdrawal and administration of the injection. For these oil-based products, a needle of at least 21 gauge is recommended; a dry, sterile syringe should be used.
All intramuscular injections: Inject deeply into the upper, outer quadrant of the gluteal muscle.
Administer topically via a topical emulsion, gel, spray, or as a transdermal patch.
Wash hands before and after application.
Administer topically to the skin using the chosen transdermal patch system.
Ensure that the proper patch system is dispensed and applied. Some estradiol transdermal systems are changed once weekly, while others are changed twice per week.
Wash hands before and after application.
Instruct patient on proper application and dosage regimen of patch prescribed.
Each patch brand provides instructions regarding where the patch may be applied. Apply to an area of clean, dry intact skin on an appropriate area of the body for the patch chosen. Do not apply to the breasts. Do not apply to the waistline or other areas where the patch may not adhere properly.
The transdermal system should not be exposed to the sun for prolonged periods of time.
Patients may bathe while wearing some systems. Swimming or using a sauna while using the patches has not been studied, and these activities, including bathing or showering, may decrease the adhesion of the system and the delivery of the estrogen.
If a system should fall off, the same system may be reapplied to another area. If necessary, a new system may be applied, in which case, the original treatment schedule should continue.
Always remove the old patch/system before applying a new patch/system.
The sites of application must be rotated, with an interval of at least 1 week allowed between applications to the same site.
Topical gel, Divigel:
Instruct patient on proper application.
Apply the gel to clean, dry, unbroken skin. In a thin layer, spread the entire contents of a unit dose package to the right or left upper thigh over an area of approximately 5 inches by 7 inches. To minimize skin irritation, alternate between the left and right upper thigh each day.
The application site should be allowed to completely dry before dressing or swimming.
The application site should not be washed for at least 1 hour after application.
Other people should not come in contact with the area of skin where the gel was applied until it is completely dried.
Patients should be instructed to avoid fire, flames, or smoking until the gel has completely dried; Divigel is alcohol based and thus flammable.
Divigel is available in 5 dose strengths of 0.25, 0.5, 0.75, 1, and 1.25 gram for topical application (corresponding to 0.25, 0.5, 0.75, 1, and 1.25 mg estradiol, respectively).
Topical gel, Elestrin:
Instruct patient on proper application.
Prior to the first use, the pump must be primed by depressing the pump 10 times. Discard any of the unused gel that is released during priming.
Apply the gel to clean, dry, unbroken skin on the upper arm. Patients should not swim for at least 2 hours after application of the gel.
To apply the dose, depress the pump with the tip of the pump facing the area of the arm where the gel will be applied. Apply the gel to the entire upper arm and shoulder using 2 fingers.
The area should be allowed to dry for at least 5 minutes prior to dressing.
Other people should not come in contact with the skin for at least 2 hours after the gel is applied.
Patients should be instructed to avoid fire, flames, or smoking until the gel has completely dried; the Elestrin gel is alcohol based and thus flammable.
Sunscreen should not be applied to the upper arm for at least 25 minutes after gel application. In addition, sunscreen should not be applied to the area of gel application for 7 or more consecutive days.
One pump actuation (0.87 gram dose) delivers 0.52 mg of estradiol equivalent to a systemic delivery of estradiol 0.0125 mg/day. Two pump actuations (1.7 grams dose) provides systemic delivery of estradiol 0.0375 mg/day.
Topical gel, EstroGel:
Instruct patient on proper application.
Prior to the first use, the pump must be primed by fully depressing the pump 5 times. Discard the unused gel that is expelled during the priming process by thoroughly rinsing down the sink or placing in the household trash.
The usual dosage is 1 complete actuation (pump depression) of the metered dose pump daily.
Apply the gel to clean, dry, unbroken skin on the arm.
To apply the dose, depress the pump and collect the gel into the palm of the hand. Apply the gel to 1 entire arm, covering the area from the shoulder to the wrist. The gel should be applied as thinly as possible.
The arm should be allowed to dry for up to 5 minutes prior to dressing.
Patients should not shower or swim for as long as possible after application of the gel.
Other people should not come in contact with the skin for at least 1 hour after the gel is applied.
Patients should be instructed to avoid fire, flames, or smoking until the gel has completely dried; the Estrogel is flammable.
An EstroGel unit dose of 1.25 grams contains 0.75 mg of estradiol.
Topical skin emulsion, Estrasorb:
Instruct patient on proper application.
Patients should be sitting in a comfortable position prior to emulsion application. Apply the emulsion to clean, dry skin on both legs each morning. Do not apply the emulsion to skin that is red or irritated.
Each dose requires 2 foil packages. Each package should be opened separately. They should not be opened until just before the dose is applied.
To apply the dose, open the first foil packet and expel the entire contents to the top of the left thigh. Using one or both hands, rub the emulsion into the entire left thigh and the left calf for 3 minutes and until thoroughly absorbed. Rub any excess material from the hands onto the buttocks. Repeat this process with the second foil packet using the right thigh and calf. Absorption of the topical emulsion has only been studied on the thighs, calves, and buttocks.
The areas to which the topical emulsion has been applied should be allowed to dry completely before covering with clothing to avoid transfer to other individuals.
Sunscreen and the topical emulsion should not be applied at the same time because sunscreen may increase the amount of emulsion absorbed.
Daily topical application of the contents of 2 foil pouches provides systemic delivery of 0.05 mg of estradiol per day.
Topical spray, Evamist:
Instruct patient on proper application.
Prior to the first use, prime the pump by spraying 3 sprays with the lid in place. The pump should be held vertical and upright for spraying.
Apply each spray to the inner surface of the forearm. When applying more than 1 spray, apply each spray to adjacent, but non-overlapping skin of the inner forerarm starting at the elbow. Do not apply Evamist to other skin surfaces; other skin surfaces have not been studied.
Allow spray to dry for approximately 2 minutes.
Do not wash the site for 1 hour after application.
Patients should cover the application site with clothing, after the 2 minute drying period, if another person may come in contact with that area of skin.
Others should not be allowed to make contact with the area of skin where the spray has been applied. If direct contact occurs, the contact area should be washed thoroughly with soap and water.
Patients should be instructed to avoid fire, flames, or smoking until the spray has dried; the Evamist is alcohol based and thus flammable.
Each spray provides 90 microL containing 1.53 mg of estradiol.
Vaginal cream (Estrace):
Wash and dry hands before handling. Screw the threaded end of the applicator with plunger onto the opened tube until secure. Squeeze from the bottom of the tube to expel the prescribed amount of cream into the applicator. Patients should be instructed to lie on their back with their knees drawn up, gently insert the applicator deeply into the vagina, and, once inserted, press the plunger downward to its original position. The applicator can be cleansed by removing the plunger from the barrel and washing with mild soap and water. Although not specifically recommended by the manufacturer, it may be prudent to advise patients to administer the vaginal cream just prior to bedtime in order to maximize absorption. Wash hands after use.
Vaginal system ring inserts (Estring vaginal system, Femring vaginal ring):
Wash and dry hands before handling. The ring system insert may be placed by the patient or a health care provider. The opposite sides of the insert should be pressed together and inserted into the vagina compressed. The ring insert is placed as deeply as possible in the upper third of the vagina and is worn continuously for 90 days. After 90 days, the ring should be removed and a new insert is applied. The insert may be removed by hooking a finger through the ring and pulling it out. The patient should not feel the ring, nor should it interfere with sexual intercourse. In addition, if the ring moves into the lower part of the vagina, the patient can push the ring back into place using a finger. Alternatively, within the 90-day dosage period, if the insert is removed or expelled, rinse it with lukewarm (not hot or boiling) water, and re-insert the ring as needed. Wash hands after use. Remove the old ring insert before inserting a new one.
Vaginal tablet (Vagifem):
Wash and dry hands before handling. Use a new applicator containing an estradiol vaginal tablet each day, preferably at the same time each day; if the tablet has fallen out of the applicator, but is still contained in the packaging, carefully place it back into the applicator with clean dry hands. If the tablet has inadvertently fallen out of the applicator prior to insertion, the applicator should be thrown out and a new one containing a tablet used. Keep hands clean and dry while handling the tablet. Insert the applicator as far as comfortably possible into the vagina (without force), or until half of the applicator is inside the vagina, whichever is less. Then, gently press the plunger until the plunger is fully depressed. This will eject the tablet inside the vagina where it will dissolve slowly over several hours. After depressing the plunger, gently remove the applicator and dispose of it similarly to a plastic tampon applicator. Wash hands after use.
Vaginal insert (Imvexxy):
Wash and dry hands before handling the insert. Push the insert through the foil of the blister package. Hold the insert with the larger end between the fingers. The patient should select the best position for vaginal insertion that is most comfortable, either lying down or standing. With the smaller end up, place the insert about 2 inches into the vagina using the finger. Wash hands after use. The patient should write down the days of insertion. Wash hands after use.
Adverse Reactions
cholecystitis / Delayed / Incidence not known
biliary obstruction / Delayed / Incidence not known
GI obstruction / Delayed / Incidence not known
pancreatitis / Delayed / Incidence not known
thrombosis / Delayed / Incidence not known
pulmonary embolism / Delayed / Incidence not known
thromboembolism / Delayed / Incidence not known
stroke / Early / Incidence not known
myocardial infarction / Delayed / Incidence not known
erythema multiforme / Delayed / Incidence not known
angioedema / Rapid / Incidence not known
anaphylactoid reactions / Rapid / Incidence not known
erythema nodosum / Delayed / Incidence not known
retinal thrombosis / Delayed / Incidence not known
papilledema / Delayed / Incidence not known
visual impairment / Early / Incidence not known
dementia / Delayed / Incidence not known
toxic-shock syndrome / Delayed / Incidence not known
ovarian cancer / Delayed / Incidence not known
breast cancer / Delayed / Incidence not known
endometrial cancer / Delayed / Incidence not known
new primary malignancy / Delayed / Incidence not known
pulmonary oil microembolism / Rapid / Incidence not known
teratogenesis / Delayed / Incidence not known
fluid retention / Delayed / 1.0-10.0
endometrial hyperplasia / Delayed / 1.0-10.0
candidiasis / Delayed / 0-8.0
cervicitis / Delayed / Incidence not known
vaginitis / Delayed / Incidence not known
cervical dysplasia / Delayed / Incidence not known
vaginal bleeding / Delayed / Incidence not known
galactorrhea / Delayed / Incidence not known
jaundice / Delayed / Incidence not known
cholelithiasis / Delayed / Incidence not known
colitis / Delayed / Incidence not known
cholestasis / Delayed / Incidence not known
elevated hepatic enzymes / Delayed / Incidence not known
peliosis hepatis / Delayed / Incidence not known
hepatitis / Delayed / Incidence not known
edema / Delayed / Incidence not known
hypertension / Early / Incidence not known
migraine / Early / Incidence not known
depression / Delayed / Incidence not known
erythema / Early / Incidence not known
hematoma / Early / Incidence not known
hyperglycemia / Delayed / Incidence not known
hypocalcemia / Delayed / Incidence not known
impaired cognition / Early / Incidence not known
urinary incontinence / Early / Incidence not known
vaginal pain / Early / Incidence not known
hypercalcemia / Delayed / Incidence not known
headache / Early / 5.0-21.0
back pain / Delayed / 3.3-11.0
weight gain / Delayed / 1.0-10.0
skin irritation / Early / 1.0-10.0
pruritus / Rapid / 1.0-10.0
diarrhea / Early / 5.0-5.0
dysmenorrhea / Delayed / 10.0
breakthrough bleeding / Delayed / 10.0
mastalgia / Delayed / 10.0
abdominal pain / Early / 10.0
nausea / Early / 10.0
menorrhagia / Delayed / Incidence not known
amenorrhea / Delayed / Incidence not known
libido increase / Delayed / Incidence not known
libido decrease / Delayed / Incidence not known
breast enlargement / Delayed / Incidence not known
breast discharge / Delayed / Incidence not known
gynecomastia / Delayed / Incidence not known
vomiting / Early / Incidence not known
anxiety / Delayed / Incidence not known
emotional lability / Early / Incidence not known
irritability / Delayed / Incidence not known
insomnia / Early / Incidence not known
fatigue / Early / Incidence not known
skin discoloration / Delayed / Incidence not known
hirsutism / Delayed / Incidence not known
urticaria / Rapid / Incidence not known
vesicular rash / Delayed / Incidence not known
xerosis / Delayed / Incidence not known
paresthesias / Delayed / Incidence not known
acne vulgaris / Delayed / Incidence not known
rash / Early / Incidence not known
alopecia / Delayed / Incidence not known
melasma / Delayed / Incidence not known
maculopapular rash / Early / Incidence not known
gingivitis / Delayed / Incidence not known
diplopia / Early / Incidence not known
muscle cramps / Delayed / Incidence not known
arthralgia / Delayed / Incidence not known
infection / Delayed / Incidence not known
vaginal discharge / Delayed / Incidence not known
bladder discomfort / Early / Incidence not known
vaginal irritation / Early / Incidence not known
injection site reaction / Rapid / Incidence not known
Boxed Warning
Estradiol products are contraindicated in patients with a known or suspected estrogen-dependent neoplasm, including breast cancer. The use of estrogen-alone and estrogen plus progestin has been reported to result in an increase in abnormal mammograms, requiring further evaluation. All women taking estrogen with or without a progestin should receive an annual clinical breast examination, perform monthly self-examinations, and have regular mammograms as recommended by their health care professional based on patient age, risk factors, and prior mammogram results. Since the 1970's, numerous epidemiological studies have examined the association of estrogens or combined hormone replacement therapy (HRT) and breast cancer (new primary malignancy). The data available are derived from studies of estrogen-alone or estrogen plus progestin hormonal replacement therapy (HRT). The most important randomized clinical trial providing information about breast cancer in estrogen-alone users is the Womens Health Initiative (WHI) substudy of estrogen-alone therapy. In the WHI estrogen-alone substudy, after an average follow-up of 7.1 years, daily estrogen monotherapy was not associated with an increased risk of invasive breast cancer [relative risk (RR) 0.80]. The most important randomized clinical trial providing information about breast cancer in patients taking combined estrogen-progestin HRT regimens is the WHI substudy of estrogen plus a progestin. After a mean follow-up of 5.6 years, the WHI estrogen plus progestin substudy reported an increased risk of invasive breast cancer in women who took daily estrogen plus progestin vs. placebo. In this substudy, prior use of estrogen-alone or estrogen plus progestin therapy was reported by 26 percent of the women. The relative risk of invasive breast cancer was 1.24, and the absolute risk was 41 versus 33 cases per 10,000 women-years, for estrogen-progestin compared with placebo. Among women who reported prior use of hormone therapy, the relative risk of invasive breast cancer was 1.86, and the absolute risk was 46 vs. 25 cases per 10,000 women-years for estrogen-progestin compared with placebo. Among women who reported no prior use of hormone therapy, the relative risk of invasive breast cancer was 1.09, and the absolute risk was 40 vs. 36 cases per 10,000 women-years for estrogen-progestin compared with placebo. In the same WHI substudy, invasive breast cancers were larger, were more likely to be node positive, and were diagnosed at a more advanced stage in the combined HRT group compared with the placebo group. Metastatic disease was rare, with no apparent difference between the 2 groups. Other prognostic factors, such as histologic subtype, grade and hormone receptor status did not differ between the 2 groups. Consistent with the WHI clinical trial, observational studies have also reported an increased risk of breast cancer for estrogen plus progestin therapy, and a smaller increased risk for estrogen-alone therapy, after several years of use. The risk increased with duration of use, and appeared to return to baseline over about 5 years after stopping treatment (only the observational studies have substantial data on risk after stopping). Observational studies also suggest that the risk of breast cancer was greater, and became apparent earlier, with combined HRT as compared to estrogen-alone therapy. However, these studies have not found significant variation in the risk of breast cancer among different estrogen plus progestin combinations, doses, or routes of administration. While estrogen therapy may be used rarely for the palliative treatment of advanced breast cancer in men and women, estrogen administration may lead to severe hypercalcemia in patients with breast cancer and bone metastases. If hypercalcemia occurs, use of the drug should be stopped and appropriate measures taken to reduce the serum calcium level.
Estrogens are contraindicated in patients with an active or past history of thrombophlebitis, thromboembolism, thromboembolic disease, stroke, or myocardial infarction (MI). An increased risk of cerebrovascular disease (stroke) and deep venous thrombosis (DVT) has been reported with unopposed estrogen therapy. An increased risk of thromboembolism, including pulmonary embolism (PE), DVT, stroke and myocardial infarction (MI) has been reported with estrogen plus progestin hormone replacement therapy (HRT). Should any of these events occur or be suspected, discontinue estradiol immediately. Estrogens are also contraindicated for patients with known protein C deficiency, protein S deficiency, or antithrombin deficiency or other known active thrombophilic disorders associated with increased risk of venous thrombosis. Other risk factors for arterial vascular disease (e.g., hypertension, diabetes, tobacco smoking, hypercholesterolemia, and obesity) and/or venous thromboembolism (VTE) [e.g., personal history or family history of VTE, obesity, or systemic lupus (SLE)] should be monitored and managed appropriately. A positive relationship between estrogen use and an increased risk for thromboembolism has been demonstrated. In the WHI estrogen-alone substudy, the risk of VTE (DVT and PE) was increased for women receiving daily unopposed estrogen compared to placebo (30 vs. 22 per 10,000 women-years), although only the increased risk of DVT reached statistical significance (23 vs. 15 per 10,000 women years). The increase in VTE risk was demonstrated during the first 2 years. In the WHI estrogen plus progestin substudy, a statistically significant 2-fold greater rate of VTE was reported in women receiving estrogen plus progestin HRT compared to women receiving placebo (35 vs. 17 per 10,000 women-years). Statistically significant increases in risk for both DVT (26 vs. 13 per 10,000 women-years) and PE (18 vs. 8 per 10,000 women-years) were also demonstrated. The increase in VTE risk was demonstrated during the first year and persisted. Estrogens with or without progestins should not be used for the prevention of cardiac disease or cardiovascular disease (e.g., coronary artery disease). In the Women's Health Initiative (WHI) estrogen-alone substudy, no overall effect on coronary heart disease (CHD) events (defined as non-fatal MI, silent MI, or CHD death ) was reported in women receiving estrogen-alone compared to placebo. Subgroup analyses of women 50 to 59 years of age suggest a statistically non-significant reduction in CHD events (CE-alone vs. placebo) in women with less than 10 years since menopause (8 vs. 16 per 10,000 women-years). In the WHI estrogen plus progestin substudy, there was a statistically non-significant increased risk of CHD events reported in women receiving daily estrogen plus progestin compared to women receiving placebo (41 vs. 34 per 10,000 women-years). An increase in relative risk was demonstrated in year 1, and a trend toward decreasing relative risk was reported in years 2 through 5. Studies have also shown no cardiovascular benefit to the use of estrogens or estrogen-progestin therapy for secondary prevention in women with documented cardiac disease or CHD. Estrogens also increase the risk for stroke. In the WHI estrogen-alone substudy, a statistically significant increased risk of stroke was reported in women 50 to 79 years of age receiving estrogen-alone compared to women in the same age group receiving placebo (45 vs. 33 per 10,000 women-years). The increase in risk was demonstrated in the first year and persisted. Subgroup analyses of women 50 to 59 years of age suggest no increased risk of stroke for those women receiving estrogen-alone versus those receiving placebo (18 vs. 21 per 10,000 women-years). In the WHI estrogen plus progestin substudy, a statistically significant increased risk of stroke was reported in women 50 to 79 years of age receiving estrogen plus progestin HRT compared to women in the same age group receiving placebo (33 vs. 25 per 10,000 women-years). The increase in risk was demonstrated after the first year and persisted. Women over the age of 65 years were at increased risk for non-fatal stroke. Patients with hypertension should be monitored closely for increases in blood pressure if estrogens are administered. In a small number of case reports, substantial increases in blood pressure have been attributed to idiosyncratic reactions to estrogen therapy. In a large, randomized, placebo controlled clinical trial, a generalized effect of estrogens on blood pressure was not seen. Estrogens may cause some degree of fluid retention. Women with conditions that might be influenced by this factor, such as a cardiac disease, warrant careful observation when estrogens are prescribed. Discontinue estrogen therapy with evidence of medically concerning fluid retention (edema). In men treated with estrogens for palliation of prostate or breast cancer, estrogens have increased the risk of nonfatal MI, PE, and thrombophlebitis.
Hormone replacement therapy (HRT), both estrogen/progestin combination therapy and estrogen alone therapy, has been found to fail to prevent mild cognitive impairment (memory loss) and to increase the risk of dementia in geriatric women 65 years and older. Administration of HRT should generally be avoided in women 65 years of age and older, and HRT should not be used to prevent or treat dementia or preserve cognition (memory). Overall risk vs. benefit should be considered along with the goals of use of HRT for the individual patient when considering whether to continue HRT in a geriatric woman over 65 years of age. According to the Beers Criteria, oral, topical patch, or other systemic forms of estrogens (with or without progestins), are considered potentially inappropriate medications (PIMs) for geriatric patients and should be avoided due to evidence of carcinogenic potential (i.e., breast and endometrium) and lack of cardiovascular or cognitive protective effects in older women. Additionally, avoid use of oral or transdermal estrogen to treat urinary incontinence due to lack of efficacy. Vaginal estrogens are acceptable for the management of dyspareunia, recurrent lower urinary tract infections, and other vaginal/vulvar symptoms.
Estradiol is available in many topical dosage forms, including transdermal systems, topical emulsions, topical gels, and topical sprays. Estradiol topical gels and sprays are alcohol-based and thus are potentially flammable. Patients should be advised to avoid fire, flame, or smoking until the gel or spray has dried after application. Patients should be advised to carefully read and follow administration directions in order to avoid accidental exposure of estradiol hormone to others, including children and pets. In July 2010, the FDA released an advisory notice warning of inadvertent exposure to Evamist brand topical spray through skin contact with patients using the product. Adverse events including premature puberty, nipple swelling and breast development in females, and breast enlargement in males were reported. Reports of pet exposure were also reported; signs of exposure in pets may include mammary/nipple enlargement and vulvar swelling. To reduce the risk of exposure, patients applying this product should avoid contact of the treated area to children and pets. If direct contact cannot be avoided, the treated area should be covered with a garment. If inadvertent exposure occurs, the skin of the child or pet should be washed immediately with soap and water. Patients should be aware that if a child under their care shows signs of exposure including breast development or other sexual changes, the child should be examined by a healthcare professional. Once exposure is removed, symptoms of exposure should resolve.
Common Brand Names
Alora, Climara, Delestrogen, Depo-Estradiol, Divigel, DOTTI, Elestrin, Estrace, Estraderm, Estring, EstroGel, Evamist, FemPatch, Femring, Gynodiol, Gynogen LA, Imvexxy, LYLLANA, Menostar, Minivelle, Vagifem, Vivelle, Vivelle-Dot, Yuvafem
Dea Class
Rx
Description
Estradiol is the principal human estrogen
Multiple dosage forms are available: oral, topical, transdermal, vaginal, and parenteral
Used primarily to treat vasomotor and genitourinary symptoms associated with natural or surgical menopause, to prevent osteoporosis, for female hypogonadism and other conditions associated with estrogen deficiency
Dosage And Indications
0.5 mg to 2 mg PO once daily. Usual initial dose: 1 or 2 mg PO once daily. Less than 1 mg/day PO may suffice for vaginal/vulvar symptoms only; however, in such patients, consider vaginal therapy alone. Use the lowest effective dose. Administration should be cyclic (e.g., 3 weeks on and 1 week off). In women with an intact uterus, estrogen may be given cyclically or combined with a progestin for at least 10 to 14 days per month to minimize the risk of endometrial hyperplasia. However, taking estrogens with progestins may have additional health risks for the patient; risk must be determined individually. Continuous, unopposed estrogen administration is acceptable in women without a uterus. Reassess periodically as clinically indicated to determine if hormone therapy is still appropriate. The North American Menopause Society (NAMS) Guidelines support the initiation of hormone replacement therapy (HRT) around the time of menopause if no contraindications to use exist and use is acceptable to the individual patient, as hormone therapy is the most effective treatment for vasomotor and genitourinary symptoms and has been shown to prevent bone loss and fracture. Early initiation of HRT and continuation of use at until the median age of menopause (52 years) is recommended in women with premature natural or surgically induced menopause. HRT for vasomotor symptoms and/or increased risk for bone loss around the time of menopause may be considered in those women aged younger than 60 years or who are fewer than 10 years from menopause onset. For women who initiate HRT more than 10 or 20 years from menopause onset or are aged 60 years or older, the benefit-risk ratio is less favorable due to known risks for HRT (e.g., stroke, myocardial infarction, venous thromboembolism, dementia, urinary incontinence), and guidelines generally recommend against use in these women. Decisions regarding whether to continue systemic HRT in women aged older than 60 years should be made on an individual basis for quality of life, persistent vasomotor symptoms, or prevention of bone loss and fracture, with consideration given to alternative treatments for prevention of bone loss and other health issues.
1 patch (delivering 0.025 mg, 0.0375 mg, 0.05 mg, 0.075 mg, or 0.1 mg per day); replace twice weekly (every 3 to 4 days). Usual initial dose is 0.0375 mg/day or 0.05 mg/day; see individual patch recommendations. Use the lowest effective dose. A switch between transdermal system types can be done immediately; if on oral therapy, begin a week after oral treatment stopped or when symptoms reappear. Generally, when used in a postmenopausal woman with an intact uterus, a progestin should also be considered to reduce the risk of endometrial hyperplasia. Reassess periodically as clinically indicated to determine if hormone therapy is still appropriate. The North American Menopause Society (NAMS) Guidelines support the initiation of hormone replacement therapy (HRT) around the time of menopause if no contraindications to use exist and use is acceptable to the individual patient, as hormone therapy is the most effective treatment for vasomotor and genitourinary symptoms and has been shown to prevent bone loss and fracture. Early initiation of HRT and continuation of use at until the median age of menopause (52 years) is recommended in women with premature natural or surgically induced menopause. HRT for vasomotor symptoms and/or increased risk for bone loss around the time of menopause may be considered in those women aged younger than 60 years or who are fewer than 10 years from menopause onset. For women who initiate HRT more than 10 or 20 years from menopause onset or are aged 60 years or older, the benefit-risk ratio is less favorable due to known risks for HRT (e.g., stroke, myocardial infarction, venous thromboembolism, dementia, urinary incontinence), and guidelines generally recommend against use in these women. Decisions regarding whether to continue systemic HRT in women aged older than 60 years should be made on an individual basis for quality of life, persistent vasomotor symptoms, or prevention of bone loss and fracture, with consideration given to alternative treatments for prevention of bone loss and other health issues.
1 patch (delivering 0.025 mg, 0.0375 mg, 0.05 mg, 0.06 mg, 0.075 mg, or 0.1 mg per day) applied and replaced every 7 days. Usual initial dose is 0.0375 mg/day or 0.05 mg/day. Use lowest effective dose. A switch between transdermal system types can be done immediately; if on oral therapy, begin 1 week after oral treatment is discontinued or when symptoms reappear. Generally, when used in a postmenopausal woman with an intact uterus, a progestin should also be considered to reduce the risk of endometrial hyperplasia. Reassess periodically as clinically indicated to determine if hormone therapy is still appropriate. The North American Menopause Society (NAMS) Guidelines support the initiation of hormone replacement therapy (HRT) around the time of menopause if no contraindications to use exist and use is acceptable to the individual patient, as hormone therapy is the most effective treatment for vasomotor and genitourinary symptoms and has been shown to prevent bone loss and fracture. Early initiation of HRT and continuation of use at until the median age of menopause (52 years) is recommended in women with premature natural or surgically induced menopause. HRT for vasomotor symptoms and/or increased risk for bone loss around the time of menopause may be considered in those women aged younger than 60 years or who are fewer than 10 years from menopause onset. For women who initiate HRT more than 10 or 20 years from menopause onset or are aged 60 years or older, the benefit-risk ratio is less favorable due to known risks for HRT (e.g., stroke, myocardial infarction, venous thromboembolism, dementia, urinary incontinence), and guidelines generally recommend against use in these women. Decisions regarding whether to continue systemic HRT in women aged older than 60 years should be made on an individual basis for quality of life, persistent vasomotor symptoms, or prevention of bone loss and fracture, with consideration given to alternative treatments for prevention of bone loss and other health issues.
Initially, one 0.25 gram/day packet once daily; apply contents of 1 unit-dose packet topically to upper thigh once daily; alternate the right and left upper thigh each day. Adjust dose to individual response; use lowest effective dose. Unit-dose packets are available as 0.25 gram/day, 0.5 gram/day, 0.75 gram/day, 1 gram/day, and 1.25 gram/day. Max: 1.25 grams/day. Generally, when used in a postmenopausal woman with an intact uterus, consider a progestin to reduce the risk of endometrial hyperplasia. Reassess periodically as clinically indicated to determine if hormone therapy is still appropriate. GUIDELINES: The North American Menopause Society (NAMS) Guidelines support the initiation of hormone replacement therapy (HRT) around the time of menopause if no contraindications to use exist and use is acceptable to the individual patient, as hormone therapy is the most effective treatment for vasomotor and genitourinary symptoms and has been shown to prevent bone loss and fracture. Early initiation of HRT and continuation of use at until the median age of menopause (52 years) is recommended in women with premature natural or surgically induced menopause. HRT for vasomotor symptoms and/or increased risk for bone loss around the time of menopause may be considered in those women aged younger than 60 years or who are fewer than 10 years from menopause onset. For women who initiate HRT more than 10 or 20 years from menopause onset or are aged 60 years or older, the benefit-risk ratio is less favorable due to known risks for HRT (e.g., stroke, myocardial infarction, venous thromboembolism, dementia, urinary incontinence), and guidelines generally recommend against use in these women. Decisions regarding whether to continue systemic HRT in women aged older than 60 years should be made on an individual basis for quality of life, persistent vasomotor symptoms, or prevention of bone loss and fracture, with consideration given to alternative treatments for prevention of bone loss and other health issues.
Initially, apply 1 actuation of the pump (0.87 grams estradiol gel containing 0.52 mg of estradiol and delivering 12.5 mcg/day of estradiol systemically) once daily to the upper arm. Adjust based upon the individual patient response. Usual dose range is 1 to 2 pump actuations per day. Use the lowest effective dose. Generally, when used in a postmenopausal woman with an intact uterus, a progestin should also be considered to reduce the risk of endometrial hyperplasia. Reassess periodically as clinically indicated to determine if hormone therapy is still appropriate. The North American Menopause Society (NAMS) Guidelines support the initiation of hormone replacement therapy (HRT) around the time of menopause if no contraindications to use exist and use is acceptable to the individual patient, as hormone therapy is the most effective treatment for vasomotor and genitourinary symptoms and has been shown to prevent bone loss and fracture. Early initiation of HRT and continuation of use at until the median age of menopause (52 years) is recommended in women with premature natural or surgically induced menopause. HRT for vasomotor symptoms and/or increased risk for bone loss around the time of menopause may be considered in those women aged younger than 60 years or who are fewer than 10 years from menopause onset. For women who initiate HRT more than 10 or 20 years from menopause onset or are aged 60 years or older, the benefit-risk ratio is less favorable due to known risks for HRT (e.g., stroke, myocardial infarction, venous thromboembolism, dementia, urinary incontinence), and guidelines generally recommend against use in these women. Decisions regarding whether to continue systemic HRT in women aged older than 60 years should be made on an individual basis for quality of life, persistent vasomotor symptoms, or prevention of bone loss and fracture, with consideration given to alternative treatments for prevention of bone loss and other health issues.
Apply 1 complete actuation of the pump (1.25 grams of 0.06% estradiol gel that contains 0.75 mg of estradiol) topically to 1 arm once daily; applied in a thin layer over the entire arm on the inside and outside from wrist to shoulder. Generally, when used in a postmenopausal woman with an intact uterus, a progestin should also be considered to reduce the risk of endometrial hyperplasia. Reevaluate periodically as clinically indicated to determine if use is still appropriate. The North American Menopause Society (NAMS) Guidelines support the initiation of hormone replacement therapy (HRT) around the time of menopause if no contraindications to use exist and use is acceptable to the individual patient, as hormone therapy is the most effective treatment for vasomotor and genitourinary symptoms and has been shown to prevent bone loss and fracture. Early initiation of HRT and continuation of use at until the median age of menopause (52 years) is recommended in women with premature natural or surgically induced menopause. HRT for vasomotor symptoms and/or increased risk for bone loss around the time of menopause may be considered in those women aged younger than 60 years or who are fewer than 10 years from menopause onset. For women who initiate HRT more than 10 or 20 years from menopause onset or are aged 60 years or older, the benefit-risk ratio is less favorable due to known risks for HRT (e.g., stroke, myocardial infarction, venous thromboembolism, dementia, urinary incontinence), and guidelines generally recommend against use in these women. Decisions regarding whether to continue systemic HRT in women aged older than 60 years should be made on an individual basis for quality of life, persistent vasomotor symptoms, or prevention of bone loss and fracture, with consideration given to alternative treatments for prevention of bone loss and other health issues.
Initially, apply 1 spray (pump actuation, which supplies 1.53 mg estradiol) to the inner surface of the forearm once daily in the morning; if needed and based on clinical response, the dose may be increased to 2 to 3 sprays once daily in the morning. Each spray should be administered to adjacent, but non-overlapping sections of the inner surface of the forearm, starting near the elbow. Use lowest effective dose. Generally, when used in a postmenopausal woman with an intact uterus, a progestin should also be considered to reduce the risk of endometrial hyperplasia. Reassess periodically as clinically indicated to determine if hormone therapy is still appropriate. The North American Menopause Society (NAMS) Guidelines support the initiation of hormone replacement therapy (HRT) around the time of menopause if no contraindications to use exist and use is acceptable to the individual patient, as hormone therapy is the most effective treatment for vasomotor and genitourinary symptoms and has been shown to prevent bone loss and fracture. Early initiation of HRT and continuation of use at until the median age of menopause (52 years) is recommended in women with premature natural or surgically induced menopause. HRT for vasomotor symptoms and/or increased risk for bone loss around the time of menopause may be considered in those women aged younger than 60 years or who are fewer than 10 years from menopause onset. For women who initiate HRT more than 10 or 20 years from menopause onset or are aged 60 years or older, the benefit-risk ratio is less favorable due to known risks for HRT (e.g., stroke, myocardial infarction, venous thromboembolism, dementia, urinary incontinence), and guidelines generally recommend against use in these women. Decisions regarding whether to continue systemic HRT in women aged older than 60 years should be made on an individual basis for quality of life, persistent vasomotor symptoms, or prevention of bone loss and fracture, with consideration given to alternative treatments for prevention of bone loss and other health issues.
Insert 1 vaginal ring (delivering either 50 or 100 mcg per 24 hours) vaginally into the upper third of the vaginal vault; keep in place continuously for 3 months, then remove. If appropriate, insert a new ring. Use lowest effective dose. While Femring may be used to treat isolated genitourinary symptoms, consider other vaginal products of lower estradiol dosage first. Generally, when used in a postmenopausal woman with an intact uterus, a progestin should also be considered to reduce the risk of endometrial hyperplasia. Reassess periodically as clinically indicated to determine if hormone therapy is still appropriate. The North American Menopause Society (NAMS) Guidelines support the initiation of hormone replacement therapy (HRT) around the time of menopause if no contraindications to use exist and use is acceptable to the individual patient, as hormone therapy is the most effective treatment for vasomotor and genitourinary symptoms and has been shown to prevent bone loss and fracture. Early initiation of HRT and continuation of use at until the median age of menopause (52 years) is recommended in women with premature natural or surgically induced menopause. HRT for vasomotor symptoms and/or increased risk for bone loss around the time of menopause may be considered in those women aged younger than 60 years or who are fewer than 10 years from menopause onset. For women who initiate HRT more than 10 or 20 years from menopause onset or are aged 60 years or older, the benefit-risk ratio is less favorable due to known risks for HRT (e.g., stroke, myocardial infarction, venous thromboembolism, dementia, urinary incontinence), and guidelines generally recommend against use in these women. Decisions regarding whether to continue systemic HRT in women aged older than 60 years should be made on an individual basis for quality of life, persistent vasomotor symptoms, or prevention of bone loss and fracture, with consideration given to alternative treatments for prevention of bone loss and other health issues.
Usual dosage is 10 to 20 mg IM once every 4 weeks.
Usual dosage is 1 mg to 5 mg IM once every 3 to 4 weeks as necessary.
Initially, 2 grams to 4 grams (200 mcg to 400 mcg of estradiol) vaginally once daily for 1 to 2 weeks; then gradually reduce over 1 to 2 weeks. Usual maintenance: 1 gram (estradiol 100 mcg) vaginally 1 to 3 times per week. Treatment is cyclic (3 weeks on, then 1 week off). When isolated genitourinary symptoms caused by menopause are present, treatment guidelines recommend low-dose vaginal estrogens over systemic estrogens as first-line therapy.
Insert 1 vaginal system ring (delivering estradiol 7.5 mcg/24 hours) deep into the upper third of the vaginal vault. Keep in place continuously for 3 months, then remove. If appropriate, insert a new system. Estring vaginal system is not effective at treating vasomotor symptoms. Generally, when used in a postmenopausal woman with an intact uterus, a progestin should also be considered to reduce the risk of endometrial hyperplasia. Reassess periodically as clinically indicated to determine if hormone therapy is still appropriate. When isolated genitourinary symptoms caused by menopause are present, treatment guidelines recommend low-dose vaginal estrogens over systemic estrogens as first-line therapy.
Insert 1 tablet (10 mcg) vaginally once daily for 2 weeks into the upper third of the vaginal vault using the supplied applicator. After 2 weeks, give a maintenance dose of 1 tablet vaginally twice weekly (e.g., every Tuesday and Friday). Generally, when used in a postmenopausal woman with an intact uterus, a progestin should also be considered to reduce the risk of endometrial hyperplasia. Reassess periodically as clinically indicated to determine if hormone therapy is still appropriate. While doses as high as 25 mcg/dose have been used, the 25 mcg dosage strength is no longer marketed. When isolated genitourinary symptoms caused by menopause are present, treatment guidelines recommend low-dose vaginal estrogens over systemic estrogens as first-line therapy.
Place 1 insert vaginally once daily at approximately the same time of day for 2 weeks, followed by 1 insert twice weekly (e.g., Monday and Thursday). Generally, initiate with the 4 mcg insert. Max: 10 mcg/dose vaginally. Use the lowest effective dose. Generally, when used in a postmenopausal woman with an intact uterus, a progestin should also be considered to reduce the risk of endometrial hyperplasia. Reassess periodically as clinically indicated to determine if hormone therapy is still appropriate. When isolated genitourinary symptoms caused by menopause are present, treatment guidelines recommend low-dose vaginal estrogens over systemic estrogens as first-line therapy.
Dosage range is 0.5 mg to 2 mg PO once daily. Only consider for women at significant risk for osteoporosis and for whom non-estrogen medications are not considered to be appropriate. Use the lowest effective dose. Continuous unopposed estrogen administration is acceptable in those without a uterus. In women with an intact uterus, consider a progestin to reduce the risk of endometrial hyperplasia. Reassess the need and appropriateness of hormone therapy at 3 to 6-month intervals. In postmenopausal women with low bone mineral density, there is good evidence that standard-dose estrogen therapy reduces the risk for osteoporotic fractures, including hip, spine, and all non-spine fractures; however, estrogens are not generally recommended as a first-line prevention tactic due to the known risks of estrogen treatment (e.g., thromboembolism, cerebrovascular events) relative to other treatments. Women who need osteoporosis prophylaxis who are younger than 60 years or who are within 10 years of menopause onset may be given consideration for estrogen therapy, based on individual assessment of risk vs. benefit. Beyond the age of 60 years, other agents are preferred due to the known risks associated with hormonal therapy. Consider each woman's net balance of individual benefits and harms. If estrogen with or without a progestin is prescribed, use the lowest effective dose for the shortest duration that is consistent with an individual's treatment goals and risks. Estrogen therapy should not be used in patients with known osteoporosis; the risks outweigh the moderate benefit seen in postmenopausal women with established osteoporosis.
Initially, 1 patch (0.025 mg/day) applied transdermally applied twice weekly (every 3 to 4 days) as directed in product label. For women at significant risk of osteoporosis after careful consideration of non-estrogen medications. May adjust dose to therapeutic goals. Use the lowest effective dose. Continuous unopposed estrogen administration is acceptable in those without a uterus. For women with an intact uterus, consider a progestin to reduce the risk of endometrial hyperplasia. Alternatively, a cyclic schedule of 3 weeks of estradiol and 1 week off drug may be used. Reassess the need and appropriateness of hormone therapy at 3 to 6-month intervals. In postmenopausal women with low bone mineral density, there is good evidence that standard-dose estrogen therapy reduces the risk for osteoporotic fractures, including hip, spine, and all non-spine fractures; however, estrogens are not generally recommended as a first-line prevention tactic due to the known risks of estrogen treatment (e.g., thromboembolism, cerebrovascular events) relative to other treatments. Women who need osteoporosis prophylaxis who are younger than 60 years or who are within 10 years of menopause onset may be given consideration for estrogen therapy, based on individual assessment of risk vs. benefit. Beyond the age of 60 years, other agents are preferred due to the known risks associated with hormonal therapy. Consider each woman's net balance of individual benefits and harms. If estrogen with or without a progestin is prescribed, use the lowest effective dose for the shortest duration that is consistent with an individual's treatment goals and risks. Estrogen therapy should not be used in patients with known osteoporosis; the risks outweigh the moderate benefit seen in postmenopausal women with established osteoporosis.
Initially, 1 patch (14 mcg/day or 0.025 mg/day, depending on brand chosen) applied transdermally once weekly (every 7 days) as directed in specific product label. Menostar is only indicated for osteoporosis prophylaxis and only comes in 14 mcg/day strength. For women at significant risk of osteoporosis after careful consideration of non-estrogen medications. May adjust dose to achieve therapeutic goals. Use the lowest effective dose. Continuous unopposed estrogen is acceptable in those without a uterus. Consider a progestin to reduce the risk of endometrial hyperplasia in women with an intact uterus. Reassess the need and appropriateness of hormone therapy periodically. In postmenopausal women with low bone mineral density, there is good evidence that standard-dose estrogen therapy reduces the risk for osteoporotic fractures, including hip, spine, and all non-spine fractures; however, estrogens are not generally recommended as a first-line prevention tactic due to the known risks of estrogen treatment (e.g., thromboembolism, cerebrovascular events) relative to other treatments. Women who need osteoporosis prophylaxis who are younger than 60 years or who are within 10 years of menopause onset may be given consideration for estrogen therapy, based on individual assessment of risk vs. benefit. Beyond the age of 60 years, other agents are preferred due to the known risks associated with hormonal therapy. Consider each woman's net balance of individual benefits and harms. If estrogen with or without a progestin is prescribed, use the lowest effective dose for the shortest duration that is consistent with an individual's treatment goals and risks. Estrogen therapy should not be used in patients with known osteoporosis; the risks outweigh the moderate benefit seen in postmenopausal women with established osteoporosis.
1 to 2 mg PO 3 times daily. The effectiveness of therapy can be judged by specific prostate antigen (PSA) determinations as well as by symptomatic improvement of the patient.
30 mg IM administered every 1 to 2 weeks. Efficacy is evaluated according to patient clinical response and serial prostate specific antigen (PSA) levels. A response to estrogen treatment, if it will occur, will usually be noted within 3 months. Continued until a significant advancement of the disease occurs.
10 mg PO 3 times per day for at least 3 months.
0.5 mg to 2 mg PO once daily continuously; or in cycles of 21 days on and 7 days off. For hypogonadism, women are treated for the period of reproductive life until the time of natural menopause, which maintains feminization and prevents bone loss.
Begin at a low dose (e.g., 0.25 mg PO once daily); dose is then increased over time to meet the goals of the individual patient based on age, sexual development, bone age and height, and other treatment goals. Replacement is usually begun at one-tenth to one-eighth of the usual adult dose and then increased to the usual adult dose gradually over a period of about 2 years. Usual range: 0.5 to 2 mg PO once daily. Use lowest effective dose. To allow for normal breast and uterine development, guidelines advise the delay of the addition of progestin (given for 1 week per month) at least 1 to 2 years after starting estrogen or when breakthrough bleeding occurs. Treatment continues for reproductive life.
1 patch (delivering 0.025 mg, 0.0375 mg, 0.05 mg, 0.075 mg, or 0.1 mg per day) replaced twice weekly (every 3 to 4 days); start therapy with 0.025 mg/day dose and adjust as needed. Apply transdermally as directed; replace patch twice weekly (every 3 to 4 days); give cyclically or continuously. Use lowest effective dose. For hypogonadism, women are treated for the period of reproductive life until the time of natural menopause, which maintains feminization and prevents bone loss.
Begin with a low dose patch (e.g., 14 mcg/day estradiol delivery) applied twice-weekly (every 3 to 4 days). Dose is increased over time to meet the goals of the individual patient based on age, sexual development, bone age and height, and other treatment goals. Gradually increase dose over about 2 years (e.g. 25, 37.5, 50, 75, 100 mcg/day estradiol delivered via patch) to adult dose for female hypogonadism. Use lowest effective dose. Pubertal induction can be accomplished with transdermal estradiol at an off-label dose as low as 3.1 to 6.2 mcg/24 hours; however, such dosage forms are not commercially available. To allow for normal breast and uterine development, guidelines advise the delay of the addition of progestin (given for 1 week per month) at least 1 to 2 years after starting estrogen or when breakthrough bleeding occurs. Treatment continues for reproductive life.
Initially, 0.025 mg/day patch applied to the skin once weekly. Adjust as needed, dose is 1 patch (delivering 0.025 mg, 0.0375 mg, 0.05 mg, 0.06 mg, 0.075 mg, or 0.1 mg per day) on trunk or buttocks and replaced every 7 days; give cyclically or continuously. Use the lowest effective dose. For hypogonadism, women are treated for the period of reproductive life until the time of natural menopause, which maintains feminization and prevents bone loss.
Begin with a low dose patch (e.g., 14 mcg/day estradiol delivery) applied weekly (every 7 days). Dose is then increased over time to meet the goals of the individual patient based on age, sexual development, bone age and height, and other treatment goals. Gradually increase dose over about 2 years (e.g. 25, 37.5, 50, 60, 75, 100 mcg/day estradiol delivered via patch) to adult dose for female hypogonadism. Use lowest effective dose. Pubertal induction can be accomplished with transdermal estradiol at an off-label dose as low as 3.1 to 6.2 mcg/day; however, such dosage forms are not commercially available. To allow for normal breast and uterine development, guidelines advise the delay of the addition of progestin (given for 1 week per month) at least 1 to 2 years after starting estrogen or when breakthrough bleeding occurs. Treatment continues for reproductive life.
For female hypogonadism, the usual dose is estradiol cypionate 1.5 to 2 mg IM every 4 weeks. For women with hypogonadism, estrogen treatment continues for reproductive life up until natural menopausal age to maintain feminization and prevent bone loss, but choices of treatment often change from IM depot dosing to other dosage forms.
Begin with a low dose (e.g., 0.2 mg estradiol cypionate) IM every 4 weeks. Dose is then increased over time to meet the goals of the individual patient based on age, sexual development, bone age and height, and other treatment goals. Gradually increase dose over about 2 years to usual adult maintenance dose for female hypogonadism, i.e., estradiol cypionate 1.5 mg to 2 mg IM every 4 weeks. Use lowest effective dose. To allow for normal breast and uterine development, guidelines advise the delay of the addition of progestin (given for 1 week per month) at least 1 to 2 years after starting estrogen or when breakthrough bleeding occurs. Treatment continues for reproductive life, but choices of treatment often change from IM depot dosing to other dosage forms as the adolescent matures.
The usual dose is estradiol valerate 10 mg to 20 mg IM every 4 weeks. For women with hypogonadism, estrogen treatment continues for reproductive life up until the time of menopause to maintain feminization and prevent bone loss, but choices of treatment often change from IM depot dosing to other dosage forms.
Not commonly used. Begin with a low dose (e.g., 2.5 mg estradiol valerate) IM every 4 weeks. Dose is then increased over time to meet the goals of the individual patient based on age, sexual development, bone age and height, and other treatment goals. Gradually increase dose over about 2 years to usual adult maintenance dose for female hypogonadism, i.e, estradiol valerate 10 mg to 20 mg IM every 4 weeks. Use lowest effective dose. To allow for normal breast and uterine development, guidelines advise the delay of the addition of progestin (given for 1 week per month) at least 1 to 2 years after starting estrogen or when breakthrough bleeding occurs. Treatment continues for reproductive life, but choices of treatment often change from intramuscular depot dosing to other dosage forms as the adolescent matures.
†Indicates off-label use
Dosing Considerations
Estradiol is contraindicated in the presence of jaundice or known hepatic impairment or disease of any type.
Renal ImpairmentSpecific guidelines for dosage adjustments in renal impairment patients are not available; it appears that no dosage adjustments are needed.
Drug Interactions
Acarbose: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Acebutolol: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Albuterol; Budesonide: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Aliskiren; Hydrochlorothiazide, HCTZ: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Alogliptin; Metformin: (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Alpha-blockers: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored to confirm that the desired antihypertensive effect is being obtained.
Alpha-glucosidase Inhibitors: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Amiloride: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Amiloride; Hydrochlorothiazide, HCTZ: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Amlodipine: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Amlodipine; Atorvastatin: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Amlodipine; Benazepril: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Amlodipine; Celecoxib: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Amlodipine; Olmesartan: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Amlodipine; Valsartan: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness. (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Amobarbital: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination.
Amoxicillin; Clarithromycin; Omeprazole: (Minor) Estrogens are partially metabolized by CYP3A4. Drugs that inhibit CYP3A4 such as clarithromycin may increase plasma concentrations of estrogens and cause estrogen-related side effects such as nausea and breast tenderness. Patients receiving estrogens should be monitored for an increase in adverse events. Also, practitioners should be alert to the possibility that breakthrough bleeding or contraceptive failure may occur with clarithromycin.
Anastrozole: (Major) Avoid concomitant use of estrogens and anastrozole. Estrogen-containing therapies may reduce the effectiveness of aromatase inhibitors, such as anastrozole.
Angiotensin II receptor antagonists: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Angiotensin-converting enzyme inhibitors: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Apalutamide: (Major) Women taking both estrogens and apalutamide should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed apalutamide. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of apalutamide. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on apalutamide, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and apalutamide is a strong CYP3A4 inducer. Concurrent administration may increase estrogen elimination.
Aprepitant, Fosaprepitant: (Major) If aprepitant, fosaprepitant is coadministered with hormonal contraceptives, including hormonal contraceptive devices (skin patches, implants, and hormonal IUDs), use an alternative or back-up non-hormonal method of contraception (e.g., condoms, spermicides) during treatment and for at least 1 month following the last dose of aprepitant, fosaprepitant. The efficacy of estradiol may be reduced when coadministered with aprepitant, fosaprepitant and for 28 days after the last dose. The exact mechanism for this interaction has not been described. Ethinyl estradiol is a CYP3A4 substrate and aprepitant, fosaprepitant is a CYP3A4 inducer; however, aprepitant, fosaprepitant is also a dose-dependent weak-to-moderate CYP3A4 inhibitor. When administered as an oral 3-day regimen (125mg/80mg/80mg) in combination with ondansetron and dexamethasone, aprepitant decreased trough concentrations of ethinyl estradiol and norethindrone by up to 64% for 3 weeks post-treatment. When ethinyl estradiol and norgestimate were administered on days 1 to 21 and aprepitant (40mg) give as a single dose on day 8, the AUC of ethinyl estradiol decreased by 4% on day 8 and by 29% on day 12; the AUC of norelgestromin increased by 18% on day 8, and decreased by 10% on day 12. Trough concentrations of both ethinyl estradiol and norelgestromin were generally lower after coadministration of aprepitant (40mg) on day 8 compared to administration without aprepitant. Specific studies have not been done with other hormonal contraceptives (e.g., progestins, non-oral combination contraceptives), an alternative or additional non-hormonal method of birth control during treatment and for 28 days after treatment is prudent to avoid potential for contraceptive failure. Additionally, although not specifically studied, because estrogens are CYP3A4 substrates, the efficacy of estrogens or progestins when used for hormone replacement may also be reduced. The clinical significance of this is not known since aprepitant, fosaprepitant is only used intermittently.
Armodafinil: (Major) Armodafinil may cause failure of oral contraceptives or hormonal contraceptive-containing implants or devices due to induction of CYP3A4 isoenzyme metabolism of estradiol, ethinyl estradiol and/or the progestins in these products. Female patients of child-bearing potential should be advised to discuss contraceptive options with their health care provider to prevent unintended pregnancies. An alternative method or an additional method of contraception should be utilized during armodafinil therapy and continued for one month after armodafinil discontinuation.
Aspirin, ASA; Butalbital; Caffeine: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination.
Atazanavir: (Moderate) Atazanavir has been shown to decrease the metabolism of ethinyl estradiol; a similar interaction may occur with other estrogens used for hormone replacement therapy. Patients should be instructed to report any estrogen- related adverse events.
Atazanavir; Cobicistat: (Moderate) Atazanavir has been shown to decrease the metabolism of ethinyl estradiol; a similar interaction may occur with other estrogens used for hormone replacement therapy. Patients should be instructed to report any estrogen- related adverse events.
Atenolol: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Atenolol; Chlorthalidone: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness. (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Azelastine; Fluticasone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Azilsartan: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Azilsartan; Chlorthalidone: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness. (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Barbiturates: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination.
Beclomethasone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Belzutifan: (Major) Women taking both estrogens and belzutifan should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed belzutifan. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of belzutifan. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on belzutifan, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and belzutifan is a weak CYP3A4 inducer. Concurrent administration may increase estrogen elimination.
Benazepril: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Benazepril; Hydrochlorothiazide, HCTZ: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness. (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Beta-blockers: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Betamethasone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Betaxolol: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Bexarotene: (Major) Women taking both estrogens and bexarotene should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed bexarotene. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of bexarotene. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on bexarotene, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and bexarotene is a moderate CYP3A4 inducer. Concurrent administration may increase estrogen elimination.
Bismuth Subcitrate Potassium; Metronidazole; Tetracycline: (Moderate) It was previously thought that antibiotics may decrease the effectiveness of oral contraceptives containing estrogens due to stimulation of estrogen metabolism or a reduction in estrogen enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with oral contraceptives (OCs) and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma levels of oral contraceptives. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review of the subject concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) It was previously thought that antibiotics may decrease the effectiveness of oral contraceptives containing estrogens due to stimulation of estrogen metabolism or a reduction in estrogen enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with oral contraceptives (OCs) and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma levels of oral contraceptives. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review of the subject concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Bisoprolol: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Bisoprolol; Hydrochlorothiazide, HCTZ: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness. (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Bosentan: (Major) Hormonal contraceptives should not be used as the sole method to prevent pregnancy in patients receiving bosentan. There is a possibility of contraceptive failure when bosentan is coadministered with products containing estrogens and/or progestins. Bosentan is teratogenic. To prevent pregnancy, females of reproductive potential must use two acceptable contraception methods during treatment and for one month after discontinuation of bosentan therapy. The patient may choose one highly effective contraceptive form, including an intrauterine device (IUD) or tubal sterilization, a combination of a hormonal contraceptive with a barrier method, or two barrier methods. If a male partner's vasectomy is chosen as a method of contraception, a hormonal or barrier method must still be used by the female patient. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on bosentan, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and bosentan is a moderate CYP3A4 inducer. Concurrent administration may increase estrogen elimination.
Brimonidine; Timolol: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Bromocriptine: (Minor) Bromocriptine is used to restore ovulation and ovarian function in amenorrheic women. Estrogens and progestins can cause amenorrhea and, therefore, counteract the desired effects of bromocriptine. Concurrent use is not recommended; an alternate form of contraception is recommended during bromocriptine therapy.
Budesonide: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Budesonide; Formoterol: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Budesonide; Glycopyrrolate; Formoterol: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Bumetanide: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Butabarbital: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination.
Butalbital; Acetaminophen: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination.
Butalbital; Acetaminophen; Caffeine: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination.
Butalbital; Acetaminophen; Caffeine; Codeine: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination.
Butalbital; Aspirin; Caffeine; Codeine: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination.
Calcium: (Minor) Estrogens can increase calcium absorption. Use caution in patients predisposed to hypercalcemia or nephrolithiasis.
Canagliflozin: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Canagliflozin; Metformin: (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Candesartan: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Candesartan; Hydrochlorothiazide, HCTZ: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness. (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Captopril: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Captopril; Hydrochlorothiazide, HCTZ: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness. (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Carbamazepine: (Major) Advise patients taking estrogen hormones for contraception to consider an alternate or additional form of contraception, such as nonhormonal and/or barrier methods, during and for at least 1 month following discontinuation of carbamazepine. Higher-dose hormonal regimens containing a minimum of 30 mcg of ethinyl estradiol or equivalent may also be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on carbamazepine, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A substrates and carbamazepine is a strong CYP3A inducer. Concurrent administration may increase estrogen elimination.
Carteolol: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Carvedilol: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Cenobamate: (Major) Women taking both estrogens and cenobamate should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed cenobamate. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of cenobamate. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on cenobamate, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and cenobamate is a moderate CYP3A4 inducer. Concurrent administration may increase estrogen elimination.
Central-acting adrenergic agents: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Chenodiol: (Minor) Estrogens and combination hormonal oral contraceptives increase hepatic cholesterol secretion, and encourage cholesterol gallstone formation and hence may theoretically counteract the effectiveness of chenodiol.
Chloramphenicol: (Moderate) Estrogens are partially metabolized by CYP3A4. Drugs that inhibit CYP3A4 such as chloramphenicol may increase plasma concentrations of estrogens and cause estrogen-related side effects such as nausea and breast tenderness. Patients receiving estrogens should be monitored for an increase in adverse events. Also, anti-infectives that disrupt the normal GI flora, including chloramphenicol, may potentially decrease the effectiveness of estrogen-containing oral contraceptives.
Chlorothiazide: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Chlorthalidone: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Chlorthalidone; Clonidine: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Ciclesonide: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Clarithromycin: (Minor) Estrogens are partially metabolized by CYP3A4. Drugs that inhibit CYP3A4 such as clarithromycin may increase plasma concentrations of estrogens and cause estrogen-related side effects such as nausea and breast tenderness. Patients receiving estrogens should be monitored for an increase in adverse events. Also, practitioners should be alert to the possibility that breakthrough bleeding or contraceptive failure may occur with clarithromycin.
Clindamycin: (Moderate) Anti-infectives that disrupt the normal GI flora, clindamycin, lincomycin, may potentially decrease the effectiveness of estrogen-containing oral contraceptives. (Moderate) Anti-infectives which disrupt the normal GI flora, including lincomycin and clindamycin, may potentially decrease the effectiveness of estrogen containing oral contraceptives. Alternative or additional contraception may be advisable.
Clobazam: (Moderate) Concurrent administration of clobazam, a weak CYP3A4 inducer, with estrogens, may increase the elimination of these hormones. Patients may need to be monitored for reduced clinical effect while on clobazam, with dose adjustments made based on clinical efficacy.
Clonidine: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Conivaptan: (Minor) Estrogens are partially metabolized by CYP3A4. Drugs that inhibit CYP3A4 such as conivaptan may increase plasma concentrations of estrogens and cause estrogen-related side effects such as nausea and breast tenderness. Patients receiving estrogens should be monitored for an increase in adverse events.
Corticosteroids: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Cortisone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Cosyntropin: (Minor) Use cosyntropin cautiously in patients taking estrogens as these patients may exhibit abnormally high basal plasma cortisol concentrations and a decreased response to the test.
Cyclosporine: (Moderate) Estrogens in oral contraceptives or non-oral combination contraceptives may inhibit the metabolism of cyclosporine. Delayed cyclosporine clearance can increase cyclosporine concentrations. Additionally, estrogens are metabolized by CYP3A4; cyclosporine inhibits CYP3A4 and may increase estrogen concentrations and estrogen-related side effects. The patient's cyclosporine concentrations should be monitored closely; monitor clinical status including blood pressure and renal and hepatic function. Be alert for complaints of estrogen-related side effects (e.g., nausea, fluid retention, breast tenderness).
Danazol: (Minor) As danazol inhibits CYP3A4 activity, serum estrogen concentrations and estrogenic-related side effects (e.g., nausea, breast tenderness) may potentially increase when coadministered with either estrogens or combined hormonal contraceptives, including oral contraceptives.
Dantrolene: (Moderate) Concomitant use of dantrolene and estrogens may increase the risk of developing hepatotoxicity. While a definite drug interaction with dantrolene and estrogen therapy has not yet been established, caution should be observed if the two drugs are to be given concomitantly. Hepatotoxicity has occurred more often, for example, in women over 35 years of age receiving concomitant estrogen therapy.
Dapagliflozin: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Dapagliflozin; Metformin: (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Dapagliflozin; Saxagliptin: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Daratumumab; Hyaluronidase: (Minor) Estrogens, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
Darunavir: (Moderate) Darunavir is expected to increase the metabolism of estradiol. Women using estrogens for hormone replacement therapy should be monitored for signs of estrogen deficiency.
Darunavir; Cobicistat: (Moderate) Darunavir is expected to increase the metabolism of estradiol. Women using estrogens for hormone replacement therapy should be monitored for signs of estrogen deficiency.
Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Moderate) Darunavir is expected to increase the metabolism of estradiol. Women using estrogens for hormone replacement therapy should be monitored for signs of estrogen deficiency.
Deflazacort: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Delavirdine: (Minor) As delavirdine inhibits CYP3A4 activity, serum estrogen concentrations and estrogenic-related side effects (e.g., nausea, breast tenderness) may potentially increase when coadministered with either estrogens or combined hormonal contraceptives, including oral contraceptives.
Demeclocycline: (Moderate) It was previously thought that antibiotics may decrease the effectiveness of oral contraceptives containing estrogens due to stimulation of estrogen metabolism or a reduction in estrogen enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with oral contraceptives (OCs) and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma levels of oral contraceptives. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review of the subject concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Dexamethasone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Diltiazem: (Minor) As diltiazem inhibits CYP3A4 activity, serum estrogen concentrations and estrogenic-related side effects (e.g., nausea, breast tenderness) may potentially increase when coadministered with either estrogens or combined hormonal contraceptives.
Dipeptidyl Peptidase-4 Inhibitors: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Dorzolamide; Timolol: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Doxazosin: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored to confirm that the desired antihypertensive effect is being obtained.
Doxycycline: (Moderate) It was previously thought that antibiotics may decrease the effectiveness of oral contraceptives containing estrogens due to stimulation of estrogen metabolism or a reduction in estrogen enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with oral contraceptives (OCs) and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma levels of oral contraceptives. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review of the subject concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Efavirenz: (Moderate) Estrogens are CYP3A4 substrates and efavirenz is a CYP3A4 inducer; concomitant use of efavirenz-containing products (including efavirenz; emtricitabine; tenofovir) may decrease the clinical efficacy of estrogens. Patients should be monitored for signs of decreased clinical effects of estrogens (e.g., menopausal symptoms, breakthrough bleeding, reduced efficacy) if these drugs are used together.
Efavirenz; Emtricitabine; Tenofovir Disoproxil Fumarate: (Moderate) Estrogens are CYP3A4 substrates and efavirenz is a CYP3A4 inducer; concomitant use of efavirenz-containing products (including efavirenz; emtricitabine; tenofovir) may decrease the clinical efficacy of estrogens. Patients should be monitored for signs of decreased clinical effects of estrogens (e.g., menopausal symptoms, breakthrough bleeding, reduced efficacy) if these drugs are used together.
Efavirenz; Lamivudine; Tenofovir Disoproxil Fumarate: (Moderate) Estrogens are CYP3A4 substrates and efavirenz is a CYP3A4 inducer; concomitant use of efavirenz-containing products (including efavirenz; emtricitabine; tenofovir) may decrease the clinical efficacy of estrogens. Patients should be monitored for signs of decreased clinical effects of estrogens (e.g., menopausal symptoms, breakthrough bleeding, reduced efficacy) if these drugs are used together.
Efgartigimod Alfa; Hyaluronidase: (Minor) Estrogens, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
Elagolix: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Elagolix; Estradiol; Norethindrone acetate: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Empagliflozin: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Empagliflozin; Linagliptin: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Empagliflozin; Linagliptin; Metformin: (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Empagliflozin; Metformin: (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Enalapril, Enalaprilat: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Enalapril; Hydrochlorothiazide, HCTZ: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness. (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Enzalutamide: (Major) Women taking both estrogens and enzalutamide should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed enzalutamide. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of enzalutamide. Patients taking these hormones for other
Eprosartan: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Eprosartan; Hydrochlorothiazide, HCTZ: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness. (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Ertugliflozin: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Ertugliflozin; Metformin: (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Ertugliflozin; Sitagliptin: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Erythromycin: (Minor) As erythromycin inhibits CYP3A4 activity, serum estrogen concentrations and estrogenic-related side effects (e.g., nausea, breast tenderness) may potentially increase when coadministered with either estrogens or combined hormonal contraceptives.
Esmolol: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Ethacrynic Acid: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Etravirine: (Major) Women taking both estrogens and etravirine should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed etravirine. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of etravirine. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on etravirine, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and etravirine is a moderate CYP3A4 inducer. Concurrent administration may increase estrogen elimination.
Exemestane: (Major) Avoid concomitant use of estrogens and exemestane. Estrogen-containing therapies may reduce the effectiveness of aromatase inhibitors, such as exemestane.
Felbamate: (Major) Estrogens and progestins are both susceptible to drug interactions with hepatic enzyme inducing drugs. Estrogens are metabolized by CYP3A4. Anticonvulsants that stimulate the activity of this enzyme include: barbiturates (including primidone), carbamazepine, felbamate, oxcarbazepine, phenytoin or fosphenytoin (and possibly ethotoin), and topiramate. The anticonvulsants mentioned may cause oral contraceptive failure, especially when low-dose estrogen regimens (e.g., ethinyl estradiol is < 50 mcg/day) are used. Epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism and the higher risk for oral contraceptive failure. During oral contraceptive failure, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Women on OCs and enzyme-inducing anticonvulsant medications concurrently should report breakthrough bleeding to their prescribers. Oral contraceptive formulations containing higher dosages of ethinyl estradiol (i.e., 50 mcg ethinyl estradiol) may be needed to increase contraceptive efficacy. It may be prudent for some women who receive OCs concurrently with enzyme-inducing anticonvulsants to use an additional contraceptive method to protect against unwanted pregnancy. Higher dosages of oral contraceptives (e.g., ethinyl estradiol >= 50 mcg/day) or a second contraceptive method are typically suggested if women use an enzyme-inducing anti-epileptic drug or a barbiturate. Proper intake of folic acid should also be ensured.
Felodipine: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Fluconazole: (Minor) As fluconazole inhibits CYP3A4 activity, serum estrogen concentrations and estrogenic-related side effects (e.g., nausea, breast tenderness) may potentially increase when coadministered with either estrogens or combined hormonal contraceptives.
Fludrocortisone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Flunisolide: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Fluoxetine: (Minor) As fluoxetine inhibits CYP3A4 activity, serum estrogen concentrations and estrogenic-related side effects (e.g., nausea, breast tenderness) may potentially increase when coadministered with either estrogens or combined hormonal contraceptives.
Fluticasone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Fluticasone; Salmeterol: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Fluticasone; Umeclidinium; Vilanterol: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Fluticasone; Vilanterol: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Formoterol; Mometasone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Fosamprenavir: (Major) Avoid concurrent use of contraceptives and hormone replacement therapies (HRT) containing estrogens with fosamprenavir. Alternative methods of non-hormonal contraception are recommended. Concomitant use may decrease the efficacy of both the estrogen and fosamprenavir, which could lead to loss of virologic response and possible viral resistance. Additionally, there is an increased risk of transaminase elevations during concurrent use of estrogens and fosamprenavir boosted with ritonavir.
Fosinopril: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Fosinopril; Hydrochlorothiazide, HCTZ: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness. (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Fosphenytoin: (Major) Women taking both estrogens and phenytoin/fosphenytoin should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed phenytoin/fosphenytoin. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of phenytoin/fosphenytoin. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on phenytoin/fosphenytoin, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and phenytoin/fosphenytoin is a strong CYP3A4 inducer. Concurrent administration may increase estrogen elimination.
Furosemide: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Glipizide; Metformin: (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Glyburide; Metformin: (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Glycylcyclines: (Moderate) The manufacturer of tigecycline reports that concurrent use of antibacterial drugs with oral contraceptives may decrease the efficacy of oral contraceptives. However, the effect of tigecycline specifically on the efficacy of oral contraceptives is unknown. Alternative or additional contraception may be advisable.
Grapefruit juice: (Minor) Grapefruit juice has been reported to decrease the metabolism of some estrogens. Grapefruit juice contains a compound that inhibits CYP3A4 in enterocytes. Estrogen levels may increase by up to 30 percent with chronic use. The clinical significance of the interaction is unknown. It is possible that estrogen induced side effects could be increased in some individuals. Patients should be advised to not significantly alter their grapefruit juice ingestion.When chronically ingesting any CYP3A4 inhibitor ( > 30 days) with estrogens, adequate diagnostic measures, including directed or random endometrial sampling when indicated by signs and symptoms of endometrial hyperplasia, should be undertaken to rule out malignancy in postmenopausal women with undiagnosed persistent or recurring abnormal genital bleeding.
Griseofulvin: (Major) Women taking both estrogens and griseofulvin should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed griseofulvin. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of griseofulvin. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on griseofulvin, with dose adjustments made based on clinical efficacy. Concurrent administration may increase estrogen elimination; the mechanism by which griseofulvin enhances estrogen elimination has not been fully elucidated.
Guanfacine: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Hemin: (Moderate) Hemin works by inhibiting aminolevulinic acid synthetase. Estrogens increase the activity of this enzyme should not be used with hemin.
Hyaluronidase, Recombinant; Immune Globulin: (Minor) Estrogens, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
Hyaluronidase: (Minor) Estrogens, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
Hydralazine: (Minor) The administration of estrogens can increase fluid retention, which increases blood pressure, thereby antagonizing the antihypertensive effects of hydralazine.
Hydralazine; Isosorbide Dinitrate, ISDN: (Minor) The administration of estrogens can increase fluid retention, which increases blood pressure, thereby antagonizing the antihypertensive effects of hydralazine.
Hydrochlorothiazide, HCTZ: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Hydrochlorothiazide, HCTZ; Methyldopa: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Hydrochlorothiazide, HCTZ; Moexipril: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness. (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Hydrocortisone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Icosapent ethyl: (Moderate) Estrogens may exacerbate hypertriglyceridemia and should be discontinued or changed to alternate therapy, if possible, prior to initiation of icosapent ethyl.
Imatinib: (Minor) As imatinib inhibits CYP3A4 activity, serum estrogen concentrations and estrogenic-related side effects (e.g., nausea, breast tenderness) may potentially increase when coadministered with either estrogens or combined hormonal contraceptives.
Indinavir: (Moderate) Indinavir has been shown to decrease the metabolism of ethinyl estradiol; a similar interaction may occur with other estrogens used for hormone replacement therapy. Patients should be instructed to report any estrogen- related adverse events.
Insulins: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Irbesartan: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Irbesartan; Hydrochlorothiazide, HCTZ: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness. (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Isoniazid, INH; Pyrazinamide, PZA; Rifampin: (Major) Women taking both estrogens and rifamycins should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed rifamycins. In some cases, it may be advisable for patients to change to non-hormonal methods of birth control during rifamycin therapy. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of rifamycins. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on rifamycins, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and rifamycins are a CYP3A4 inducers. Concurrent administration may increase estrogen elimination.
Isoniazid, INH; Rifampin: (Major) Women taking both estrogens and rifamycins should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed rifamycins. In some cases, it may be advisable for patients to change to non-hormonal methods of birth control during rifamycin therapy. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of rifamycins. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on rifamycins, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and rifamycins are a CYP3A4 inducers. Concurrent administration may increase estrogen elimination.
Isradipine: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Itraconazole: (Minor) As itraconazole inhibits CYP3A4 activity, serum estrogen concentrations and estrogenic-related side effects (e.g., nausea, breast tenderness) may potentially increase when coadministered with either estrogens or combined hormonal contraceptives.
Ivosidenib: (Major) Consider alternative methods of contraception in patients receiving ivosidenib. Coadministration may decrease the concentrations of hormonal contraceptives.
Ketoconazole: (Minor) As ketoconazole inhibits CYP3A4 activity, serum estrogen concentrations and estrogenic-related side effects (e.g., nausea, breast tenderness) may potentially increase when coadministered with either estrogens or combined hormonal contraceptives.
Labetalol: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Lamotrigine: (Major) A lamotrigine maintenance dose increase of up to 2-fold may be required during concomitant use of estrogen hormones. Increase the dose no more rapidly than 50 to 100 mg/day every week based on clinical response. Coadministration of an oral contraceptive containing 30 mcg of ethinyl estradiol has been observed to decrease the AUC and Cmax of lamotrigine by 52% and 39%, respectively. During the oral contraceptive pill-free week, trough lamotrigine concentrations have been observed to increase an average of 2-fold which may transiently increase the risk for lamotrigine-related adverse effects. If lamotrigine-related adverse effects consistently occur during the pill-free week, the overall lamotrigine maintenance dose may need to be reduced.
Lansoprazole; Amoxicillin; Clarithromycin: (Minor) Estrogens are partially metabolized by CYP3A4. Drugs that inhibit CYP3A4 such as clarithromycin may increase plasma concentrations of estrogens and cause estrogen-related side effects such as nausea and breast tenderness. Patients receiving estrogens should be monitored for an increase in adverse events. Also, practitioners should be alert to the possibility that breakthrough bleeding or contraceptive failure may occur with clarithromycin.
Lenalidomide: (Moderate) Concomitant use of lenalidomide with estrogens may increase the risk of thrombosis in patients with multiple myeloma patients who are also receiving dexamethasone. Use lenalidomide and estrogen-containing agents with caution in these patients. Monitor for signs of thromboembolism (e.g., deep vein thrombosis, pulmonary embolism, myocardial infarction, stroke) and encourage patients to report symptoms such as shortness of breath, chest pain, or arm or leg swelling.
Letrozole: (Major) Avoid concomitant use of estrogens and letrozole. Estrogen-containing therapies may reduce the effectiveness of aromatase inhibitors, such as letrozole.
Levamlodipine: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Levobunolol: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Levoketoconazole: (Minor) As ketoconazole inhibits CYP3A4 activity, serum estrogen concentrations and estrogenic-related side effects (e.g., nausea, breast tenderness) may potentially increase when coadministered with either estrogens or combined hormonal contraceptives.
Levothyroxine: (Minor) The administration of estrogens can increase circulating concentrations of thyroxine-binding globulin, sex hormone-binding globulin, and cortisol-binding globulin. Increased amounts of thyroxine-binding globulin may result in a reduced clinical response to thyroid hormones. Some hypothyroid patients on estrogen may require larger doses of thyroid hormones. Monitor thyroid-stimulating hormone (TSH) level and follow the recommendation for thyroid hormone replacement.
Levothyroxine; Liothyronine (Porcine): (Minor) The administration of estrogens can increase circulating concentrations of thyroxine-binding globulin, sex hormone-binding globulin, and cortisol-binding globulin. Increased amounts of thyroxine-binding globulin may result in a reduced clinical response to thyroid hormones. Some hypothyroid patients on estrogen may require larger doses of thyroid hormones. Monitor thyroid-stimulating hormone (TSH) level and follow the recommendation for thyroid hormone replacement.
Levothyroxine; Liothyronine (Synthetic): (Minor) The administration of estrogens can increase circulating concentrations of thyroxine-binding globulin, sex hormone-binding globulin, and cortisol-binding globulin. Increased amounts of thyroxine-binding globulin may result in a reduced clinical response to thyroid hormones. Some hypothyroid patients on estrogen may require larger doses of thyroid hormones. Monitor thyroid-stimulating hormone (TSH) level and follow the recommendation for thyroid hormone replacement.
Linagliptin; Metformin: (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Lincomycin: (Moderate) Anti-infectives that disrupt the normal GI flora, clindamycin, lincomycin, may potentially decrease the effectiveness of estrogen-containing oral contraceptives. (Moderate) Anti-infectives which disrupt the normal GI flora, including lincomycin and clindamycin, may potentially decrease the effectiveness of estrogen containing oral contraceptives. Alternative or additional contraception may be advisable.
Lincosamides: (Moderate) Anti-infectives that disrupt the normal GI flora, clindamycin, lincomycin, may potentially decrease the effectiveness of estrogen-containing oral contraceptives. (Moderate) Anti-infectives which disrupt the normal GI flora, including lincomycin and clindamycin, may potentially decrease the effectiveness of estrogen containing oral contraceptives. Alternative or additional contraception may be advisable.
Liothyronine: (Minor) The administration of estrogens can increase circulating concentrations of thyroxine-binding globulin, sex hormone-binding globulin, and cortisol-binding globulin. Increased amounts of thyroxine-binding globulin may result in a reduced clinical response to thyroid hormones. Some hypothyroid patients on estrogen may require larger doses of thyroid hormones. Monitor thyroid-stimulating hormone (TSH) level and follow the recommendation for thyroid hormone replacement.
Lisinopril: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Lisinopril; Hydrochlorothiazide, HCTZ: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness. (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Lonapegsomatropin: (Moderate) Somatropin can induce the activity of cytochrome-mediated metabolism of antipyrine clearance. Because estrogens are also metabolized in this way, somatropin may alter the metabolism of estrogens. In addition, growth-hormone deficient women also treated with estrogen replacement therapy require substantially more somatropin therapy to obtain comparable effects when compared to women not taking estrogen. Patients should be monitored for changes in efficacy of either drug when somatropin and estrogens are coadministered.
Loop diuretics: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Lopinavir; Ritonavir: (Moderate) Ritonavir has been shown to increase the metabolism of ethinyl estradiol. Ritonavir is a substrate and inhibitor of CYP3A4. It is not known if the effects of protease inhibitors are similar on estradiol; however, estradiol is metabolized by CYP3A4, similar to ethinyl estradiol.
Lorlatinib: (Major) Women taking both estrogens and lorlatinib should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed lorlatinib. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of lorlatinib. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on lorlatinib, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and lorlatinib is a moderate CYP3A4 inducer. Concurrent administration may increase estrogen elimination.
Losartan: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Losartan; Hydrochlorothiazide, HCTZ: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness. (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Mafenide: (Moderate) Anti-infectives that disrupt the normal GI flora, including sulfonamides, may potentially decrease the effectiveness of estrogen-containing oral contraceptives.
Mavacamten: (Major) Patients taking both estrogens and mavacamten should report breakthrough vaginal bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed mavacamten. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 4 months after discontinuation of mavacamten. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on mavacamten, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A substrates and mavacamten is a moderate CYP3A inducer. Concurrent administration may increase estrogen elimination.
Mecamylamine: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored to confirm that the desired antihypertensive effect is being obtained.
Meglitinides: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Metformin: (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Metformin; Repaglinide: (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Metformin; Rosiglitazone: (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Metformin; Saxagliptin: (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Metformin; Sitagliptin: (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Methohexital: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination.
Methyclothiazide: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Methyldopa: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Methylprednisolone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Metolazone: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Metoprolol: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Metoprolol; Hydrochlorothiazide, HCTZ: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness. (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Metreleptin: (Major) Concurrent use of metreleptin with estrogens may produce unpredictable effects, including a decrease in estrogen efficacy or an increase in estrogen-related adverse effects. Women taking both estrogens and metreleptin should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed metreleptin. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of metreleptin. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect or an increase in adverse effects while on metreleptin, with dose adjustments made based on clinical response. Estrogens are CYP3A4 substrates and metreleptin may alter the formation of CYP enzymes. Concurrent administration may increase or decrease estrogen elimination.
Metyrapone: (Moderate) A subtherapeutic response to metyrapone can be seen in patients on estrogen therapy. When metapyrone is used as a diagnostic drug for testing hypothalamic-pituitary ACTH function, the effect of estrogen may need to be considered, or, another diagnostic test chosen. If possible, consider discontinuing the use of estrogen prior to and during testing. During use for Cushing's syndrome, estrogen therapy may increase cortisol levels, which may attenuate the response to metyrapone treatment. Monitor for evidence of clinical response to treatment, and adjust treatment as clinically indicated.
Midazolam: (Minor) Oral contraceptives can increase the effects of midazolam because oral contraceptives inhibit oxidative metabolism, thereby increasing serum concentrations of concomitantly administered benzodiazepines that undergo oxidation. Patients receiving oral contraceptive therapy should be observed for evidence of increased response to midazolam.
Mifepristone: (Contraindicated) Mifepristone is a progesterone-receptor antagonist and will interfere with the effectiveness of hormonal contraceptives. Therefore, non-hormonal contraceptive methods should be used in Cushing's patients taking mifepristone.
Miglitol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Mineral Oil: (Minor) While information regarding this interaction is limited, it appears that the simultaneous oral administration of estrogens and mineral oil may decrease the oral absorption of the estrogens, resulting in lower estrogen plasma concentrations. This interaction may be more likely with the chronic administration of mineral oil, as opposed to a single dose of mineral oil used for occasional constipation. In order to avoid an interaction, it would be prudent to separate administration times, giving estrogens 1 hour before or 2 hours after the oral administration of mineral oil.
Minocycline: (Moderate) It was previously thought that antibiotics may decrease the effectiveness of oral contraceptives containing estrogens due to stimulation of estrogen metabolism or a reduction in estrogen enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with oral contraceptives (OCs) and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma levels of oral contraceptives. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review of the subject concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Minoxidil: (Minor) Estrogens can cause fluid retention, increasing blood pressure and thereby antagonizing the antihypertensive effects of minoxidil.
Mitapivat: (Major) Women taking both estrogens and mitapivat should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed mitapivat. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of mitapivat. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on mitapivat, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A substrates and mitapivat is a CYP3A inducer. Concurrent administration may increase estrogen elimination.
Mitotane: (Major) Women taking both estrogens and mitotane should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed mitotane. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of mitotane. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on mitotane, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and mitotane is a strong CYP3A4 inducer. Concurrent administration may increase estrogen elimination.
Mobocertinib: (Major) Women taking both estrogens and mobocertinib should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed mobocertinib. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of mobocertinib. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on mobocertinib, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A substrates and mobocertinib is a weak CYP3A inducer. Concurrent administration may increase estrogen elimination.
Modafinil: (Moderate) Modafinil is an inducer of CYP3A hepatic enzymes. Estrogens are metabolized by CYP3A4. A decrease in estrogen concentrations, and thus efficacy, may occur in patients taking estrogens for hormone replacement therapy. If these drugs are used together, monitor patients for a decrease in clinical effects. Dosage adjustments may be necessary.
Moexipril: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Mometasone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Nadolol: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Nebivolol: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Nebivolol; Valsartan: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Nelfinavir: (Moderate) Nelfinavir has been shown to increase the metabolism of ethinyl estradiol; a similar interaction may occur with other estrogens used for hormone replacement therapy. Patients should report any breakthrough bleeding or adverse events to their prescribers.
Neomycin: (Moderate) Anti-infectives that disrupt the normal GI flora, including neomycin, may potentially decrease the effectiveness of estrogen-containing oral contraceptives. (Moderate) Anti-infectives which disrupt the normal GI flora, including neomycin, may potentially decrease the effectiveness of estrogen containing oral contraceptives. Alternative or additional contraception may be advisable.
Nevirapine: (Moderate) Women taking both estrogens and nevirapine should report breakthrough bleeding to their prescribers. Nevirapine may decrease plasma concentrations of hormonal contraceptives. However, despite lower exposures, literature suggests that use of nevirapine has no effect on pregnancy rates among HIV-infected women on combined oral contraceptives. Thus, the manufacturer states that no dose adjustments are needed when these drugs are used for contraception in combination with nevirapine. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on nevirapine, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and nevirapine is a weak CYP3A4 inducer. Concurrent administration may increase estrogen elimination.
Nicardipine: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Nifedipine: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal therapy should be monitored for antihypertensive effectiveness.
Nilotinib: (Moderate) Nilotinib is a competitive inhibitor of UGT1A1 and CYP3A4. Estradiol is a substrate of UGT1A1. Increased concentrations of estradiol may occur following coadministration with nilotinib.
Nimodipine: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Nirmatrelvir; Ritonavir: (Moderate) Ritonavir has been shown to increase the metabolism of ethinyl estradiol. Ritonavir is a substrate and inhibitor of CYP3A4. It is not known if the effects of protease inhibitors are similar on estradiol; however, estradiol is metabolized by CYP3A4, similar to ethinyl estradiol.
Nisoldipine: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Nitrofurantoin: (Moderate) Anti-infectives that disrupt the normal GI flora may potentially decrease the effectiveness of estrogen-containing oral contraceptives.
Nitroprusside: (Minor) The administration of estrogens may increase blood pressure, and thereby antagonizing the antihypertensive effects of nitroprusside.
Olanzapine; Fluoxetine: (Minor) As fluoxetine inhibits CYP3A4 activity, serum estrogen concentrations and estrogenic-related side effects (e.g., nausea, breast tenderness) may potentially increase when coadministered with either estrogens or combined hormonal contraceptives.
Olmesartan: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness. (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Olmesartan; Hydrochlorothiazide, HCTZ: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness. (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Olopatadine; Mometasone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Omadacycline: (Moderate) It was previously thought that antibiotics may decrease the effectiveness of oral contraceptives containing estrogens due to stimulation of estrogen metabolism or a reduction in estrogen enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with oral contraceptives (OCs) and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma levels of oral contraceptives. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review of the subject concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Omaveloxolone: (Major) Advise patients taking estrogen hormones for contraception to consider an alternate or additional form of contraception, such as nonhormonal and/or barrier methods, during and for at least 1 month following discontinuation of omaveloxolone. Higher-dose hormonal regimens containing a minimum of 30 mcg of ethinyl estradiol or equivalent may also be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on omaveloxolone, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A substrates and omaveloxolone is a CYP3A inducer. Concurrent administration may increase estrogen elimination.
Omeprazole; Amoxicillin; Rifabutin: (Major) Women taking both estrogens and rifamycins should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed rifamycins. In some cases, it may be advisable for patients to change to non-hormonal methods of birth control during rifamycin therapy. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of rifamycins. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on rifamycins, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and rifamycins are a CYP3A4 inducers. Concurrent administration may increase estrogen elimination.
Ospemifene: (Major) Ospemifene should not be used concomitantly with estrogens. The safety of concomitant use of ospemifene with estrogens or estrogen agonists/antagonists has not been studied.
Oxcarbazepine: (Major) Women taking both estrogens and oxcarbazepine should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed oxcarbazepine. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of oxcarbazepine. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and oxcarbazepine is a CYP3A4 inducer. Concurrent administration has been shown to decrease the exposure of some estrogens by approximately 50%.
Pentobarbital: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination.
Perindopril: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihy pertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Perindopril; Amlodipine: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Pertuzumab; Trastuzumab; Hyaluronidase: (Minor) Estrogens, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
Phenobarbital: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination.
Phenobarbital; Hyoscyamine; Atropine; Scopolamine: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination.
Phenoxybenzamine: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored to confirm that the desired antihypertensive effect is being obtained.
Phentermine; Topiramate: (Major) Women taking both estrogens and topiramate should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed topiramate, especially for patients receiving topiramate doses greater than 200 mg per day. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of topiramate. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on topiramate, with dose adjustments made based on clinical efficacy. Concurrent administration may increase estrogen elimination.
Phentolamine: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored to confirm that the desired antihypertensive effect is being obtained.
Phenytoin: (Major) Women taking both estrogens and phenytoin/fosphenytoin should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed phenytoin/fosphenytoin. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of phenytoin/fosphenytoin. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on phenytoin/fosphenytoin, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and phenytoin/fosphenytoin is a strong CYP3A4 inducer. Concurrent administration may increase estrogen elimination. Additionally, epileptic women taking both anticonvulsants and hormonal contraceptives may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy.
Pindolol: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Pioglitazone; Metformin: (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Posaconazole: (Minor) Estrogens are partially metabolized by CYP3A4. Drugs that inhibit CYP3A4 such as systemic azole antifungals (fluconazole, itraconazole, ketoconazole, miconazole, posaconazole, and voriconazole) may increase plasma concentrations of estrogens and cause estrogen-related side effects such as nausea and breast tenderness. Patients receiving estrogens should be monitored for an increase in adverse events.
Potassium-sparing diuretics: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Pramlintide: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Prasterone, Dehydroepiandrosterone, DHEA (Dietary Supplements): (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
Prasterone, Dehydroepiandrosterone, DHEA (FDA-approved): (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
Prazosin: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored to confirm that the desired antihypertensive effect is being obtained.
Prednisolone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Prednisone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Primidone: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination.
Propranolol: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Propranolol; Hydrochlorothiazide, HCTZ: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness. (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Quinapril: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Quinapril; Hydrochlorothiazide, HCTZ: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness. (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Raloxifene: (Major) The concurrent use of raloxifene and systemic estrogens or other hormone replacement therapy has not been studied in prospective clinical trials. Thus, concomitant use of raloxifene with systemic estrogens is not recommended.
Ramipril: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Ribociclib; Letrozole: (Major) Avoid concomitant use of estrogens and letrozole. Estrogen-containing therapies may reduce the effectiveness of aromatase inhibitors, such as letrozole.
Rifabutin: (Major) Women taking both estrogens and rifamycins should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed rifamycins. In some cases, it may be advisable for patients to change to non-hormonal methods of birth control during rifamycin therapy. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of rifamycins. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on rifamycins, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and rifamycins are a CYP3A4 inducers. Concurrent administration may increase estrogen elimination.
Rifampin: (Major) Women taking both estrogens and rifamycins should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed rifamycins. In some cases, it may be advisable for patients to change to non-hormonal methods of birth control during rifamycin therapy. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of rifamycins. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on rifamycins, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and rifamycins are a CYP3A4 inducers. Concurrent administration may increase estrogen elimination.
Rifamycins: (Major) Women taking both estrogens and rifamycins should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed rifamycins. In some cases, it may be advisable for patients to change to non-hormonal methods of birth control during rifamycin therapy. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of rifamycins. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on rifamycins, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and rifamycins are a CYP3A4 inducers. Concurrent administration may increase estrogen elimination.
Rifapentine: (Major) Women taking both estrogens and rifamycins should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed rifamycins. In some cases, it may be advisable for patients to change to non-hormonal methods of birth control during rifamycin therapy. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of rifamycins. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on rifamycins, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and rifamycins are a CYP3A4 inducers. Concurrent administration may increase estrogen elimination.
Ritonavir: (Moderate) Ritonavir has been shown to increase the metabolism of ethinyl estradiol. Ritonavir is a substrate and inhibitor of CYP3A4. It is not known if the effects of protease inhibitors are similar on estradiol; however, estradiol is metabolized by CYP3A4, similar to ethinyl estradiol.
Rituximab; Hyaluronidase: (Minor) Estrogens, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
Romidepsin: (Major) The concomitant use of romidepsin and estradiol cypionate may reduce the efficacy of estradiol cypionate. Because romidepsin can cause fetal harm if administered to a pregnant woman, females of reproductive potential should use an alternative effective contraception method (e.g., condoms or intrauterine devices) during treatment with romidepsin and for at least 1 month after the final dose. Romidepsin showed high affinity for binding to estrogen receptors in pharmacology studies. (Major) The concomitant use of romidepsin and estradiol valerate may reduce the efficacy of estradiol valerate. Because romidepsin can cause fetal harm if administered to a pregnant woman, females of reproductive potential should use an alternative effective contraception method (e.g., condoms or intrauterine devices) during treatment with romidepsin and for at least 1 month after the final dose. Romidepsin showed high affinity for binding to estrogen receptors in pharmacology studies.
Ropinirole: (Moderate) Concomitant use of ropinirole and higher doses of estrogens may increase the exposure of ropinirole. A dose adjustment of ropinirole may be needed when estrogen therapy is initiated or discontinued. Some estrogens have reduced ropinirole oral clearance by 36%.
Sacubitril; Valsartan: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Saquinavir: (Moderate) Saquinavir has been shown to increase the metabolism of ethinyl estradiol; a similar interaction may occur with other estrogens used for hormone replacement therapy. Patients should report any breakthrough bleeding or adverse events to their prescribers.
Sarecycline: (Moderate) It was previously thought that antibiotics may decrease the effectiveness of oral contraceptives containing estrogens due to stimulation of estrogen metabolism or a reduction in estrogen enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with oral contraceptives (OCs) and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma levels of oral contraceptives. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review of the subject concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Secobarbital: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination.
SGLT2 Inhibitors: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Somapacitan: (Moderate) Patients receiving oral estrogen replacement may require higher somapacitan dosages. Oral estrogens may reduce the serum insulin-like growth factor 1 (IGF-1) response to somapacitan. Women receiving oral estrogen replacement should receive a higher initial somapacitan dose; initiate somapacitan therapy at a dose of 2 mg once weekly. Titrate doses after that as recommended.
Somatrogon: (Moderate) Monitor for a decrease in somatrogon efficacy during concurrent use of somatrogon and oral estrogens; a higher somatrogon dose may be needed. Oral estrogens may reduce the serum insulin-like growth factor 1 (IGF-1) response to somatrogon.
Somatropin, rh-GH: (Moderate) Somatropin can induce the activity of cytochrome-mediated metabolism of antipyrine clearance. Because estrogens are also metabolized in this way, somatropin may alter the metabolism of estrogens. In addition, growth-hormone deficient women also treated with estrogen replacement therapy require substantially more somatropin therapy to obtain comparable effects when compared to women not taking estrogen. Patients should be monitored for changes in efficacy of either drug when somatropin and estrogens are coadministered.
Sotagliflozin: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Sotalol: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Sotorasib: (Major) Women taking both estrogens and sotorasib should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed sotorasib. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of sotorasib. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on sotorasib, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and sotorasib is a moderate CYP3A4 inducer. Concurrent administration may increase estrogen elimination.
Soy Isoflavones: (Moderate) Theoretically, the soy isoflavones may compete with or have additive effects with, drugs that have estrogenic activity or which selectively modulate estrogen receptors. The soy isoflavones have a diphenolic structure similar to that of the potent synthetic and natural estrogens. All isoflavones are competitive ligands of in vitro estrogen receptor assays and appear to function as selective estrogen receptor modifiers (SERMs). However, the estrogenic potencies of the soy isoflavones genistein and daidzein are much weaker than that of native estradiol. Soy isoflavones should be used with caution in patients taking estrogens, including combined hormonal and oral contraceptives, since the effects of combining soy isoflavone dietary supplements with estrogens are not clear.
Spironolactone: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Spironolactone; Hydrochlorothiazide, HCTZ: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
St. John's Wort, Hypericum perforatum: (Major) Women taking both estrogens and St. John's Wort should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed St. John's Wort. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of St. John's Wort. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on St. John's Wort, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and St. John's Wort is a strong CYP3A4 inducer. Concurrent administration may increase estrogen elimination.
Sulfadiazine: (Moderate) Anti-infectives that disrupt the normal GI flora, including sulfonamides, may potentially decrease the effectiveness of estrogen-containing oral contraceptives.
Sulfamethoxazole; Trimethoprim, SMX-TMP, Cotrimoxazole: (Moderate) Anti-infectives that disrupt the normal GI flora, including sulfonamides, may potentially decrease the effectiveness of estrogen-containing oral contraceptives.
Sulfasalazine: (Moderate) Anti-infectives that disrupt the normal GI flora, including sulfonamides, may potentially decrease the effectiveness of estrogen-containing oral contraceptives.
Sulfonamides: (Moderate) Anti-infectives that disrupt the normal GI flora, including sulfonamides, may potentially decrease the effectiveness of estrogen-containing oral contraceptives. (Moderate) Anti-infectives which disrupt the normal GI flora, including sulfonamides, may potentially decrease the effectiveness of estrogen containing oral contraceptives. Alternative or additional contraception may be advisable.
Sulfonylureas: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Sunscreens: (Moderate) Application of sunscreen 10 minutes prior to the application of topical estradiol increases the exposure to estradiol by approximately 35 percent. Application of sunscreen 25 minutes after the application of topical estradiol increases the exposure to estradiol by approximately 15 percent. Patients should be advised to separate the application of topical estradiol and sunscreens as long as possible in order to avoid increased estradiol absorption.
Tazemetostat: (Major) Women taking both estrogens and tazemetostat should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed tazemetostat. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 6 months after discontinuation of tazemetostat. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on tazemetostat, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and tazemetostat is a CYP3A4 inducer. Concurrent administration may increase estrogen elimination.
Telmisartan: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Telmisartan; Amlodipine: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Telmisartan; Hydrochlorothiazide, HCTZ: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness. (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Terazosin: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored to confirm that the desired antihypertensive effect is being obtained.
Testolactone: (Contraindicated) Estrogens could interfere competitively with the pharmacologic action of the aromatase inhibitors. The goal of aromatase inhibitor therapy is to decrease circulating estrogen concentrations and inhibit the growth of hormonally-responsive cancers. Estrogen therapy is not recommended during aromatase inhibitor treatment, due to opposing pharmacologic actions. Aromatase inhibitors (e.g., aminoglutethimide, anastrozole, exemestane, letrozole, testolactone, vorozole) exhibit their antiestrogenic effects by reducing the peripheral conversion of adrenally synthesized androgens (e.g., androstenedione) to estrogens through inhibition of the aromatase enzyme. In addition, in women receiving long-term aromatase inhibitor therapy, atrophic vaginitis due to estrogen suppression is common; atrophic vaginitis due to aromatase inhibitor therapy is sometimes treated with vaginal estrogen as the systemic exposure of estrogen from vaginal preparations is thought to be low. In a study of 7 women on aromatase inhibitor therapy, estrogen concentrations rose significantly after the addition of vaginally administered estrogen for atrophic vaginitis. Estrogen concentrations increased from a mean baseline level of < 5 pmol/l to 72 pmol/l after 2 weeks and to < 35 pmol/l at 4 weeks. Although the study was small, estrogen concentrations rose significantly in 6/7 patients. Clinicians should be aware that serum estrogen concentrations may increase with the use of vaginal estrogen preparations; alternative treatments for atrophic vaginitis in patients taking aromatase inhibitors should be considered.
Tetracycline: (Moderate) It was previously thought that antibiotics may decrease the effectiveness of oral contraceptives containing estrogens due to stimulation of estrogen metabolism or a reduction in estrogen enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with oral contraceptives (OCs) and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma levels of oral contraceptives. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review of the subject concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Tetracyclines: (Moderate) It was previously thought that antibiotics may decrease the effectiveness of oral contraceptives containing estrogens due to stimulation of estrogen metabolism or a reduction in estrogen enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with oral contraceptives (OCs) and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma levels of oral contraceptives. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review of the subject concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Thiazide diuretics: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Thiazolidinediones: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Thyroid hormones: (Minor) The administration of estrogens can increase circulating concentrations of thyroxine-binding globulin, sex hormone-binding globulin, and cortisol-binding globulin. Increased amounts of thyroxine-binding globulin may result in a reduced clinical response to thyroid hormones. Some hypothyroid patients on estrogen may require larger doses of thyroid hormones. Monitor thyroid-stimulating hormone (TSH) level and follow the recommendation for thyroid hormone replacement.
Timolol: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Tipranavir: (Moderate) Tipranavir has been shown to increase the metabolism of ethinyl estradiol; a similar interaction may occur with other estrogens used for hormone replacement therapy. Patients should report any breakthrough bleeding or adverse events to their prescribers.
Tobacco: (Major) Advise patients to avoid cigarette smoking while taking estrogen hormones. Cigarette smoking increases the risk of serious cardiovascular events, such as myocardial infarction, stroke, deep vein thrombosis, and pulmonary embolism. Combined hormonal contraceptives are contraindicated in females who are over 35 years of age and smoke.
Topiramate: (Major) Women taking both estrogens and topiramate should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed topiramate, especially for patients receiving topiramate doses greater than 200 mg per day. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of topiramate. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on topiramate, with dose adjustments made based on clinical efficacy. Concurrent administration may increase estrogen elimination.
Toremifene: (Major) The use of estrogens, including oral contraceptives, with toremifene is controversial and is generally considered contraindicated in most, but not all, circumstances. The use of estrogens may aggravate conditions for which toremifene is prescribed. Toremifene exerts its effects by blocking estrogen receptors. Since toremifene and estrogens are pharmacological opposites, they are not usually given concurrently.
Torsemide: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Trandolapril: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Trandolapril; Verapamil: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness. (Minor) Verapamil inhibits CYP3A4 activity. Serum estrogen concentrations and estrogenic-related side effects (e.g., nausea, breast tenderness) may potentially increase when verapamil is coadministered with either estrogens or combined hormonal contraceptives.
Tranexamic Acid: (Contraindicated) Tranexamic acid is contraindicated in women who are using combination hormonal contraception containing an estrogen and a progestin. Use with other estrogens is also not recommended. Estrogens increase the hepatic synthesis of prothrombin and factors VII, VIII, IX, and X and decrease antithrombin III; estrogens also increase norepinephrine-induced platelet aggregability. A positive relationship of estrogens to thromboembolic disease has been demonstrated, and the US FDA has suggested class labeling of combined OCs and non-oral combination contraceptives in accordance with this data. OC products containing >= 50-mcg ethinyl estradiol are associated with the greatest risk of thromboembolic complications. Therefore, do not coadminister estrogens, combined hormonal oral contraceptives, or non-oral combination contraceptives together with tranexamic acid. Tranexamic acid is an antifibrinolytic agent, and concomitant use can further exacerbate the thrombotic risk associated with these estrogen-containing hormonal products; in post-market use of tranexamic acid, cases of thromboembolic events have been reported, with cases occurring in those patients concomitantly receiving combined hormonal contraceptives containing both an estrogen and a progestin.
Trastuzumab; Hyaluronidase: (Minor) Estrogens, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
Triamcinolone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Triamterene: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Triamterene; Hydrochlorothiazide, HCTZ: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Tricyclic antidepressants: (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Ursodeoxycholic Acid, Ursodiol: (Minor) Estrogens and combined hormonal and oral contraceptives increase hepatic cholesterol secretion, and encourage cholesterol gallstone formation, and hence may counteract the effectiveness of ursodeoxycholic acid, ursodiol.
Valproic Acid, Divalproex Sodium: (Moderate) Monitor serum valproic acid concentrations and patient clinical response when adding or discontinuing estrogen-containing therapy. Estrogen may increase the clearance of valproic acid, possibly leading to decreased efficacy of valproic acid and increased seizure frequency.
Valsartan: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness.
Valsartan; Hydrochlorothiazide, HCTZ: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormonal contraceptives should be monitored for antihypertensive effectiveness. (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Verapamil: (Minor) Verapamil inhibits CYP3A4 activity. Serum estrogen concentrations and estrogenic-related side effects (e.g., nausea, breast tenderness) may potentially increase when verapamil is coadministered with either estrogens or combined hormonal contraceptives.
Vonoprazan; Amoxicillin; Clarithromycin: (Minor) Estrogens are partially metabolized by CYP3A4. Drugs that inhibit CYP3A4 such as clarithromycin may increase plasma concentrations of estrogens and cause estrogen-related side effects such as nausea and breast tenderness. Patients receiving estrogens should be monitored for an increase in adverse events. Also, practitioners should be alert to the possibility that breakthrough bleeding or contraceptive failure may occur with clarithromycin.
Voriconazole: (Minor) As voriconazole inhibits CYP3A4 activity, serum estrogen concentrations and estrogenic-related side effects (e.g., nausea, breast tenderness) may potentially increase when coadministered with either estrogens or combined hormonal contraceptives.
Warfarin: (Major) Estrogen-based hormone replacement therapies and contraceptive methods are generally contraindicated in patients with thromboembolic risk. However, per ACOG guidelines, in select patients the benefits of such contraception may outweigh the risks, as long as appropriate anticoagulant therapy is utilized. Combined oral contraceptives (COCs) may inhibit CYP3A4 and CYP1A2, which can rarely influence warfarin pharmacokinetics and the INR value. Isolated case reports have noted altered responses to warfarin in patients receiving combined hormonal contraceptives. Estrogens increase the hepatic synthesis of prothrombin and factors VII, VIII, IX, and X and decrease antithrombin III; estrogens also increase norepinephrine-induced platelet aggregability. A positive relationship of estrogen-containing OCs to thromboembolic disease has been demonstrated. OC products containing 50-mcg or more of ethinyl estradiol are associated with the greatest risk of thromboembolic complications. The addition of certain progestins may influence thromboembolic risks. A positive relationship between estrogen-based HRT and the risk of thromboembolic disease has also been demonstrated in the Women's Health Initiative Trials. Estrogen-based HRT products are generally contraindicated in patients with a current or past history of stroke, cerebrovascular disease, coronary artery disease, coronary thrombosis, thrombophlebitis, thromboembolic disease (including pulmonary embolism and DVT), or valvular heart disease with complications. If concurrent use of an estrogen-based product cannot be avoided, carefully monitor for signs and symptoms of thromboembolic complications. If thromboembolic events occur, discontinue the HRT regimen. Estrogen-based HRT is generally not expected to significantly alter the INR or to affect the metabolism of warfarin. Dosage adjustment of warfarin in a woman taking HRT should be based on the prothrombin time or INR value.
Zafirlukast: (Minor) As zarfirlukast inhibits CYP3A4 activity, serum estrogen concentrations and estrogenic-related side effects (e.g., nausea, breast tenderness) may potentially increase when coadministered with either estrogens or combined hormonal contraceptives.
How Supplied
Alora/Climara/DOTTI/Estraderm/Estradiol/FemPatch/LYLLANA/Menostar/Minivelle/Vivelle/Vivelle-Dot Transdermal Film ER: 0.025mg, 0.0375mg, 0.05mg, 0.06mg, 0.075mg, 0.1mg, 14mcg, 24h
Delestrogen/Depo-Estradiol/Estradiol Valerate/Gynogen LA Intramuscular Inj Sol: 1mL, 5mg, 10mg, 20mg, 40mg
Divigel/Elestrin/Estradiol/EstroGel Transdermal Gel: 0.06%, 0.1%
Estrace/Estradiol Vaginal Cream: 0.01%
Estrace/Estradiol/Gynodiol Oral Tab: 0.5mg, 1mg, 2mg
Estradiol/Imvexxy/Vagifem/Yuvafem Vaginal Insert: 4mcg, 10mcg
Estring/Femring Vaginal Insert ER: 0.05mg, 0.1mg, 2mg, 24h
Evamist Transdermal Spray Met: 1actuation, 1.53mg
Maximum Dosage
Dependent on indication for therapy.
ElderlyDependent on indication for therapy.
AdolescentsDependent on indication for therapy.
ChildrenNot indicated in prepubescent females.
Mechanism Of Action
The primary source of estrogens in premenopausal women is the ovary, which normally secretes 0.07 to 0.5 mg of estradiol daily, depending on the phase of the menstrual cycle. Once estrogens enter the cells of responsive tissues (e.g., female organs, breasts, hypothalamus, pituitary), they increase the rate of synthesis of DNA, RNA, and some proteins. The secretion of gonadotropin-releasing hormone by the hypothalamus is reduced during estrogen administration, causing reduction in follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from the pituitary. Exogenous estrogens elicit all of the actions of endogenous estrogens. Estrogens are responsible for the growth and development of female sex organs and the maintenance of sex characteristics including growth of axillary and pubic hair and shaping of body contours and skeleton. At the cellular level, estrogens increase cervical secretions, cause proliferation of the endometrium, and increase uterine tone. Paradoxically, prolonged administration of estrogen can shrink the endometrium. During the preovulatory or nonovulatory phase of the menstrual cycle, withdrawal of estrogen can initiate menstruation; in the ovulatory phase, the decrease in progesterone secretion is the more significant factor causing menstruation. In post-menopausal use, amenorrhea occurs in most women within several months of oral estrogen use.
Estrogens have a weak anabolic effect and also can affect bone calcium deposition and accelerate epiphysial closure. Estrogens appear to prevent osteoporosis associated with the onset of menopause. Estrogens generally have a favorable effect on blood lipids, reducing LDL- and increasing HDL-cholesterol concentrations on average, by 15%. Serum triglycerides increase with estrogen administration. Estrogens increase the rate of synthesis of many proteins, including thyroid binding globulin and several clotting factors. Estrogens reduce levels of antithrombin III, and increase platelet aggregation. Estrogens also enhance sodium and fluid retention.
Unopposed estrogen has been associated with increased risk of endometrial cancer in menopausal women with an intact uterus; concomitant progestin therapy reduces, but does not eliminate, this risk. However, combination hormone replacement therapy (HRT) may add additional health risks for some women, as evidenced by the HERS trials , the Women's Health Initiative study , and other investigations. In particular, the Women's Health Initiative (WHI) study reported an increased risk of myocardial infarction, stroke, dementia, invasive breast cancer, and venous thromboembolism in patients taking combination HRT and an increased risk of stroke, dementia, and venous thromboembolism in patients taking estrogen only HRT; an increased risk of invasive breast cancer was not evident in women taking estrogen only. Because of these findings, patients should be prescribed estrogen HRT or estrogen-progestin HRT for the shortest duration consistent with the treatment goals. Estrogen HRT with or without a progestin is not indicated and should not be used to prevent coronary artery disease or other cardiovascular disease. The risks and benefits of HRT must be determined for a woman individually.
In men with advanced prostate cancer, estrogens exert their effect by inhibition of the hypothalamic-pituitary axis through negative feedback. This results in decreased secretion of luteinizing hormone (LH). Decreased testosterone production from the Leydig cells in the testes occurs, which may decrease tumor growth and lower prostate specific antigen (PSA) levels. Improvement in bone metastasis may also occur. In the past, high-dose estrogen therapy was also used in selected men and postmenopausal women with inoperable, progressive breast cancer. Since the development of selective estrogen receptor modifiers (SERMs), high-dose estrogen therapy for the palliative treatment of breast cancer is rarely used today.
Pharmacokinetics
Estradiol products are administered orally, intramuscularly, vaginally, transdermally, and topically. The pharmacokinetics of estradiol differ with the formulation used for delivery and the route of administration. Following systemic absorption, estradiol is rapidly transformed by the liver to estrone and estriol, the major circulating forms in the serum, by 17-beta-hydroxysteroid dehydrogenase. The estrogens are widely distributed and are strongly protein-bound, primarily to albumin and sex hormone-binding globulin (SHBG). Circulating estrogens exist in a dynamic equilibrium of metabolic interconversions. These transformations take place mainly in the liver. Estradiol is converted reversibly to estrone, and both can be converted to estriol, which is the major urinary metabolite. Estrogens are metabolized partially by CYP3A4 in the liver. Estrogens also undergo enterohepatic recirculation via sulfate and glucuronide conjugation in the liver, biliary secretion of conjugates into the intestine, and hydrolysis in the gut followed by reabsorption. In postmenopausal women, a significant proportion of the circulating estrogens exist as sulfate conjugates, especially estrone sulfate, which serves as a circulating reservoir for the formation of more active estrogens. Estradiol, estrone, and estriol undergo glucuronide and sulfate conjugation to a variety of minor metabolites which are excreted primarily in the urine.
Generally, a serum estrogen concentration is not a predictor of an individual woman's therapeutic response to estradiol nor her risk for adverse outcomes. Likewise, exposure comparisons across different estrogen products to infer efficacy or safety for the individual woman may not be valid.
Affected cytochrome P450 (CYP450) isoenzymes and drug transporters: CYP3A4
In vitro and in vivo studies indicate that estrogens are partially metabolized by CYP3A4. Interactions with drugs that are inhibitors or inducers of CYP3A4 are possible.
Estradiol is extensively metabolized in the gastrointestinal mucosa during oral absorption and in the liver. Micronization of oral estradiol tablets slows oral absorption and decreases the first-pass metabolizm in the liver and increases the normally poor oral bioavailability of estradiol. Absolute bioavailability of oral micronized estradiol is roughly 5% to 10% of an administered dose. The plasma half-life of orally administered estradiol is approximately 1 to 2 hours at steady state; but other circulating estrogens persist longer.
Intramuscular RouteEstradiol cypionate and Estradiol valerate: These forms of estradiol are given as a depot injection in oil, which slows absorption after intramuscular (IM) injection. Esterification of estradiol to estradiol cypionate or valerate significantly increases the parenteral duration of action compared to aqueous estradiol formulations. Intramuscular administration of the cypionate esters of estradiol have more prolonged actions (average, 3 to 6 weeks) than the valerate esters (average, 2 to 3 weeks), respectively. However, IM dosage intervals are usually every 4 weeks for both cypionate and valerate esters of estradiol for most indications; dosage and dosage intervals are adjusted to patient response.
Topical RouteTopical emulsions, gels, or sprays: Topical administration of estradiol avoids first-pass metabolism and allows for continuous delivery of the hormone. The formulas are designed to help deliver systemic estradiol levels through the skin. Estradiol is minimally metabolized in the skin, thus higher therapeutic estradiol serum levels are present, and more closely approximate natural premenopausal concentrations. Different formulations are not interchangeable and differ in amount of estradiol delivered systemically per day and other pharmacokinetic absorption parameters. Estradiol topical emulsion (Estrasorb), for example, utilizes micellar nanoparticle technology. Once in the serum, the distribution, metabolism and excretion of topically administered estradiol occurs through the same pathways as for oral administration.
Transdermal patches: Transdermal systems are designed to help deliver systemic levels of estradiol through the skin. Transdermal administration of estradiol avoids first-pass metabolism and allows for continuous delivery of the hormone. Estradiol is minimally metabolized in the skin, thus higher therapeutic estradiol serum levels are present, and more closely approximate natural premenopausal concentrations. Transdermal systems differ in the amount of estradiol delivered per day, dosage interval of application, and other absorption pharmacokinetic parameters. Minimal fluctuations in estradiol concentrations are seen with transdermal application. Once in the serum, the distribution, metabolism and excretion of transdermally administered estradiol occurs through the same pathways as for oral administration. Transdermal estradiol has a short elimination half-life (approximately 2 hours); serum estradiol concentrations generally return to postmenopausal levels within 4 to 8 hours of patch removal.
Vaginal Route
In general, estradiol is well absorbed through the vaginal mucous membranes. The vaginal dosage applied determines systemic hormone exposure; as a result, systemic as well as local tissue effects may occur. However, the systemic effects differ with specific vaginal products and many products are not acceptable for treating systemic or vasomotor symptoms or preventing osteoporosis.
Vaginal Cream: Specific pharmacokinetic data are not available; this dosage form is only acceptable to treat genitourinary symptoms.
Vaginal Ring Inserts: Drug delivery from vaginal ring dosage forms is rapid; the time to maximum concentrations (Tmax) is usually less than 1 hour following insertion. Serum estradiol concentrations peak, then decrease rapidly such that by 24 to 48 hours following insertion of the dosage form, serum estradiol concentrations are relatively constant through the end of the 3-month dosing interval. Different vaginal ring devices are not interchangeable due to differences in dosage and efficacy in symptom control. For example, Estring dosages are not effective for addressing vasomotor symptoms; low dose systemic delivery of estradiol from Estring (estradiol) results in mean steady-state serum estradiol estimates of 7 to 8.1 pg/mL; with an estradiol delivery rate of roughly 7.5 mcg/24 hours. Following administration of Femring (estradiol acetate) 0.05 mg/day, the average serum estradiol concentration is 40.6 pg/mL; the corresponding apparent in vivo estradiol delivery rate is 0.052 mg/day. Following administration of Femring 0.10 mg/day, the average serum estradiol concentration is 76 pg/mL; the apparent in vivo delivery rate is 0.097 mg/day. Consistent with the avoidance of first-pass metabolism achieved by vaginal estradiol administration, serum estradiol concentrations are slightly higher than estrone concentrations. Once absorbed systemically, the distribution, metabolism and excretion of estradiol delivered via vaginal application occurs via the same pathways as for oral administration.
Vaginal Tablets (e.g., Yuvefem, Vagifem): In an open-label, multiple-dose, parallel group study conducted in 58 patients, a mean estradiol (E2) average concentration at Day 83 of 5.5 pg/mL was measured after a regimen of 10 mcg vaginally daily for 2 weeks followed by a twice-weekly maintenance regimen for the remaining 10 weeks. When patients received a dose of 25 mcg daily for 2 weeks followed by a twice-weekly maintenance regimen, the average concentration at Day 83 was 11.59 pg/mL.
Vaginal Insert (e.g., Imvexxy): The vaginal insert does not increase systemic estradiol concentrations significantly. At Day 84 of study, estradiol concentrations following a 2-week daily regimen followed by a twice-weekly maintenance regimen and compared to baseline concentrations were as follows: For the 4 mcg/dose regimen, mean 4.3 vs. 3.9 pg/mL; for the 10 mcg/dose regimen, mean 4.8 vs. 5 pg/mL; and a mean 4.4 vs. 4.5 pg/mL for placebo.
Pregnancy And Lactation
Estrogens are contraindicated during pregnancy. There are no data with the use of estradiol in pregnant women; however, epidemiologic studies and meta-analyses have not found an increased risk of genital or nongenital birth defects (including cardiac anomalies and limb-reduction defects) following inadvertent exposure to combined hormonal contraceptives (estrogen and progestins) during early pregnancy. In any patient in whom pregnancy is suspected, pregnancy should be ruled out before continuing estrogen therapy. In selected instances estradiol has been used off-label as an adjuvant to clomiphene treatment of infertility, or in donor oocyte program procedures in assisted reproduction technology (ART) under the direction of ART specialists; however, treatment is discontinued when pregnancy ensues.
Estrogens are present in human milk and can reduce milk production in breast-feeding women. This reduction can occur at any time but is less likely to occur once breast-feeding is well-established. Consider the benefits of breast-feeding, the risk of potential infant drug exposure, and the risk of an untreated or inadequately treated condition. Estrogens are not approved for the treatment of postpartum breast engorgement.