Diabeta

Browse PDR's full list of drug information

Diabeta

Classes

Second Generation Sulfonylurea Antidiabetics

Administration
Oral Administration

Once-daily doses are recommended to be taken with breakfast or the first main meal. In some patients, twice daily dosing will provide better control, and doses are usually given with breakfast and dinner.
Micronized and conventional formulations of glyburide are not bioequivalent and should not be substituted for one another.

Adverse Reactions
Severe

secondary failure / Delayed / 21.8-46.8
hepatic failure / Delayed / 0-0.1
vasculitis / Delayed / 0-0.1
angioedema / Rapid / 0-0.1
hemolytic anemia / Delayed / 0-0.1
agranulocytosis / Delayed / 0-0.1
aplastic anemia / Delayed / 0-0.1
pancytopenia / Delayed / 0-0.1
SIADH / Delayed / 0-0.1
exfoliative dermatitis / Delayed / Incidence not known
erythema multiforme / Delayed / Incidence not known

Moderate

hypoglycemia / Early / 1.8-39.0
erythema / Early / 1.5-1.5
jaundice / Delayed / 0-1.0
cholestasis / Delayed / 0-1.0
hepatitis / Delayed / 0-1.0
elevated hepatic enzymes / Delayed / 0-1.0
hemolysis / Early / 0-0.1
thrombocytopenia / Delayed / 0-0.1
leukopenia / Delayed / 0-0.1
hyponatremia / Delayed / 0-0.1
bullous rash / Early / Incidence not known
blurred vision / Early / Incidence not known

Mild

pyrosis (heartburn) / Early / 1.8-1.8
dyspepsia / Early / 1.8-1.8
nausea / Early / 1.8-1.8
pruritus / Rapid / 1.5-1.5
maculopapular rash / Early / 1.5-1.5
urticaria / Rapid / 1.5-1.5
myalgia / Early / 0-0.1
arthralgia / Delayed / 0-0.1
flushing / Rapid / 0-0.1
weight gain / Delayed / 10.0
photosensitivity / Delayed / Incidence not known
Co-Enzyme Q-10 deficiency / Delayed / Incidence not known

Common Brand Names

Diabeta, Glycron, Glynase PresTab, Micronase

Dea Class

Rx

Description

Second-generation sulfonylurea; twice as potent as glipizide and longer duration of action
Used primarily in adults for the treatment of type 2 diabetes mellitus
Due to longer duration of action, not a preferred sulfonylurea in the elderly

Dosage And Indications
For the treatment of type 2 diabetes mellitus as an adjunct to diet and exercise. Oral dosage (conventional glyburide products, e.g., Diabeta) Adults

2.5 to 5 mg PO once daily, initially. May increase dose by 2.5 mg/day every week if needed. Consider dividing dose more than 10 mg/day into 2 doses. Usual dose range: 1.25 to 20 mg/day. Max: 20 mg/day. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.

Geriatric Adults

1.25 mg PO once daily, initially. May increase dose by 2.5 mg/day every week if needed; a conservative titration scheme is recommended. Consider dividing dose more than 10 mg/day into 2 doses. Usual dose range: 1.25 to 20 mg/day. Max: 20 mg/day. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.

Children† and Adolescents† 9 years and older

Safety and efficacy have not been established for type 2 diabetes mellitus (T2DM); not FDA-approved. Not a first-line therapy in pediatric patients for T2DM. In one study, metformin monotherapy, glyburide monotherapy and metformin and glyburide combined therapy (range of glyburide dosing: 1.25 mg to 5 mg PO twice daily) were compared in pediatric patients 9 to 16 years of age with T2DM. After 26 weeks, the mean hemoglobin A1C declined in all 3 groups. However, combination therapy failed to show superiority over use of either drug alone. In general, sulfonylureas are not superior to metformin for T2DM in this age group, and, they may cause weight gain and exhibit higher rates of hypoglycemia. More study is needed of use as add-on therapy to metformin.

Oral dosage (micronized glyburide products, e.g., Glynase) Adults

1.5 or 3 mg PO once daily, initially. May increase dose by 1.5 mg/day every week if needed. Consider dividing doses more than 6 mg/day into 2 doses. Usual dose range: 0.75 to 12 mg/day. Max: 12 mg/day. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.

Geriatric Adults

0.75 mg PO once daily, initially. May increase dose by 1.5 mg/day every week if needed; a conservative titration scheme is recommended. Consider dividing doses more than 6 mg/day into 2 doses. Usual dose range: 0.75 to 12 mg/day. Max: 12 mg/day. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.

For the treatment of gestational diabetes† or pre-existing type 2 diabetes mellitus during pregnancy† (pregestational diabetes†). Oral dosage (conventional glyburide products, e.g., Diabeta) Adults

2.5 mg PO once daily, initially. Increase the dose by 2.5 to 5 mg/day weekly as needed. Usual Max: 20 mg/day. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions. Glyburide is not a first-line agent for gestational diabetes; it does not yield equivalent outcomes to insulin. Glyburide does cross the placenta and long-term safety data for children exposed to glyburide in utero are not available. Glyburide may rarely be considered during pregnancy in persons with type 2 diabetes mellitus who decline insulin, are unable to safely administer insulin, or otherwise afford insulin.

†Indicates off-label use

Dosing Considerations
Hepatic Impairment

Use conservative initial and maintenance doses of glyburide to avoid hypoglycemic reactions. Consider an initial adult dosage of 1.25 mg/day PO for conventional glyburide products (e.g., Diabeta) or 0.75 mg/day PO for micronized glyburide (e.g., Glynase), then titrate carefully to attain clinical goals.

Renal Impairment

Use conservative initial and maintenance doses of glyburide to avoid hypoglycemic reactions. Consider an initial adult dosage of 1.25 mg/day PO for conventional glyburide products (e.g., Diabeta) or 0.75 mg/day PO for micronized glyburide (e.g., Glynase), then titrate carefully to attain clinical goals.

Drug Interactions

Acebutolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Acetaminophen; Aspirin, ASA; Caffeine: (Moderate) Monitor blood glucose during concomitant sulfonylurea and aspirin use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Acetaminophen; Aspirin: (Moderate) Monitor blood glucose during concomitant sulfonylurea and aspirin use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Acetaminophen; Aspirin; Diphenhydramine: (Moderate) Monitor blood glucose during concomitant sulfonylurea and aspirin use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Chlorpheniramine; Phenylephrine : (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Dextromethorphan; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Dichloralphenazone; Isometheptene: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Guaifenesin; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acitretin: (Moderate) Retinoids have been reported to cause changes in blood sugar control in diabetics. In a study of 7 healthy male volunteers, acitretin treatment potentiated the blood glucose lowering effect of glibenclamide (a sulfonylurea similar to chlorpropamide) in 3 of the 7 subjects. Repeating the study with 6 healthy male volunteers in the absence of glibenclamide did not detect an effect of acitretin on glucose tolerance. Careful supervision of diabetic patients under treatment with acitretin is recommended, especially those taking concomitant sulfonylureas. There appears to be no pharmacokinetic interaction between acitretin and glyburide.
Acrivastine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Adagrasib: (Moderate) Monitor for an increase in glyburide-related adverse reactions, such as hypoglycemia, if coadministration with adagrasib is necessary. Concomitant use may increase glyburide exposure. Glyburide is a CYP2C9 substrate; adagrasib is a moderate CYP2C9 inhibitor.
Alogliptin: (Moderate) A lower sulfonylurea dose may be required when used in combination with alogliptin to minimize the risk of hypoglycemia.
Alogliptin; Metformin: (Moderate) A lower sulfonylurea dose may be required when used in combination with alogliptin to minimize the risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant sulfonylurea and metformin use; a sulfonylurea dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Alogliptin; Pioglitazone: (Moderate) A lower sulfonylurea dose may be required when used in combination with alogliptin to minimize the risk of hypoglycemia. (Moderate) If hypoglycemia occurs during concomitant use of pioglitazone and a sulfonylurea, reduce the dose of the sulfonylurea. Patients receiving pioglitazone in combination with sulfonylureas may be at risk for hypoglycemia.
Aminolevulinic Acid: (Moderate) Additive photosensitization may be seen with concurrent administration of sulfonylureas and other photosensitizing agents. Prevention of photosensitivity includes adequate protection from sources of UV radiation (e.g., avoiding sun exposure and tanning booths) and the use of protective clothing and sunscreens on exposed skin.
Amiodarone: (Minor) Amiodarone inhibits cytochrome P450 2C9. Caution is recommended when administering amiodarone with other CYP2C9 substrates including sulfonylureas.
Amlodipine; Benazepril: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Amlodipine; Olmesartan: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Amlodipine; Valsartan: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Amoxicillin; Clarithromycin; Omeprazole: (Moderate) The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
Amphetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Amphetamine; Dextroamphetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Androgens: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
Angiotensin II receptor antagonists: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Angiotensin-converting enzyme inhibitors: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Antacids: (Moderate) Antacids have been reported to increase the absorption of non-micronized glyburide, enhancing their hypoglycemic effects. Although the exact mechanism is not known, theoretically it may be due to alterations in gastric pH. If antacids must be used while a patient is taking glyburide, give the glyburide at least 2 hours prior to the antacid. Consider closely monitoring blood glucose concentrations.
Apalutamide: (Moderate) Monitor blood sugars if coadministration of glyburide with apalutamide is necessary. Glyburide is a CYP2C9 substrate and apalutamide is a weak CYP2C9 inducer. Coadministration may decrease glyburide plasma concentrations, resulting in increased blood sugars.
Aprepitant, Fosaprepitant: (Minor) Use caution if glyburide and aprepitant are used concurrently and monitor for a possible decrease in the efficacy of glyburide. After administration, fosaprepitant is rapidly converted to aprepitant and shares the same drug interactions. Glyburide is a CYP2C9 substrate and aprepitant is a CYP2C9 inducer. Administration of a CYP2C9 substrate, tolbutamide, on days 1, 4, 8, and 15 with a 3-day regimen of oral aprepitant (125 mg/80 mg/80 mg) decreased the tolbutamide AUC by 23% on day 4, 28% on day 8, and 15% on day 15. The AUC of tolbutamide was decreased by 8% on day 2, 16% on day 4, 15% on day 8, and 10% on day 15 when given prior to oral administration of aprepitant 40 mg on day 1, and on days 2, 4, 8, and 15. The effects of aprepitant on tolbutamide were not considered significant. When a 3-day regimen of aprepitant (125 mg/80 mg/80 mg) given to healthy patients on stabilized chronic warfarin therapy (another CYP2C9 substrate), a 34% decrease in S-warfarin trough concentrations was noted, accompanied by a 14% decrease in the INR at five days after completion of aprepitant.
Aripiprazole: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and sulfonylurea use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Articaine; Epinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Asciminib: (Moderate) Monitor for an increase in glyburide-related adverse reactions, such as hypoglycemia, if coadministration with asciminib 200 mg twice daily is necessary. Concomitant use may increase glyburide exposure. Glyburide is a CYP2C9 substrate and asciminib 200 mg twice daily is a moderate CYP2C9 inhibitor. An interaction is not expected with asciminib doses less than 200 mg twice daily.
Asenapine: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and sulfonylurea use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Aspirin, ASA: (Moderate) Monitor blood glucose during concomitant sulfonylurea and aspirin use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Aspirin, ASA; Butalbital; Caffeine: (Moderate) Monitor blood glucose during concomitant sulfonylurea and aspirin use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Aspirin, ASA; Caffeine: (Moderate) Monitor blood glucose during concomitant sulfonylurea and aspirin use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Aspirin, ASA; Caffeine; Orphenadrine: (Moderate) Monitor blood glucose during concomitant sulfonylurea and aspirin use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Aspirin, ASA; Carisoprodol: (Moderate) Monitor blood glucose during concomitant sulfonylurea and aspirin use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Aspirin, ASA; Carisoprodol; Codeine: (Moderate) Monitor blood glucose during concomitant sulfonylurea and aspirin use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Aspirin, ASA; Citric Acid; Sodium Bicarbonate: (Moderate) Antacids have been reported to increase the absorption of non-micronized glyburide, enhancing their hypoglycemic effects. Although the exact mechanism is not known, theoretically it may be due to alterations in gastric pH. Consider closely monitoring blood glucose concentrations. (Moderate) Monitor blood glucose during concomitant sulfonylurea and aspirin use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Aspirin, ASA; Dipyridamole: (Moderate) Monitor blood glucose during concomitant sulfonylurea and aspirin use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Aspirin, ASA; Omeprazole: (Moderate) Monitor blood glucose during concomitant sulfonylurea and aspirin use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Aspirin, ASA; Oxycodone: (Moderate) Monitor blood glucose during concomitant sulfonylurea and aspirin use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Atazanavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Atazanavir; Cobicistat: (Moderate) Caution is warranted when cobicistat is administered with glyburide as there is a potential for elevated glyburide concentrations. Glyburide is a substrate of P-glycoprotein (P-gp) and cobicistat is an inhibitor of P-gp. (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Atenolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Atenolol; Chlorthalidone: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
atypical antipsychotic: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and sulfonylurea use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Azilsartan: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Azilsartan; Chlorthalidone: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Benazepril: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Benzphetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Beta-blockers: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Betaxolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Bexarotene: (Moderate) Systemic bexarotene may enhance the action of agents that enhance insulin secretion (e.g., sulfonylureas) resulting in hypoglycemia. Patients should be closely monitored while receiving bexarotene capsules in combination with any of these agents; monitor for hypoglycemia and the need for diabetic therapy adjustments. Hypoglycemia has not been associated with bexarotene monotherapy.
Bismuth Subsalicylate: (Moderate) Monitor blood glucose during concomitant sulfonylurea and bismuth subsalicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) Monitor blood glucose during concomitant sulfonylurea and bismuth subsalicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Bisoprolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Bortezomib: (Moderate) During clinical trials of bortezomib, hypoglycemia and hyperglycemia were reported in diabetic patients receiving antidiabetic agents. Patients taking antidiabetic agents and receiving bortezomib treatment may require close monitoring of their blood glucose levels and dosage adjustment of their medication.
Bosentan: (Contraindicated) Coadministration of bosentan and glyburide is contraindicated, and alternative antidiabetic agents should be considered. An increased risk of elevated liver enzymes has been observed in patients receiving concomitant therapy with bosentan and glyburide. Coadministration of bosentan decreases the plasma concentrations of glyburide by approximately 40%. The plasma concentrations of bosentan are also decreased by approximately 30%.
Brexpiprazole: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and sulfonylurea use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Brimonidine; Timolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Brompheniramine; Dextromethorphan; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Brompheniramine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Brompheniramine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Brompheniramine; Pseudoephedrine; Dextromethorphan: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Bumetanide: (Minor) Bumetanide has been associated with hyperglycemia, possibly due to potassium depletion, and, glycosuria has been reported. Because of this, a potential pharmacodynamic interaction exists between bumetanide and all antidiabetic agents. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
Bupivacaine; Epinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Butalbital; Aspirin; Caffeine; Codeine: (Moderate) Monitor blood glucose during concomitant sulfonylurea and aspirin use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Cabozantinib: (Minor) Monitor for an increase in glyburide-related adverse reactions, including hypoglycemia, if coadministration with cabozantinib is necessary. Glyburide is a P-glycoprotein (P-gp) substrate. Cabozantinib is a P-gp inhibitor and has the potential to increase plasma concentrations of P-gp substrates; however, the clinical relevance of this finding is unknown.
Calcium Carbonate: (Moderate) Antacids have been reported to increase the absorption of non-micronized glyburide, enhancing their hypoglycemic effects. Although the exact mechanism is not known, theoretically it may be due to alterations in gastric pH. Consider closely monitoring blood glucose concentrations.
Calcium Carbonate; Famotidine; Magnesium Hydroxide: (Moderate) Antacids have been reported to increase the absorption of non-micronized glyburide, enhancing their hypoglycemic effects. Although the exact mechanism is not known, theoretically it may be due to alterations in gastric pH. Consider closely monitoring blood glucose concentrations.
Calcium Carbonate; Magnesium Hydroxide: (Moderate) Antacids have been reported to increase the absorption of non-micronized glyburide, enhancing their hypoglycemic effects. Although the exact mechanism is not known, theoretically it may be due to alterations in gastric pH. Consider closely monitoring blood glucose concentrations.
Calcium Carbonate; Magnesium Hydroxide; Simethicone: (Moderate) Antacids have been reported to increase the absorption of non-micronized glyburide, enhancing their hypoglycemic effects. Although the exact mechanism is not known, theoretically it may be due to alterations in gastric pH. Consider closely monitoring blood glucose concentrations.
Calcium Carbonate; Simethicone: (Moderate) Antacids have been reported to increase the absorption of non-micronized glyburide, enhancing their hypoglycemic effects. Although the exact mechanism is not known, theoretically it may be due to alterations in gastric pH. Consider closely monitoring blood glucose concentrations.
Calcium; Vitamin D: (Moderate) Antacids have been reported to increase the absorption of non-micronized glyburide, enhancing their hypoglycemic effects. Although the exact mechanism is not known, theoretically it may be due to alterations in gastric pH. Consider closely monitoring blood glucose concentrations.
Canagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant sulfonylurea and metformin use; a sulfonylurea dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Candesartan: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Cannabidiol: (Moderate) Consider a dose reduction of glyburide as clinically appropriate, if adverse reactions occur when administered with cannabidiol. Increased glyburide exposure is possible. Glyburide is a CYP2C9 substrate. In vitro data predicts inhibition of CYP2C9 by cannabidiol potentially resulting in clinically significant interactions.
Captopril: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Captopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Carbonic anhydrase inhibitors: (Minor) Carbonic anhydrase inhibitors may alter blood sugar. Both hyperglycemia and hypoglycemia have been described in patients treated with acetazolamide. This should be taken into consideration in patients with impaired glucose tolerance or diabetes mellitus who are receiving antidiabetic agents. Monitor blood glucose and for changes in glycemic control and be alert for evidence of an interaction.
Cariprazine: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and sulfonylurea use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Carteolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Carvedilol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Ceritinib: (Moderate) Monitor for glyburide-related adverse reactions including hypoglycemia if coadministered with ceritinib; glyburide exposure may increase. Ceritinib is a weak CYP2C9 inhibitor and glyburide is primarily metabolized by CYP2C9.
Cetirizine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Chloramphenicol: (Moderate) Clinical hypoglycemia may be observed when chloramphenicol is used in combination with sulfonylureas. If chloramphenicol is administered or discontinued in patients receiving oral sulfonylureas, patients should be monitored for hypoglycemia or loss of blood glucose control. Chloramphenicol may inhibit the hepatic metabolism of sulfonylureas. In addition, the hypoglycemic action of glyburide and glipizide may be potentiated by other drugs that are highly protein bound, such as chloramphenicol.
Chloroquine: (Major) Careful monitoring of blood glucose is recommended when chloroquine and antidiabetic agents, including the sulfonylureas, are coadministered. A decreased dose of the antidiabetic agent may be necessary as severe hypoglycemia has been reported in patients treated concomitantly with chloroquine and an antidiabetic agent.
Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Chlorpheniramine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Chlorpheniramine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Chlorthalidone; Clonidine: (Minor) Increased frequency of blood glucose monitoring may be required when clonidine is given with antidiabetic agents. Since clonidine inhibits the release of catecholamines, clonidine may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Clonidine does not appear to impair recovery from hypoglycemia, and has not been found to impair glucose tolerance in diabetic patients.
Choline Salicylate; Magnesium Salicylate: (Moderate) If salicylates and sulfonylureas are to be administered together, patients should be monitored for changes in glycemic control. Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar and may potentiate the effects of other antidiabetic agents. This mechanism may explain how salicylates can potentiate the clinical effects of sulfonylureas; however, displacement of sulfonylureas from protein binding sites has also been reported. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria.
Chromium: (Moderate) Chromium dietary supplements may lower blood glucose. As part of the glucose tolerance factor molecule, chromium appears to facilitate the binding of insulin to insulin receptors in tissues and to aid in glucose metabolism. Because blood glucose may be lowered by the use of chromium, patients who are on antidiabetic agents may need dose adjustments. Close monitoring of blood glucose is recommended.
Cimetidine: (Moderate) Monitor blood glucose during concomitant cimetidine and sulfonylurea use due to increased risk for hypoglycemia. Cimetidine has been shown to affect the pharmacokinetics of some sulfonylureas. The mechanism of this interaction may involve either increasing the absorption or decreasing the clearance of the sulfonylurea. Asymptomatic hypoglycemia has been observed during coadministration.
Cisapride: (Moderate) Because cisapride can enhance gastric emptying in diabetic patients, blood glucose can be affected, which, in turn, may affect the clinical response to antidiabetic agents. Monitor blood glucose and adjust if cliniically indicated.
Clarithromycin: (Moderate) The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
Clindamycin; Tretinoin: (Moderate) A manufacturer of topical tretinoin states that tretinoin, ATRA should be administered with caution in patients who are also taking drugs known to be photosensitizers, such as sulfonylureas, as concomitant use may augment phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure of treated areas.
Clonidine: (Minor) Increased frequency of blood glucose monitoring may be required when clonidine is given with antidiabetic agents. Since clonidine inhibits the release of catecholamines, clonidine may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Clonidine does not appear to impair recovery from hypoglycemia, and has not been found to impair glucose tolerance in diabetic patients.
Clozapine: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and sulfonylurea use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Cobicistat: (Moderate) Caution is warranted when cobicistat is administered with glyburide as there is a potential for elevated glyburide concentrations. Glyburide is a substrate of P-glycoprotein (P-gp) and cobicistat is an inhibitor of P-gp.
Codeine; Guaifenesin; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Codeine; Phenylephrine; Promethazine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Colesevelam: (Moderate) Colesevelam reduces the oral bioavailability of glyburide, glipizide, glimepiride and other sulfonylureas. Administer these drugs at least 4 hours before colesevelam to limit this interaction. Drug response, including glycemic control, should also be monitored. Additionally, in patients with type 2 diabetes mellitus receiving sulfonylureas, colesevelam increased serum triglyceride concentrations by 18% compared to placebo (p less than 0.001). Monitor patients taking these treatments together for an increase in triglyceride concentrat

ions. Discontinue colesevelam if triglyceride concentrations are more than 500 mg/dL or if hypertriglyceridemia-induced pancreatitis occurs.
Conivaptan: (Moderate) Glyburide is a substrate of drug transporter P-glycoprotein (P-gp). Conivaptan is a P-gp inhibitor and may theoretically increase concentrations of glyburide. Patients should be monitored for changes in glycemic control.
Conjugated Estrogens: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Conjugated Estrogens; Bazedoxifene: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Conjugated Estrogens; Medroxyprogesterone: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Corticosteroids: (Moderate) Monitor blood glucose during concomitant corticosteroid and sulfonylurea use; a sulfonylurea dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Cyclosporine: (Moderate) Sulfonylureas may increase concentrations of cyclosporine. Retrospective data from 6 adults with post-renal transplant diabetes mellitus and normal hepatic and renal function before and after glyburide initiation were examined. The mean plasma cyclosporine concentration from 5 months of data before glyburide use was 212.3 +/- 66.4 ng/ml. In contrast, the mean plasma cyclosporine concentration from 5 months of data during glyburide use was 334.8 +/- 65.8 ng/ml. Until more data are available, when glyburide is added to cyclosporine therapy, monitor cyclosporine concentrations and adjust cyclosporine dosage as necessary. Also, monitor patients for increased cyclosporine toxicity (renal dysfunction, neurotoxicity). In addition, cyclosporine has been reported to cause hyperglycemia. Cyclosporine may have direct beta-cell toxicity, the effects of which may be dose-related. Patients should be monitored for worsening of glycemic control if cyclosporine is initiated in patients receiving antidiabetic agents.
Daclatasvir: (Moderate) Closely monitor blood glucose levels if daclatasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as daclatasvir.
Danazol: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
Dapagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant sulfonylurea and metformin use; a sulfonylurea dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Dapagliflozin; Saxagliptin: (Moderate) A lower sulfonylurea dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with a sulfonylurea, the incidence of hypoglycemia was increased compared to a placebo used in combination with a sulfonylurea.
Darolutamide: (Moderate) Monitor for an increase in glyburide-related adverse reactions, such as hypoglycemia, if coadministration with darolutamide is necessary. Concomitant use may increase glyburide exposure. Glyburide is a substrate of OATP1B1/3; darolutamide is an OATP1B1/3 inhibitor.
Darunavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Darunavir; Cobicistat: (Moderate) Caution is warranted when cobicistat is administered with glyburide as there is a potential for elevated glyburide concentrations. Glyburide is a substrate of P-glycoprotein (P-gp) and cobicistat is an inhibitor of P-gp. (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Moderate) Caution is warranted when cobicistat is administered with glyburide as there is a potential for elevated glyburide concentrations. Glyburide is a substrate of P-glycoprotein (P-gp) and cobicistat is an inhibitor of P-gp. (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Desloratadine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Desogestrel; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Dexbrompheniramine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dexmethylphenidate: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dextroamphetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dextromethorphan; Diphenhydramine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Diazoxide: (Minor) Diazoxide, when administered intravenously or orally, produces a prompt dose-related increase in blood glucose level, due primarily to an inhibition of insulin release from the pancreas, and also to an extrapancreatic effect. The hyperglycemic effect begins within an hour and generally lasts no more than 8 hours in the presence of normal renal function. The hyperglycemic effect of diazoxide is expected to be antagonized by certain antidiabetic agents (e.g., insulin or a sulfonylurea). Blood glucose should be closely monitored.
Dienogest; Estradiol valerate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Diethylpropion: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Diethylstilbestrol, DES: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Diphenhydramine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Disopyramide: (Moderate) Disopyramide may enhance the hypoglycemic effects of antidiabetic agents. Patients receiving disopyramide concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Dobutamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dopamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dorzolamide; Timolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Doxapram: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Drospirenone; Estetrol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Drospirenone; Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Drospirenone; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Drospirenone; Ethinyl Estradiol; Levomefolate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Dulaglutide: (Moderate) Monitor blood glucose during concomitant sulfonylurea and dulaglutide use; consider decreasing the sulfonylurea dose when starting dulaglutide. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Elagolix; Estradiol; Norethindrone acetate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Elbasvir; Grazoprevir: (Moderate) Closely monitor blood glucose levels if elbasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as elbasvir.
Elexacaftor; tezacaftor; ivacaftor: (Moderate) Increased monitoring is recommended if ivacaftor is administered concurrently with CYP2C9 substrates, such as glyburide. Ivacaftor is an inhibitor of P-glycoprotein (Pgp) and a weak inhibitor of CYP2C9; glyburide is metabolized by CYP2C9 and is substrate of Pgp. Co-administration of ivacaftor with Pgp and CYP2C9 substrates, such as glyburide, can theoretically increase glyburide exposure leading to increased or prolonged therapeutic effects and adverse events; however, the clinical impact of this has not yet been determined. (Moderate) Monitor for an increase in glyburide-related adverse reactions, such as hypoglycemia, if coadministration with elexacaftor is necessary. Concomitant use may increase glyburide exposure. Glyburide is a substrate of OATP1B1/3; elexacaftor is an OATP1B1/3 inhibitor.
Eliglustat: (Moderate) Coadministration of glyburide and eliglustat may result in increased plasma concentrations of glyburide. Monitor patients closely for glyburide-related adverse effects; if hypoglycemia occurs, consider reducing the glyburide dosage and titrating to clinical effect. Glyburide is a P-glycoprotein (P-gp) substrate; eliglustat is a P-gp inhibitor.
Eltrombopag: (Moderate) Use caution and monitor blood glucose carefully if eltrombopag and glyburide are coadministered. Eltrombopag is an inhibitor of the transporter OATP1B1. Drugs that are substrates for this transporter, such as glyburide, may exhibit an increase in systemic exposure if coadministered with eltrombopag.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Alafenamide: (Moderate) Caution is warranted when cobicistat is administered with glyburide as there is a potential for elevated glyburide concentrations. Glyburide is a substrate of P-glycoprotein (P-gp) and cobicistat is an inhibitor of P-gp. (Minor) Caution is warranted when elvitegravir is administered with glyburide as there is a potential for decreased glyburide concentrations. Patients may experience a decreased hypoglycemic effect during coadministration. Glyburide is a substrate of CYP2C9, while elvitegravir is a CYP2C9 inducer.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Moderate) Caution is warranted when cobicistat is administered with glyburide as there is a potential for elevated glyburide concentrations. Glyburide is a substrate of P-glycoprotein (P-gp) and cobicistat is an inhibitor of P-gp. (Minor) Caution is warranted when elvitegravir is administered with glyburide as there is a potential for decreased glyburide concentrations. Patients may experience a decreased hypoglycemic effect during coadministration. Glyburide is a substrate of CYP2C9, while elvitegravir is a CYP2C9 inducer.
Empagliflozin; Linagliptin; Metformin: (Moderate) Monitor blood glucose during concomitant sulfonylurea and metformin use; a sulfonylurea dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Empagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant sulfonylurea and metformin use; a sulfonylurea dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Enalapril, Enalaprilat: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Enasidenib: (Moderate) Monitor for an increase in glyburide-related adverse reactions, such as hypoglycemia, if coadministration with enasidenib is necessary. Concomitant use may increase glyburide exposure. Glyburide is a substrate of OATP1B1/3; enasidenib is an OATP1B1/3 inhibitor.
Encorafenib: (Moderate) Monitor for an increase in glyburide-related adverse reactions, such as hypoglycemia, if coadministration with encorafenib is necessary. Concomitant use may increase glyburide exposure. Glyburide is a substrate of OATP1B1/3; encorafenib is an OATP1B1/3 inhibitor.
Enzalutamide: (Moderate) Monitor blood sugars if coadministration of glyburide with enzalutamide is necessary due to decreased plasma concentrations of glyburide. Glyburide is a CYP2C9 substrate and enzalutamide is a moderate CYP2C9 inducer.
Ephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Ephedrine; Guaifenesin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Epinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Eprosartan: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Eravacycline: (Moderate) Use sulfonylureas and eravacycline together with caution; the risk of severe burns/photosensitivity may be additive. If concurrent use is necessary, closely monitor patients for signs or symptoms of skin toxicity. Prevention of photosensitivity includes adequate protection from sources of UV radiation and the use of protective clothing and sunscreens on exposed skin.
Ertugliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant sulfonylurea and metformin use; a sulfonylurea dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Esmolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Esterified Estrogens: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Esterified Estrogens; Methyltestosterone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Estradiol; Levonorgestrel: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Estradiol; Norethindrone: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Estradiol; Norgestimate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Estradiol; Progesterone: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Estramustine: (Minor) Estramustine is an estrogen-containing medication and may decrease glucose tolerance. Patients receiving antidiabetic agents should monitor their blood glucose levels frequently due to this potential pharmacodynamic interaction.
Estrogens: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Estropipate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Ethanol: (Major) Patients should be advised to avoid or limit alcohol ingestion when treated with sulfonylureas. Alcohol ingestion increases hypoglycemic risk. In some patients, hypoglycemia can be prolonged. Patients should be educated regarding the signs, symptoms, and self-management of delayed hypoglycemia after drinking alcohol, especially when using sulfonylureas. The importance of glucose monitoring after drinking alcoholic beverages to reduce hypoglycemia risk should be emphasized.
Ethinyl Estradiol; Norelgestromin: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Ethinyl Estradiol; Norethindrone Acetate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Ethinyl Estradiol; Norgestrel: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Ethotoin: (Minor) Phenytoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically. In addition, coadministration may result in decreased serum concentrations of chlorpropamide. Monitor blood glucose for changes in glycemic control. Dosage adjustments may be necessary in some patients.
Ethynodiol Diacetate; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Etonogestrel; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Exenatide: (Moderate) The risk of hypoglycemia is increased when exenatide is used in combination with insulins or insulin secretagogues such as the sulfonylureas. Although specific dose recommendations are not available, a lower dose of the insulin or secretagogue may be required to reduce the risk of hypoglycemia in this setting. Adequate blood glucose monitoring should be continued and followed.
Fenofibrate: (Moderate) Monitor blood glucose during concomitant sulfonylurea and fenofibrate use; a sulfonylurea dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Fenofibric Acid: (Moderate) Monitor blood glucose during concomitant sulfonylurea and fenofibric acid use; a sulfonylurea dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Fexofenadine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Fluconazole: (Moderate) A potential interaction between fluconazole and glyburide, leading to hypoglycemia, sometimes severe, has been reported. The most likely mechanism for this interaction is inhibition of the CYP450 metabolism of oral hypoglycemics by azole antifungals. For example, the combination of fluconazole and glyburide has resulted in significant increases in the AUCs (roughly 44% or more) and Cmax (roughly 20%) of glyburide in healthy volunteers; however, individual patients may have greater or lesser changes in these pharmacokinetic parameters. Blood glucose concentrations should be monitored and possible dose adjustments of hypoglycemics may be necessary. There is no evidence that an interaction occurs between oral hypoglycemics and topical or vaginal azole antifungal preparations.
Fluocinolone; Hydroquinone; Tretinoin: (Moderate) A manufacturer of topical tretinoin states that tretinoin, ATRA should be administered with caution in patients who are also taking drugs known to be photosensitizers, such as sulfonylureas, as concomitant use may augment phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure of treated areas.
Fluoxetine: (Moderate) Monitor blood glucose during concomitant sulfonylurea and fluoxetine use; a sulfonylurea dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Fluvastatin: (Moderate) Monitor the blood glucose of patients on glyburide when fluvastatin therapy is initiated or when the fluvastatin dose is changed. Concurrent administration results in increased glyburide exposure, which could lead to hypoglycemia and other adverse effects. Glyburide is a CYP2C9 substrate; fluvastatin inhibits this enzyme. The glyburide AUC increased by 70% when glyburide 5 to 20 mg daily for 22 days was coadministered with fluvastatin 40 mg daily for 8 days.
Fosamprenavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Fosinopril: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Fosphenytoin: (Minor) Phenytoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically. In addition, coadministration may result in decreased serum concentrations of chlorpropamide. Monitor blood glucose for changes in glycemic control. Dosage adjustments may be necessary in some patients.
Furosemide: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
Garlic, Allium sativum: (Moderate) Patients receiving antidiabetic agents should use dietary supplements of Garlic, Allium sativum with caution. Constituents in garlic might have some antidiabetic activity, and may increase serum insulin levels and increase glycogen storage in the liver. Monitor blood glucose and glycemic control. Patients with diabetes should inform their health care professionals of their intent to ingest garlic dietary supplements. Some patients may require adjustment to their hypoglycemic medications over time. One study stated that additional garlic supplementation (0.05 to 1.5 grams PO per day) contributed to improved blood glucose control in patients with type 2 diabetes mellitus within 1 to 2 weeks, and had positive effects on total cholesterol and high/low density lipoprotein regulation over time. It is unclear if hemoglobin A1C is improved or if improvements are sustained with continued treatment beyond 24 weeks. Other reviews suggest that garlic may provide modest improvements in blood lipids, but few studies demonstrate decreases in blood glucose in diabetic and non-diabetic patients. More controlled trials are needed to discern if garlic has an effect on blood glucose in patients with diabetes. When garlic is used in foods or as a seasoning, or at doses of 50 mg/day or less, it is unlikely that blood glucose levels are affected to any clinically significant degree.
Gemfibrozil: (Moderate) There is an increased risk for hypoglycemia when gemfibrozil is used with sulfonylureas. Dose reductions and increased frequency of glucose monitoring may be required. Gemfibrozil is a potent inhibitor of CYP2C9, which metabolizes many of the sulfonylureas. In addition, glyburide is a substrate of the OATP1B1 transporter and gemfibrozil inhibits OATP1B1. Due to the effects of gemfibrozil on sulfonylurea metabolic pathways, an increase in sulfonylurea exposure may occur. Fibric acid derivatives may also enhance the hypoglycemic effects of antidiabetic agents through increased insulin sensitivity and increased glucagon secretion.
Glecaprevir; Pibrentasvir: (Moderate) Closely monitor blood glucose levels if glecaprevir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as glecaprevir. (Moderate) Closely monitor blood glucose levels if pibrentasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as pibrentasvir.
Glipizide; Metformin: (Moderate) Monitor blood glucose during concomitant sulfonylurea and metformin use; a sulfonylurea dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Glyburide; Metformin: (Moderate) Monitor blood glucose during concomitant sulfonylurea and metformin use; a sulfonylurea dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Green Tea: (Moderate) Green tea catechins have been shown to decrease serum glucose concentrations in vitro. Patients with diabetes mellitus taking antidiabetic agents should be monitored closely for hypoglycemia if consuming green tea products.
Griseofulvin: (Moderate) Additive photosensitization may be seen with concurrent administration of sulfonylureas and other photosensitizing agents including griseofulvin. Prevention of photosensitivity includes adequate protection from sources of UV radiation (e.g., avoiding sun exposure and tanning booths) and the use of protective clothing and sunscreens on exposed skin.
Guaifenesin; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Guaifenesin; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Halobetasol; Tazarotene: (Moderate) The manufacturer states that tazarotene should be administered with caution in patients who are also taking drugs known to be photosensitizers, such as sulfonylureas, as concomitant use may augment phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure of treated areas.
Hydantoins: (Minor) Phenytoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically. In addition, coadministration may result in decreased serum concentrations of chlorpropamide. Monitor blood glucose for changes in glycemic control. Dosage adjustments may be necessary in some patients.
Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Hydrocodone; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Hydroxychloroquine: (Moderate) Monitor blood glucose during concomitant sulfonylurea and hydroxychloroquine use; a sulfonylurea dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Hydroxyprogesterone: (Minor) Progestins, like hydroxyprogesterone, can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Ibuprofen; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Iloperidone: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and sulfonylurea use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Indapamide: (Moderate) A potential pharmacodynamic interaction exists between indapamide and antidiabetic agents, like sulfonylureas. Indapamide can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia.
Indinavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Insulin Degludec; Liraglutide: (Moderate) Consider reducing the sulfonylurea dose when initiating liraglutide to reduce the risk for hypoglycemia. Patients receiving liraglutide in combination with a sulfonylurea may have an increased risk of hypoglycemia, including severe hypoglycemia.
Insulin Glargine; Lixisenatide: (Moderate) The risk of hypoglycemia is increased when lixisenatide is used in combination with insulin secretagogues such as the sulfonylureas. Although specific dose recommendations are not available, a lower dose of the sulfonylurea may be required to reduce the risk of hypoglycemia in this setting. Adequate blood glucose monitoring should be continued and followed.
Irbesartan: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Irbesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin receptor blocker use. Concomitant use may cause an increased b lood glucose-lowering effect with risk of hypoglycemia.
Isocarboxazid: (Moderate) Monitor blood glucose during concomitant sulfonylurea and monoamine oxidase inhibitor (MAOI) use; a sulfonylurea dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Isoproterenol: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Itraconazole: (Moderate) Itraconazole should be used cautiously with oral antidiabetic agents like sulfonylureas. The combination of itraconazole and oral antidiabetic agents has resulted in severe hypoglycemia. Blood glucose concentrations should be monitored and possible dose adjustments of hypoglycemics may need to be made.
Ivacaftor: (Moderate) Increased monitoring is recommended if ivacaftor is administered concurrently with CYP2C9 substrates, such as glyburide. Ivacaftor is an inhibitor of P-glycoprotein (Pgp) and a weak inhibitor of CYP2C9; glyburide is metabolized by CYP2C9 and is substrate of Pgp. Co-administration of ivacaftor with Pgp and CYP2C9 substrates, such as glyburide, can theoretically increase glyburide exposure leading to increased or prolonged therapeutic effects and adverse events; however, the clinical impact of this has not yet been determined.
Labetalol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Lanreotide: (Moderate) Monitor blood glucose levels regularly in patients with diabetes, especially when lanreotide treatment is initiated or when the dose is altered. Adjust treatment with antidiabetic agents as clinically indicated. Lanreotide inhibits the secretion of insulin and glucagon. Patients treated with lanreotide may experience either hypoglycemia or hyperglycemia.
Lansoprazole; Amoxicillin; Clarithromycin: (Moderate) The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
Ledipasvir; Sofosbuvir: (Moderate) Closely monitor blood glucose levels if ledipasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agent(s) may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as ledipasvir. (Moderate) Closely monitor blood glucose levels if sofosbuvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as sofosbuvir.
Leniolisib: (Moderate) Monitor for an increase in glyburide-related adverse reactions, such as hypoglycemia, if coadministration with leniolisib is necessary. Concomitant use may increase glyburide exposure. Glyburide is a substrate of OATP1B1/3; leniolisib is an OATP1B1/3 inhibitor.
Letermovir: (Moderate) Frequently monitor glucose concentrations when glyburide is given with letermovir. The magnitude of this interaction may be increased if letermovir is given with cyclosporine. Concurrent administration of letermovir, an organic anion-transporting polypeptide (OATP1B1/3) inhibitor, with glyburide, an OATP1B1/3 substrate, may result in a clinically relevant increase in glyburide plasma concentration.
Levobunolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Levonorgestrel; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Levonorgestrel; Ethinyl Estradiol; Ferrous Bisglycinate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Levonorgestrel; Ethinyl Estradiol; Ferrous Fumarate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Lidocaine; Epinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Linagliptin; Metformin: (Moderate) Monitor blood glucose during concomitant sulfonylurea and metformin use; a sulfonylurea dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Linezolid: (Moderate) Hypoglycemia, including symptomatic episodes, has been noted in post-marketing reports with linezolid in patients with diabetes mellitus receiving therapy with antidiabetic agents, such as insulin and oral hypoglycemic agents. Diabetic patients should be monitored for potential hypoglycemic reactions while on linezolid. If hypoglycemia occurs, discontinue or decrease the dose of the antidiabetic agent or discontinue the linezolid therapy. Linezolid is a reversible, nonselective MAO inhibitor and other MAO inhibitors have been associated with hypoglycemic episodes in diabetic patients receiving insulin or oral hypoglycemic agents.
Liraglutide: (Moderate) Consider reducing the sulfonylurea dose when initiating liraglutide to reduce the risk for hypoglycemia. Patients receiving liraglutide in combination with a sulfonylurea may have an increased risk of hypoglycemia, including severe hypoglycemia.
Lisdexamfetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Lisinopril: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Lisinopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Lixisenatide: (Moderate) The risk of hypoglycemia is increased when lixisenatide is used in combination with insulin secretagogues such as the sulfonylureas. Although specific dose recommendations are not available, a lower dose of the sulfonylurea may be required to reduce the risk of hypoglycemia in this setting. Adequate blood glucose monitoring should be continued and followed.
Lonapegsomatropin: (Moderate) Patients with diabetes mellitus should be monitored closely during somatropin (recombinant rhGH) therapy. Antidiabetic drugs (e.g., insulin or oral agents) may require adjustment when somatropin therapy is instituted in these patients. Growth hormones, such as somatropin, may decrease insulin sensitivity, leading to glucose intolerance and loss of blood glucose control. Therefore, glucose levels should be monitored periodically in all patients treated with somatropin, especially in those with risk factors for diabetes mellitus.
Lopinavir; Ritonavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Loratadine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Lorcaserin: (Moderate) In general, weight reduction may increase the risk of hypoglycemia in patients with type 2 diabetes mellitus treated with antidiabetic agents, such as insulin and/or insulin secretagogues (e.g., sulfonylureas). In clinical trials, lorcaserin use was associated with reports of hypoglycemia. Blood glucose monitoring is warranted in patients with type 2 diabetes prior to starting and during lorcaserin treatment. Dosage adjustments of anti-diabetic medications should be considered. If a patient develops hypoglycemia during treatment, adjust anti-diabetic drug regimen accordingly. Of note, lorcaserin has not been studied in combination with insulin.
Losartan: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Losartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Lumacaftor; Ivacaftor: (Moderate) Increased monitoring is recommended if ivacaftor is administered concurrently with CYP2C9 substrates, such as glyburide. Ivacaftor is an inhibitor of P-glycoprotein (Pgp) and a weak inhibitor of CYP2C9; glyburide is metabolized by CYP2C9 and is substrate of Pgp. Co-administration of ivacaftor with Pgp and CYP2C9 substrates, such as glyburide, can theoretically increase glyburide exposure leading to increased or prolonged therapeutic effects and adverse events; however, the clinical impact of this has not yet been determined. (Moderate) Lumacaftor; ivacaftor may reduce the efficacy of glyburide by decreasing glyburide's systemic exposure. If used together, monitor blood glucose concentrations closely; the antidiabetic agent may require a dosage adjustment to obtain the desired therapeutic effect. Glyburide is a CYP2C9 substrate; in vitro studies suggest lumacaftor; ivacaftor has the potential to induce and inhibit CYP2C9. Of note, the metabolism of metformin is not affected.
Lumacaftor; Ivacaftor: (Moderate) Lumacaftor; ivacaftor may reduce the efficacy of glyburide by decreasing glyburide's systemic exposure. If used together, monitor blood glucose concentrations closely; the antidiabetic agent may require a dosage adjustment to obtain the desired therapeutic effect. Glyburide is a CYP2C9 substrate; in vitro studies suggest lumacaftor; ivacaftor has the potential to induce and inhibit CYP2C9. Of note, the metabolism of metformin is not affected.
Lumateperone: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and sulfonylurea use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Lurasidone: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and sulfonylurea use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Magnesium Salicylate: (Moderate) If salicylates and sulfonylureas are to be administered together, patients should be monitored for changes in glycemic control. Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar and may potentiate the effects of other antidiabetic agents. This mechanism may explain how salicylates can potentiate the clinical effects of sulfonylureas; however, displacement of sulfonylureas from protein binding sites has also been reported. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria.
Mavacamten: (Moderate) Monitor for a decrease in glyburide efficacy and worsening glycemic control if coadministration with mavacamten is necessary. Concomitant use may decrease glyburide exposure. Glyburide is a CYP2C9 substrate; mavacamten is a moderate CYP2C9 inducer.
Mecasermin, Recombinant, rh-IGF-1: (Moderate) Use caution in combining mecasermin, recombinant, rh-IGF-1 or mecasermin rinfabate (rh-IGF-1/rh-IGFBP-3) with antidiabetic agents. Patients should be advised to eat within 20 minutes of mecasermin administration. Glucose monitoring is important when initializing or adjusting mecasermin therapies, when adjusting concomitant antidiabetic therapy, and in the event of hypoglycemic symptoms. An increased risk for hypoglycemia is possible. The hypoglycemic effect induced by IGF-1 activity may be exacerbated. The amino acid sequence of mecasermin (rh-IGF-1) is approximately 50 percent homologous to insulin and cross binding with either receptor is possible. Treatment with mecasermin has been shown to improve insulin sensitivity and to improve glycemic control in patients with either Type 1 or Type 2 diabetes mellitus when used alone or in conjunction with insulins.
Metformin: (Moderate) Monitor blood glucose during concomitant sulfonylurea and metformin use; a sulfonylurea dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Metformin; Repaglinide: (Moderate) Monitor blood glucose during concomitant sulfonylurea and metformin use; a sulfonylurea dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Metformin; Rosiglitazone: (Major) A maximum dose of 8 mg/day of rosiglitazone is recommended when used in combination with sulfonylureas; the incidence of adverse effects including hypoglycemia is increased with larger doses. In one clinical study, rosiglitazone 4 or 8 mg/day was added to failed glimepiride plus metformin therapy. The incidence of hypoglycemia (blood glucose concentrations <= 50 mg/dl) was 18.6% in the 4 mg/day group compared with 28% in the 8 mg/day group. In addition, 4 or 8 mg/day of rosiglitazone has been added to failed glyburide plus metformin therapy. The incidence of hypoglycemia was higher in the rosiglitazone (average dose 7.4 mg/day)+glyburide+metformin group (22%) when compared to the glyburide+metformin group (3%). Patients should be instructed to monitor blood glucose concentrations more frequently. Dosage adjustments may be indicated. (Moderate) Monitor blood glucose during concomitant sulfonylurea and metformin use; a sulfonylurea dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Metformin; Saxagliptin: (Moderate) A lower sulfonylurea dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with a sulfonylurea, the incidence of hypoglycemia was increased compared to a placebo used in combination with a sulfonylurea. (Moderate) Monitor blood glucose during concomitant sulfonylurea and metformin use; a sulfonylurea dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Metformin; Sitagliptin: (Moderate) Monitor blood glucose during concomitant sulfonylurea and metformin use; a sulfonylurea dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Methamphetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Methotrexate: (Major) Avoid concomitant use of methotrexate and sulfonylureas due to the risk of severe methotrexate-related adverse reactions. If concomitant use is unavoidable, closely monitor for adverse reactions. Methotrexate is approximately 50% protein bound; sulfonylureas are highly protein-bound. Coadministration may displace methotrexate from its protein binding sites, increasing methotrexate plasma concentrations.
Methoxsalen: (Moderate) Additive photosensitization may be seen with concurrent administration of sulfonylureas and other photosensitizing agents.
Methylphenidate: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Methyltestosterone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
Metoprolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Metreleptin: (Moderate) Use caution when administering metreleptin to patients treated with concomitant insulins or insulin secretagogue therapy (i.e., sulfonylureas, nateglinide, repaglinide). In clinical evaluation of metreleptin, hypoglycemia occurred in 13% of patients with generalized lipodystrophy. Most reported cases occurred with concomitant insulin use, with or without oral antihyperglycemic agents. Closely monitor blood glucose in patients on concomitant insulin or insulin secretagogue therapy. Dosage adjustments to their antihyperglycemic medications may be necessary.
Metyrapone: (Moderate) In patients taking insulin or other antidiabetic agents, the signs and symptoms of acute metyrapone toxicity (e.g., symptoms of acute adrenal insufficiency) may be aggravated or modified.
Miconazole: (Moderate) Hypoglycemia, sometimes severe, has been reported when systemic azole antifungals are coadministered with sulfonylureas. No formal drug interaction studies have been performed with buccal miconazole. Miconazole is a known inhibitor of CYP2C9. Although the systemic absorption of miconazole following buccal administration is minimal and plasma concentrations are substantially lower than when miconazole is given intravenously, the potential for interaction with drugs metabolized through CYP2C9 (such as the sulfonylureas) cannot be ruled out.
Midodrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Midostaurin: (Moderate) Monitor for an increase in glyburide-related adverse reactions, such as hypoglycemia, if coadministration with midostaurin is necessary. Concomitant use may increase glyburide exposure. Glyburide is a substrate of OATP1B1/3; midostaurin is an OATP1B1 inhibitor.
Moexipril: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Monoamine oxidase inhibitors: (Moderate) Monitor blood glucose during concomitant sulfonylurea and monoamine oxidase inhibitor (MAOI) use; a sulfonylurea dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Nadolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Naproxen; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Nebivolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Nebivolol; Valsartan: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Nelfinavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Niacin, Niacinamide: (Moderate) Niacin (nicotinic acid) interferes with glucose metabolism and can result in hyperglycemia. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy. Monitor patients taking antidiabetic agents for changes in glycemic control if niacin (nicotinic acid) is added or deleted to the medication regimen. Dosage adjustments may be necessary.
Niacin; Simvastatin: (Moderate) Niacin (nicotinic acid) interferes with glucose metabolism and can result in hyperglycemia. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy. Monitor patients taking antidiabetic agents for changes in glycemic control if niacin (nicotinic acid) is added or deleted to the medication regimen. Dosage adjustments may be necessary.
Nicotine: (Minor) Nicotine may increase plasma glucose. The cessation of nicotine therapy may result in a decrease in blood glucose. Blood glucose concentrations should be monitored more closely whenever a change in nicotine intake occurs; dosage adjustments in antidiabetic agents may be needed.
Nirmatrelvir; Ritonavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Nitazoxanide: (Moderate) The active metabolite of nitazoxanide, tizoxanide, is highly bound to plasma proteins. Caution should be exercised when administering nitazoxanide concurrently with other highly plasma protein-bound drugs with narrow therapeutic indices because competition for binding sites may occur.
Nonsteroidal antiinflammatory drugs: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
Norepinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Norethindrone Acetate; Ethinyl Estradiol; Ferrous fumarate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Norethindrone; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Norethindrone; Ethinyl Estradiol; Ferrous fumarate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Norgestimate; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Octreotide: (Moderate) Monitor patients receiving octreotide concomitantly with insulin or other antidiabetic agents for changes in glycemic control and adjust doses of these medications accordingly. Octreotide alters the balance between the counter-regulatory hormones of insulin, glucagon, and growth hormone, which may result in hypoglycemia or hyperglycemia. The hypoglycemia or hyperglycemia which occurs during octreotide acetate therapy is usually mild but may result in overt diabetes mellitus or necessitate dose changes in insulin or other hypoglycemic agents. In patients with concomitant type1 diabetes mellitus, octreotide is likely to affect glucose regulation, and insulin requirements may be reduced. Symptomatic hypoglycemia, which may be severe, has been reported in type 1 diabetic patients. In Type 2 diabetes patients with partially intact insulin reserves, octreotide administration may result in decreases in plasma insulin levels and hyperglycemia.
Olanzapine: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and sulfonylurea use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Olanzapine; Fluoxetine: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and sulfonylurea use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant sulfonylurea and fluoxetine use; a sulfonylurea dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Olanzapine; Samidorphan: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and sulfonylurea use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Olmesartan: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Olmesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Omeprazole; Sodium Bicarbonate: (Moderate) Antacids have been reported to increase the absorption of non-micronized glyburide, enhancing their hypoglycemic effects. Although the exact mechanism is not known, theoretically it may be due to alterations in gastric pH. Consider closely monitoring blood glucose concentrations.
Oritavancin: (Moderate) Glyburide is metabolized by CYP2C9; oritavancin is a weak CYP2C9 inhibitor. Coadministration may result in elevated glyburide plasma concentrations. If these drugs are administered concurrently, blood glucose should be monitored closely.
Orlistat: (Minor) Weight-loss may affect glycemic control in patients with diabetes mellitus. In many patients, glycemic control may improve. A reduction in dose of oral hypoglycemic medications may be required in some patients taking orlistat. Monitor blood glucose and glycemic control and adjust therapy as clinically indicated.
Osimertinib: (Moderate) Monitor for an increase in glyburide-related adverse reactions, including hypoglycemia, if coadministration with osimertinib is necessary. Glyburide is a P-glycoprotein (P-gp) substrate. Osimertinib is a P-gp inhibitor and has the potential to increase plasma concentrations of P-gp substrates.
Ospemifene: (Moderate) Administer glyburide with ospemifene with considerable caution. Ospemifene is more than 99% bound to serum proteins and might affect the protein binding of other highly protein bound drugs, such as glyburide. This might increase the risk for low blood sugar from glyburide. The patient should closely monitor their blood sugar when these drugs are used together.
Oxandrolone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
Oxymetholone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
Paliperidone: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and sulfonylurea use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Pasireotide: (Moderate) Monitor blood glucose levels regularly in patients with diabetes, especially when pasireotide treatment is initiated or when the dose is altered. Adjust treatment with antidiabetic agents as clinically indicated. Pasireotide inhibits the secretion of insulin and glucagon. Patients treated with pasireotide may experience either hypoglycemia or hyperglycemia.
Pegvisomant: (Moderate) Monitor blood glucose levels regularly in patients with diabetes, especially when pegvisomant treatment is initiated or when the dose is altered. Adjust treatment with antidiabetic agents as clinically indicated. Pegvisomant increases sensitivity to insulin by lowering the activity of growth hormone, and in some patients glucose tolerance improves with treatment. Patients with diabetes treated with pegvisomant and antidiabetic agents may be more likely to experience hypoglycemia.
Pentamidine: (Moderate) Pentamidine can be harmful to pancreatic cells. This effect may lead to hypoglycemia acutely, followed by hyperglycemia with prolonged pentamidine therapy. Patients on antidiabetic agents should be monitored for the need for dosage adjustments during the use of pentamidine.
Pentoxifylline: (Moderate) Pentoxiphylline has been used concurrently with antidiabetic agents without observed problems, but it may enhance the hypoglycemic action of antidiabetic agents. Patients should be monitored for changes in glycemic control while receiving pentoxifylline in combination with antidiabetic agents.
Perindopril: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Perindopril; Amlodipine: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Phendimetrazine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Phenelzine: (Moderate) Monitor blood glucose during concomitant sulfonylurea and monoamine oxidase inhibitor (MAOI) use; a sulfonylurea dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Phenothiazines: (Moderate) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. Also, concomitant use may increase the risk for phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure.
Phentermine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Phentermine; Topiramate: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Minor) Coadministration of glyburide with topiramate may decrease systemic exposure to glyburide. A pharmacokinetic drug interaction study evaluated the combination of topiramate and glyburide. Reductions in AUC and Cmax were noted for glyburide and the active metabolites.
Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Phenytoin: (Minor) Phenytoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically. In addition, coadministration may result in decreased serum concentrations of chlorpropamide. Monitor blood glucose for changes in glycemic control. Dosage adjustments may be necessary in some patients.
Photosensitizing agents (topical): (Moderate) Additive photosensitization may be seen with concurrent administration of sulfonylureas and other photosensitizing agents. Prevention of photosensitivity includes adequate protection from sources of UV radiation (e.g., avoiding sun exposure and tanning booths) and the use of protective clothing and sunscreens on exposed skin.
Pindolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Pioglitazone: (Moderate) If hypoglycemia occurs during concomitant use of pioglitazone and a sulfonylurea, reduce the dose of the sulfonylurea. Patients receiving pioglitazone in combination with sulfonylureas may be at risk for hypoglycemia.
Pioglitazone; Glimepiride: (Moderate) If hypoglycemia occurs during concomitant use of pioglitazone and a sulfonylurea, reduce the dose of the sulfonylurea. Patients receiving pioglitazone in combination with sulfonylureas may be at risk for hypoglycemia.
Pioglitazone; Metformin: (Moderate) If hypoglycemia occurs during concomitant use of pioglitazone and a sulfonylurea, reduce the dose of the sulfonylurea. Patients receiving pioglitazone in combination with sulfonylureas may be at risk for hypoglycemia. (Moderate) Monitor blood glucose during concomitant sulfonylurea and metformin use; a sulfonylurea dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Porfimer: (Major) Avoid coadministration of porfimer with sulfonylureas due to the risk of increased photosensitivity. Porfimer is a light-activated drug used in photodynamic therapy; all patients treated with porfimer will be photosensitive. Concomitant use of other photosensitizing agents like sulfonylureas may increase the risk of a photosensitivity reaction.
Prasterone, Dehydroepiandrosterone, DHEA (Dietary Supplements): (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
Prasterone, Dehydroepiandrosterone, DHEA (FDA-approved): (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
Prilocaine; Epinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Probenecid: (Moderate) Probenecid is highly protein bound, and the hypoglycemic effect of sulfonylureas made be potentiated if these drugs are coadministered.
Probenecid; Colchicine: (Moderate) Probenecid is highly protein bound, and the hypoglycemic effect of sulfonylureas made be potentiated if these drugs are coadministered.
Progestins: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Promethazine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Propranolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Propranolol; Hydrochlorothiazide, HCTZ: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hype rglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Protease inhibitors: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Pseudoephedrine; Triprolidine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Quetiapine: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and sulfonylurea use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Quinapril: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Quinapril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Quinolones: (Moderate) Monitor blood glucose during concomitant sulfonylurea and quinolone use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Racepinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Ramipril: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Ranitidine: (Moderate) Ranitidine has been shown to affect the pharmacokinetics of some oral sulfonylureas. Patients receiving sulfonylureas should be observed for evidence of altered glycemic response when ranitidine is instituted or discontinued. The mechanism of this interaction may involve either increasing the absorption or decreasing the clearance of the sulfonylurea. Asymptomatic hypoglycemia has been observed as a result of this interaction. It is unclear at this time if famotidine or nizatidine interact with oral sulfonylureas.
Relugolix; Estradiol; Norethindrone acetate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Rifamycins: (Moderate) Monitor for decreased efficacy of sulfonylureas during coadministration of rifamycins as plasma concentrations of sulfonylureas may be decreased; dosage adjustments made be necessary. Sulfonylureas are CYP2C9 substrates and rifamycins are CYP2C9 inducers.
Risperidone: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and sulfonylurea use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Ritonavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Rolapitant: (Moderate) Use caution if glyburide and rolapitant are used concurrently, and monitor for hypoglycemia and other glyburide-related adverse effects. Glyburide is a P-glycoprotein (P-gp) substrate, where an increase in exposure may significantly increase adverse effects; rolapitant is a P-gp inhibitor. When rolapitant was administered with another P-gp substrate, digoxin, the day 1 Cmax and AUC were increased by 70% and 30%, respectively; the Cmax and AUC on day 8 were not studied.
Rosiglitazone: (Major) A maximum dose of 8 mg/day of rosiglitazone is recommended when used in combination with sulfonylureas; the incidence of adverse effects including hypoglycemia is increased with larger doses. In one clinical study, rosiglitazone 4 or 8 mg/day was added to failed glimepiride plus metformin therapy. The incidence of hypoglycemia (blood glucose concentrations <= 50 mg/dl) was 18.6% in the 4 mg/day group compared with 28% in the 8 mg/day group. In addition, 4 or 8 mg/day of rosiglitazone has been added to failed glyburide plus metformin therapy. The incidence of hypoglycemia was higher in the rosiglitazone (average dose 7.4 mg/day)+glyburide+metformin group (22%) when compared to the glyburide+metformin group (3%). Patients should be instructed to monitor blood glucose concentrations more frequently. Dosage adjustments may be indicated.
Sacubitril; Valsartan: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Salsalate: (Moderate) If salicylates and sulfonylureas are to be administered together, patients should be monitored for changes in glycemic control. Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar and may potentiate the effects of other antidiabetic agents. This mechanism may explain how salicylates can potentiate the clinical effects of sulfonylureas; however, displacement of sulfonylureas from protein binding sites has also been reported. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria.
Saquinavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Saxagliptin: (Moderate) A lower sulfonylurea dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with a sulfonylurea, the incidence of hypoglycemia was increased compared to a placebo used in combination with a sulfonylurea.
Segesterone Acetate; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Semaglutide: (Moderate) Monitor blood glucose during concomitant sulfonylurea and semaglutide use; consider decreasing the sulfonylurea dose when starting semaglutide. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Serdexmethylphenidate; Dexmethylphenidate: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Sodium Bicarbonate: (Moderate) Antacids have been reported to increase the absorption of non-micronized glyburide, enhancing their hypoglycemic effects. Although the exact mechanism is not known, theoretically it may be due to alterations in gastric pH. Consider closely monitoring blood glucose concentrations.
Sofosbuvir: (Moderate) Closely monitor blood glucose levels if sofosbuvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as sofosbuvir.
Sofosbuvir; Velpatasvir: (Moderate) Closely monitor blood glucose levels if sofosbuvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as sofosbuvir. (Moderate) Closely monitor blood glucose levels if velpatasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as velpatasvir.
Sofosbuvir; Velpatasvir; Voxilaprevir: (Moderate) Closely monitor blood glucose levels if sofosbuvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as sofosbuvir. (Moderate) Closely monitor blood glucose levels if velpatasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as velpatasvir. (Moderate) Closely monitor blood glucose levels if voxilaprevir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as voxilaprevir.
Somapacitan: (Moderate) Patients with diabetes mellitus should be monitored closely during somapacitan therapy. Antidiabetic drugs (e.g., insulin or oral agents) may require adjustment when somapacitan therapy is instituted in these patients. Growth hormones, such as somapacitan, may decrease insulin sensitivity, leading to glucose intolerance and loss of blood glucose control. Therefore, glucose levels should be monitored periodically in all patients treated with somapacitan, especially in those with risk factors for diabetes mellitus.
Somatrogon: (Moderate) Monitor for loss of glycemic control if concomitant use of somatrogon and antidiabetic drugs is necessary; a dose adjustment of the antidiabetic drug may be needed. Growth hormones, such as somatrogon, may decrease insulin sensitivity, leading to glucose intolerance and loss of blood glucose control.
Somatropin, rh-GH: (Moderate) Patients with diabetes mellitus should be monitored closely during somatropin (recombinant rhGH) therapy. Antidiabetic drugs (e.g., insulin or oral agents) may require adjustment when somatropin therapy is instituted in these patients. Growth hormones, such as somatropin, may decrease insulin sensitivity, leading to glucose intolerance and loss of blood glucose control. Therefore, glucose levels should be monitored periodically in all patients treated with somatropin, especially in those with risk factors for diabetes mellitus.
Sorafenib: (Moderate) Monitor for an increase in glyburide-related adverse reactions, including hypoglycemia, if coadministration with sorafenib is necessary. Glyburide is a P-glycoprotein (P-gp) substrate. Sorafenib inhibits P-gp in vitro and may increase the concentrations of concomitantly administered drugs that are P-gp substrates.
Sotalol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Stiripentol: (Moderate) Consider a dose reduction of glyburide when coadministered with stiripentol. Coadministration may increase plasma concentrations of glyburide resulting in an increased risk of adverse reactions. Glyburide is a substrate of BCRP and P-gp; stiripentol may inhibit BCRP and P-gp at clinically relevant concentrations.
Sulfacetamide: (Moderate) Sulfonamides may cause photosensitization and may increase the photosensitizing effects of sulfonylureas. Patients should take care and use proper techniques to limit sunlight and UV exposure of treated areas.
Sulfacetamide; Sulfur: (Moderate) Sulfonamides may cause photosensitization and may increase the photosensitizing effects of sulfonylureas. Patients should take care and use proper techniques to limit sunlight and UV exposure of treated areas.
Sulfonamides: (Moderate) Sulfonamides may enhance the hypoglycemic action of antidiabetic agents; patients with diabetes mellitus should be closely monitored during sulfonamide treatment. Taking these drugs together may also increase risk for phototoxicity. Patients should limit sunlight and UV exposure, and follow proper precautions for sunscreens and protective clothing. Sulfonamides may induce hypoglycemia in some patients by increasing the secretion of insulin from the pancreas. Patients at risk for hypoglycemia due to sulfonamides include those with compromised renal function, those fasting for prolonged periods, those that are malnourished, and those receiving high or excessive doses of sulfonamides.
Sympathomimetics: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Tacrolimus: (Moderate) Tacrolimus has been reported to cause hyperglycemia and has been implicated in causing insulin-dependent diabetes mellitus in patients after renal transplantation. Tacrolimus may have direct beta-cell toxicity. Patients should be monitored for worsening of glycemic control if therapy with tacrolimus is initiated in patients receiving antidiabetic agents.
Tafamidis: (Moderate) Caution is advised with the coadministration of tafamidis and glyburide due to the potential for increased plasma concentrations of glyburide resulting in increased risk of adverse effects. Glyburide dose adjustment may be needed with coadministration. Glyburide is a substrate of breast cancer resistance protein (BCRP) and tafamidis is a BCRP inhibitor.
Tazarotene: (Moderate) The manufacturer states that tazarotene should be administered with caution in patients who are also taking drugs known to be photosensitizers, such as sulfonylureas, as concomitant use may augment phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure of treated areas.
Tegaserod: (Moderate) Tegaserod can enhance gastric emptying in diabetic patients, blood glucose can be affected, which, in turn, may affect the clinical response to antidiabetic agents. The dosing of antidiabetic agents may require adjustment in patients who receive GI prokinetic agents concomitantly.
Telmisartan: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Telmisartan; Amlodipine: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Telmisartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Temsirolimus: (Moderate) Monitor for an increase in glyburide-related adverse reactions if coadministration with temsirolimus is necessary. Glyburide is a P-glycoprotein (P-gp) substrate and temsirolimus is a P-gp inhibitor. Concomitant use is likely to lead to increased concentrations of glyburide.
Testosterone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
Tezacaftor; Ivacaftor: (Moderate) Increased monitoring is recommended if ivacaftor is administered concurrently with CYP2C9 substrates, such as glyburide. Ivacaftor is an inhibitor of P-glycoprotein (Pgp) and a weak inhibitor of CYP2C9; glyburide is metabolized by CYP2C9 and is substrate of Pgp. Co-administration of ivacaftor with Pgp and CYP2C9 substrates, such as glyburide, can theoretically increase glyburide exposure leading to increased or prolonged therapeutic effects and adverse events; however, the clinical impact of this has not yet been determined.
Thiazide diuretics: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Thyroid hormones: (Minor) Addition of thyroid hormones to antidiabetic or insulin therapy may result in increased dosage requirements of the antidiabetic agents. Blood sugars should be carefully monitored when thyroid therapy is added, discontinued or doses changed.
Timolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Tipranavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Tirzepatide: (Moderate) When tirzepatide is used with insulin secretagogues such as the sulfonylureas, consider lowering the dose of the sulfonylureas to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with sulfonylureas may have an increased risk of hypoglycemia, including severe hypoglycemia.
Topiramate: (Minor) Coadministration of glyburide with topiramate may decrease systemic exposure to glyburide. A pharmacokinetic drug interaction study evaluated the combination of topiramate and glyburide. Reductions in AUC and Cmax were noted for glyburide and the active metabolites.
Toremifene: (Moderate) Monitor blood glycose in patients receiving concomitant treatment with glyburide and toremifene. Glyburide is a CYP2C9 substrate and toremifene is a weak CYP2C9 inhibitor. Toremifene may increase glyburide exposure and decrease blood glucose concentrations.
Torsemide: (Minor) Hyperglycemia has been detected during torsemide therapy, but the incidence is low. Because of this, a potential pharmacodynamic interaction exists between torsemide and all antidiabetic agents. Monitor blood glucose.
Trandolapril: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Trandolapril; Verapamil: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Tranylcypromine: (Moderate) Monitor blood glucose during concomitant sulfonylurea and monoamine oxidase inhibitor (MAOI) use; a sulfonylurea dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Tretinoin, ATRA: (Moderate) A manufacturer of topical tretinoin states that tretinoin, ATRA should be administered with caution in patients who are also taking drugs known to be photosensitizers, such as sulfonylureas, as concomitant use may augment phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure of treated areas.
Tretinoin; Benzoyl Peroxide: (Moderate) A manufacturer of topical tretinoin states that tretinoin, ATRA should be administered with caution in patients who are also taking drugs known to be photosensitizers, such as sulfonylureas, as concomitant use may augment phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure of treated areas.
Triamterene: (Minor) Triamterene can interfere with the hypoglycemic effects of antidiabetic agents. This can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
Triamterene; Hydrochlorothiazide, HCTZ: (Minor) Triamterene can interfere with the hypoglycemic effects of antidiabetic agents. This can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
Trofinetide: (Moderate) Monitor for an increase in glyburide-related adverse reactions, such as hypoglycemia, if coadministration with trofinetide is necessary. Concomitant use may increase glyburide exposure. Glyburide is a substrate of OATP1B1/3; trofinetide is an OATP1B1/3 inhibitor.
Valsartan: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant sulfonylurea and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Vemurafenib: (Moderate) Concomitant use of vemurafenib and glyburide may result in increased glyburide concentrations. Vemurafenib is a CYP2C9 and P-glycoprotein (PGP) inhibitor and glimepiride is a CYP2C9 and PGP substrate. Monitor serum glucose concentrations if glyburide is coadministered with CYP2C9 inhibitors. Dosage adjustments may be necessary.
Verteporfin: (Moderate) Use caution if coadministration of verteporfin with sulfonylureas is necessary due to the risk of increased photosensitivity. Verteporfin is a light-activated drug used in photodynamic therapy; all patients treated with verteporfin will be photosensitive. Concomitant use of other photosensitizing agents like sulfonylureas may increase the risk of a photosensitivity reaction.
Voclosporin: (Moderate) Monitor for an increase in glyburide-related adverse reactions, such as hypoglycemia, if coadministration with voclosporin is necessary. Concomitant use may increase glyburide exposure. Glyburide is a substrate of OATP1B1/3; voclosporin is an OATP1B1/3 inhibitor.
Vonoprazan; Amoxicillin; Clarithromycin: (Moderate) The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
Voriconazole: (Moderate) Voriconazole should be used cautiously with sulfonylureas. The combination of voriconazole and oral antidiabetic agents may result in severe hypoglycemia. Voriconazole may inhibit the metabolism of sulfonylureas. Blood glucose concentrations should be monitored and possible dose adjustments of hypoglycemics may need to be made.
Warfarin: (Moderate) The interaction between oral anticoagulants and oral sulfonylureas is complex; both enhancement or reduction of hypoprothrombinemic response to oral anticoagulants has been reported in various literature accounts along with a potential for altered hypoglycemic response to the sulfonylurea. One proposed mechanism may be related to displacement of the drugs from plasma protein binding sites. Dicumarol has been reported to inhibit the metabolism of chlorpropamide and tolbutamide, however, warfarin did not exhibit a similar effect on tolbutamide kinetics. Glyburide has been reported to augment the hypoprothrombinemic response to warfarin, although other reports have showed no interaction. Warfarin appears less likely to interact with sulfonylureas than dicumarol. In clinical trials, glimepiride therapy resulted in a slight, but statistically significant decrease in pharmacodynamic response to warfarin. The reductions in effect are unlikely to be clinically important in most cases. Nevertheless, it would be wise for clinicians to use warfarin and sulfonylureas together cautiously until the combined effects of the drugs are known. Monitor the INR as indicated and be alert for altered blood sugar control when either of these drugs is added or discontinued.
Ziprasidone: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and sulfonylurea use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Zonisamide: (Minor) Zonisamide is a weak inhibitor of P-glycoprotein (P-gp), and glyburide is a substrate of P-gp. There is theoretical potential for zonisamide to affect the pharmacokinetics of drugs that are P-gp substrates. Use caution when starting or stopping zonisamide or changing the zonisamide dosage in patients also receiving drugs which are P-gp substrates.

How Supplied

Diabeta/Glyburide/Glyburide, Micronized/Glycron/Glynase PresTab/Micronase Oral Tab: 1.25mg, 1.5mg, 2.5mg, 3mg, 5mg, 6mg

Maximum Dosage
Adults

20 mg/day PO for conventional glyburide (e.g., Diabeta); 12 mg/day PO for micronized glyburide (e.g., Glynase).

Geriatric

20 mg/day PO for conventional glyburide (e.g., Diabeta); 12 mg/day PO for micronized glyburide (e.g., Glynase).

Adolescents

Safety and efficacy have not been established; off-label use has been reported with a maximum of 10 mg/day PO.

Children

9 years and older: Safety and efficacy have not been established; off-label use has been reported with a maximum of 10 mg/day PO.
1 to 8 years: Safety and efficacy have not been established; off-label use has been reported for selected monogenic diabetes syndromes.

Infants

Safety and efficacy have not been established; off-label use has been reported for monogenic diabetes syndromes.

Neonates

Safety and efficacy have not been established.

Mechanism Of Action

The hypoglycemic action of glyburide is due to stimulation of pancreatic islet cells, which results in an increase in insulin secretion. Sulfonylureas are believed to bind to ATP-sensitive potassium-channel receptors on the pancreatic cell surface, thereby reducing potassium conductance and causing depolarization of the membrane. Depolarization stimulates calcium ion influx through voltage-sensitive calcium channels, raising intracellular concentrations of calcium ions, which induces the secretion, or exocytosis, of insulin. The drug is not effective in the absence of functioning beta-cells, as occurs in diabetes mellitus type 1, or when the number of viable beta-cells is low, as occurs in severe cases of diabetes mellitus type 2.
 
Prolonged administration of glyburide also produces extrapancreatic effects that contribute to its hypoglycemic activity. These effects include reduction of basal hepatic glucose production and an enhanced peripheral sensitivity to insulin secondary to an increase in insulin receptors or to changes in the events that follow insulin-receptor binding. The relative importance of each of these actions to the overall therapeutic effect of the drug will vary among oral antidiabetic agents and from patient to patient, which may account for the variability in potency among these drugs. Like glipizide, glyburide exhibits mild diuretic actions but does not affect uric acid concentrations.

Pharmacokinetics

Glyburide is administered orally. It is highly protein-bound via non-ionic binding, which differs from the ionic protein binding observed with first-generation sulfonylureas. Glyburide is metabolized completely in the liver to 2 metabolites. CYP2C9 is thought to be primarily responsible for the biotransformation of glyburide in vivo, with CYP3A4 playing a minor role. The major metabolite of glyburide is the 4-trans-hydroxy derivative. A second metabolite, the 3-cis-hydroxy derivative, also occurs. These metabolites are not thought to significantly contribute to the drug's hypoglycemic action in humans since they are only weakly active (1/400th and 1/40th as active, respectively, as glyburide) in rabbits. Glyburide is excreted as metabolites in the bile and urine, approximately 50% by each route. This dual excretory pathway is qualitatively different from that of other sulfonylureas, which are excreted primarily in the urine. The terminal elimination half-life of glyburide (conventional formulation) is 10 hours. The blood glucose lowering effect persists for 24 hours following a single morning doses in nonfasting diabetic patients. Under conditions of repeated administration in diabetic patients, however, there is no reliable correlation between blood drug levels and fasting blood glucose levels.
 
Affected cytochrome P450 (CYP450) isoenzymes and drug transporters: CYP2C9, OATP1B1, P-glycoprotein (P-gp), OAT3
Sulfonylureas are substrates of the CYP2C9 isoenzyme; thus, coadministration with CYP2C9 inhibitors or inducers will increase or decrease, respectively, sulfonylurea concentrations. Data have shown that glyburide interacts with several drug transporter systems, including OATP1B1. Glyburide is primarily cleared from the blood via hepatic OATP1B1 and subsequently metabolized, whereas the hepatic disposition of its active hydroxyl metabolites are determined by hepatic uptake transporters (OATP1B1, OATP1B3 and OATP2B1) and biliary [BCRP and P-glycoprotein (P-gp)] and basolateral (MRP3 and MRP4) efflux pumps. Additionally, the metabolites are substrates to the renal transporter OAT3, which results in active secretion into the urine.

Oral Route

Following oral administration, glyburide is rapidly and completely absorbed from the GI tract. The onset of action occurs within 2 hours, with a maximal decrease in serum glucose occurring within 3 to 4 hours. The micronized formulation is not bioequivalent to the conventional glyburide products. The conventional glyburide formulation has significant absorption within 1 hour and peak serum concentrations achieved in about 4 hours. The micronized formulation has significant absorption within 1 hour and peak serum concentrations achieved within 2 to 3 hours.

Pregnancy And Lactation
Pregnancy

No adequate human studies have been conducted regarding the effects of glyburide on the fetus when the drug is used during pregnancy. In making the decision to administer glyburide during pregnancy, the potential benefits to the mother must be weighed against the potential risks to the fetus. Prolonged and severe hypoglycemia has been reported in neonates born to mothers who were receiving a sulfonylurea at the time of delivery, mostly in patients taking sulfonylureas with prolonged half-lives; therefore, the manufacturer recommends that if glyburide is used during pregnancy that it be discontinued at least 2 weeks prior to the expected obstetric delivery date. American College of Obstetricians and Gynecologists (ACOG) and the American Diabetes Association (ADA) continue to recommend human insulin as the standard of care in women with GDM requiring medical therapy. Per ACOG, in women who decline insulin therapy or if the patient will be unable to safely administer insulin, metformin is the preferred second-line choice for GDM. Glyburide crosses the placenta, and outcomes do not appear equivalent to insulin therapy; some GDM patients require higher glyburide doses than usually recommended (e.g., 30 mg/day) for control or the addition of insulin to the oral regimen. Additionally, meta-analyses of the available data suggest worse neonatal outcomes with glyburide vs. insulin or metformin in the treatment of GDM; neonates exposed to glyburide had higher rates of respiratory distress syndrome, hypoglycemia, macrosomia, and birth injury. Per the ADA, glyburide is a GDM treatment option if insulin and metformin are not able to be used; however, glyburide does cross the placenta and long-term safety data are not available; glyburide appears associated with a higher rate of neonatal hypoglycemia and macrosomia than insulin or metformin.  Per ACOG and the ADA, human insulin is also the standard of care in pregnant women with pre-exisiting type 2 diabetes mellitus (T2DM) requiring pharmacotherapy. Metformin is the preferred second-line agent if insulin is not appropriate; glyburide is rarely used.