Mucinex D
Classes
Decongestant and Expectorant Combinations
Administration
Guaifenesin; pseudoephedrine products are administered orally.
Oral Solid FormulationsRegular-release tablets: Administer last dose 2 hours before bedtime to minimize insomnia due to pseudoephedrine.
Extended-release tablets: Swallow whole; do not crush or chew. Scored tablets may be divided in half.
Extended-release capsules: Swallow whole; do not crush or chew. For patients with difficulty swallowing, extended-release capsules may be opened and mixed with jam or jelly and swallowed without chewing.
Oral solution: Administer using a calibrated spoon, cup, or syringe to ensure accurate dosing. Note that some guaifenesin; pseudoephedrine syrups contain alcohol.
Adverse Reactions
seizures / Delayed / Incidence not known
stroke / Early / Incidence not known
myocardial infarction / Delayed / Incidence not known
arrhythmia exacerbation / Early / Incidence not known
hallucinations / Early / Incidence not known
psychosis / Early / Incidence not known
sinus tachycardia / Rapid / Incidence not known
premature ventricular contractions (PVCs) / Early / Incidence not known
angina / Early / Incidence not known
hypertension / Early / Incidence not known
palpitations / Early / Incidence not known
supraventricular tachycardia (SVT) / Early / Incidence not known
restlessness / Early / Incidence not known
anxiety / Delayed / Incidence not known
insomnia / Early / Incidence not known
drowsiness / Early / Incidence not known
headache / Early / Incidence not known
dizziness / Early / Incidence not known
Common Brand Names
Aldex GS, Ambi, Aquatab D, Congestac, D Feda II, Decongest II, Deconsal II, Defen LA, Desal II, Durasal II, Entex T, ExeFen, ExeFen-IR, Guaifenex PSE-60, Guiatex II SR, Iosal II, Maxifed, Maxifed-G, Medent-LDI, Mucinex D, Mucus-D, Poly-Vent IR, Respaire-30, Robitussin Severe Congestion, Sinutab, Sudafed Non-Drying Sinus, SudaTex-G, Zephrex
Dea Class
OTC, Rx
Description
Oral expectorant and sympathomimetic decongestant combination
Primarily used for the temporary relief of congestion associated with the common cold or other upper respiratory conditions
Used in adults and pediatric patients 6 years and older
Dosage And Indications
2 tablets PO every 12 hours as needed. Max: 4 tablets/day PO.
1 tablet PO every 12 hours as needed. Max: 2 tablets/day PO.
1 tablet PO every 4 to 6 hours as needed. Max: 6 tablets/24 hours PO.
1 tablet PO every 4 to 6 hours as needed. Max: 6 tablets/24 hours PO.
One-half tablet PO every 4 to 6 hours as needed. Max: 3 tablets/24 hours PO.
1 tablet PO every 12 hours as needed. Max: 2 tablets/24 hours.
1 tablet PO every 4 to 6 hours as needed. Do not exceed 6 tablets/24 hours.
1 tablet PO every 4 to 6 hours as needed. Do not exceed 6 tablets/24 hours.
One-half tablet PO every 4 to 6 hours as needed. Do not exceed 3 tablets/24 hours.
1 tablet PO every 6 hours as needed. Do not exceed 4 tablets/24 hours.
1 tablet PO every 6 hours as needed. Do not exceed 4 tablets/24 hours.
One-half tablet PO every 6 hours as needed. Do not exceed 2 tablets/24 hours.
Dosage was 2 capsules PO every 4 hours as needed. Max: 8 capsules/day.
Dosage was 1 capsule PO every 4 hours as needed. Max: 4 capsules/day.
Dosing Considerations
Specific guidelines for dosage adjustments in hepatic impairment are not available; it appears that no dosage adjustments are needed.
Renal ImpairmentPseudoephedrine should be used with caution in patients with renal impairment.
Drug Interactions
Acarbose: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acebutolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Acetaminophen; Aspirin, ASA; Caffeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acetaminophen; Caffeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acetaminophen; Caffeine; Dihydrocodeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acetaminophen; Caffeine; Pyrilamine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Acetaminophen; Chlorpheniramine; Phenylephrine : (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Acetaminophen; Dextromethorphan; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Acetaminophen; Guaifenesin; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Acetaminophen; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Acetazolamide: (Moderate) Acetazolamide and methazolamide can decrease excretion and enhance the effects of pseudoephedrine. Carbonic anhydrase inhibitors increase the alkalinity of the urine, thereby increasing the amount of nonionized pseudoephedrine available for renal tubular reabsorption. Use caution if acetazolamide or methazolamide is coadministered; monitor for excessive pseudoephedrine-related adverse effects.
Aclidinium; Formoterol: (Moderate) Monitor blood pressure and heart rate during concomitant pseudoephedrine and formoterol use. Concomitant use may potentiate sympathetic effects.
Albuterol: (Moderate) Monitor blood pressure and heart rate during concomitant albuterol and pseudoephedrine use. Concomitant use may potentiate sympathetic effects.
Albuterol; Budesonide: (Moderate) Monitor blood pressure and heart rate during concomitant albuterol and pseudoephedrine use. Concomitant use may potentiate sympathetic effects.
Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Alkalinizing Agents: (Minor) Pseudoephedrine renal elimination is susceptible to changes in urinary pH. Urinary alkalinizers allow for increased tubular reabsorption of pseudoephedrine. Concomitant administration of pseudoephedrine with urinary alkalinizers may increase the likelihood of pseudoephedrine adverse reactions.
Alogliptin; Metformin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Alogliptin; Pioglitazone: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking thiazolidinediones. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Alpha-blockers: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by alpha-blockers. Monitor blood pressure and heart rate.
Alpha-glucosidase Inhibitors: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Aluminum Hydroxide: (Minor) It appears that antacids containing aluminum hydroxide may increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If aluminum-based antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Aluminum Hydroxide; Magnesium Carbonate: (Minor) It appears that antacids containing aluminum hydroxide may increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If aluminum-based antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Aluminum Hydroxide; Magnesium Hydroxide: (Minor) It appears that antacids containing aluminum hydroxide may increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If aluminum-based antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Aluminum Hydroxide; Magnesium Hydroxide; Simethicone: (Minor) It appears that antacids containing aluminum hydroxide may increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If aluminum-based antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Aluminum Hydroxide; Magnesium Trisilicate: (Minor) It appears that antacids containing aluminum hydroxide may increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If aluminum-based antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Amlodipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Amlodipine; Atorvastatin: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Amlodipine; Benazepril: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Amlodipine; Celecoxib: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Amlodipine; Olmesartan: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Amlodipine; Valsartan: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Amoxapine: (Major) Concomitant use of amoxapine with sympathomimetics should be avoided whenever possible; use with caution when concurrent use cannot be avoided. One drug information reference suggests that cyclic antidepressants potentiate the pharmacologic effects of direct-acting sympathomimetics, but decrease the pressor response to indirect-acting sympathomimetics, however, the data are not consistent.
Angiotensin II receptor antagonists: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure.
Angiotensin II: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Angiotensin-converting enzyme inhibitors: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Arformoterol: (Moderate) Caution and close observation should be used when arformoterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Articaine; Epinephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Aspirin, ASA; Butalbital; Caffeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Aspirin, ASA; Caffeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Aspirin, ASA; Caffeine; Orphenadrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Atenolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Atenolol; Chlorthalidone: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Atomoxetine: (Moderate) Use atomoxetine with caution and monitor blood pressure in patients receiving concomitant pseudoephedrine due to potential effects on blood pressure.
Atropine: (Major) Atropine blocks the vagal reflex bradycardia caused by pseudoephedrine, and increases its pressor effect. Patients need to be asked whether they have taken pseudoephedrine before receiving atropine.
Atropine; Difenoxin: (Major) Atropine blocks the vagal reflex bradycardia caused by pseudoephedrine, and increases its pressor effect. Patients need to be asked whether they have taken pseudoephedrine before receiving atropine.
Azilsartan; Chlorthalidone: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Benazepril: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Beta-blockers: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Betaxolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Bethanechol: (Moderate) Bethanechol offsets the effects of sympathomimetics at sites where sympathomimetic and cholinergic receptors have opposite effects.
Bisoprolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Bretylium: (Moderate) Monitor blood pressure and heart rate closely when sympathomimetics are administered with bretylium. The pressor and arrhythmogenic effects of catecholamines are enhanced by bretylium.
Brimonidine; Timolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Bromocriptine: (Moderate) One case report documented worsening headache, hypertension, premature ventricular complexes, and ventricular tachycardia in a post-partum patient receiving bromocriptine for lactation suppression who was subsequently prescribed acetaminophen; dichloralphenazone; isometheptene for a headache. A second case involved a post-partum patient receiving bromocriptine who was later prescribed phenylpropanolamine; guaifenesin and subsequently developed hypertension, tachycardia, seizures, and cerebral vasospasm. Also, ergot alkaloids, which are chemically related to bromocriptine, should not be administered with other vasoconstrictors. Therefore, until more data become available, concurrent use of bromocriptine and some sympathomimetics such as vasopressors (e.g., norepinephrine, dopamine, phenylephrine), cocaine, epinephrine, phenylpropanolamine, ephedra, ma huang, ephedrine, pseudoephedrine, amphetamines, and phentermine should be approached with caution.
Brompheniramine; Dextromethorphan; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Brompheniramine; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Budesonide; Formoterol: (Moderate) Monitor blood pressure and heart rate during concomitant pseudoephedrine and formoterol use. Concomitant use may potentiate sympathetic effects.
Budesonide; Glycopyrrolate; Formoterol: (Moderate) Monitor blood pressure and heart rate during concomitant pseudoephedrine and formoterol use. Concomitant use may potentiate sympathetic effects.
Bumetanide: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Bupivacaine; Epinephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Bupropion: (Moderate) Use extreme caution when coadministering bupropion with other drugs that lower the seizure threshold, such as pseudoephedrine. Use low initial doses of bupropion and increase the dose gradually.
Bupropion; Naltrexone: (Moderate) Use extreme caution when coadministering bupropion with other drugs that lower the seizure threshold, such as pseudoephedrine. Use low initial doses of bupropion and increase the dose gradually.
Butalbital; Acetaminophen; Caffeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Butalbital; Acetaminophen; Caffeine; Codeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Butalbital; Aspirin; Caffeine; Codeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Caffeine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Caffeine; Sodium Benzoate: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Calcium Carbonate: (Minor) It appears that antacids increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Calcium Carbonate; Famotidine; Magnesium Hydroxide: (Minor) It appears that antacids increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Calcium Carbonate; Magnesium Hydroxide: (Minor) It appears that antacids increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Calcium Carbonate; Magnesium Hydroxide; Simethicone: (Minor) It appears that antacids increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Calcium Carbonate; Simethicone: (Minor) It appears that antacids increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Calcium; Vitamin D: (Minor) It appears that antacids increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Calcium-channel blockers: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Canagliflozin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Canagliflozin; Metformin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Captopril: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Captopril; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Carteolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Carvedilol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Chlorothiazide: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Chlorpheniramine; Dextromethorphan; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Chlorpheniramine; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Chlorthalidone: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Chlorthalidone; Clonidine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) Sympathomimetics, such as pseudoephedrine, can antagonize the antihypertensive effects of clonidine when administered concomitantly. Patients should be monitored for loss of blood pressure control.
Clevidipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Clonidine: (Moderate) Sympathomimetics, such as pseudoephedrine, can antagonize the antihypertensive effects of clonidine when administered concomitantly. Patients should be monitored for loss of blood pressure control.
Cocaine: (Major) Avoid concomitant use of additional vasoconstrictor agents with cocaine. If unavoidable, prolonged vital sign and ECG monitoring may be required. Myocardial ischemia, myocardial infarction, and ventricular arrhythmias have been reported after concomitant administration of topical intranasal cocaine and vasoconstrictor agents during nasal and sinus surgery. The risk for nervousness, irritability, convulsions, and other cardiac arrhythmias may increase during coadministration.
Codeine; Phenylephrine; Promethazine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Colchicine: (Minor) The response to sympathomimetics may be enhanced by colchicine.
Dapagliflozin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dapagliflozin; Metformin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dapagliflozin; Saxagliptin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dextromethorphan; Bupropion: (Moderate) Use extreme caution when coadministering bupropion with other drugs that lower the seizure threshold, such as pseudoephedrine. Use low initial doses of bupropion and increase the dose gradually.
Dextromethorphan; Diphenhydramine; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Dextromethorphan; Guaifenesin; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Dihydroergotamine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Diltiazem: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Dipeptidyl Peptidase-4 Inhibitors: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Diphenhydramine; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Diphenoxylate; Atropine: (Major) Atropine blocks the vagal reflex bradycardia caused by pseudoephedrine, and increases its pressor effect. Patients need to be asked whether they have taken pseudoephedrine before receiving atropine.
Dopamine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Dorzolamide; Timolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Dronabinol: (Moderate) Concurrent use of dronabinol, THC with sympathomimetics may result in additive hypertension, tachycardia, and possibly cardiotoxicity. Dronabinol, THC has been associated with occasional hypotension, hypertension, syncope, and tachycardia. In a study of 7 adult males, combinations of IV cocaine and smoked marijuana, 1 g marijuana cigarette, 0 to 2.7% delta-9-THC, increased the heart rate above levels seen with either agent alone, with increases plateauing at 50 bpm.
Droxidopa: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Dulaglutide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Empagliflozin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Empagliflozin; Linagliptin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Empagliflozin; Linagliptin; Metformin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Empagliflozin; Metformin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Enalapril, Enalaprilat: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Ephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Ephedrine; Guaifenesin: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Epinephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Epoprostenol: (Major) Avoid use of sympathomimetic agents with epoprostenol. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including epoprostenol. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications.
Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Ergoloid Mesylates: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Ergot alkaloids: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Ergotamine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Ergotamine; Caffeine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Ertugliflozin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Ertugliflozin; Metformin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Ertugliflozin; Sitagliptin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Esmolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Ethacrynic Acid: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Exenatide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Felodipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Fluticasone; Salmeterol: (Moderate) Monitor blood pressure and heart rate during concomitant salmeterol and pseudoephedrine use. Concomitant use may potentiate sympathetic effects.
Fluticasone; Umeclidinium; Vilanterol: (Moderate) Administer sympathomimetics with caution with beta-agonists such as vilanterol. The cardiovascular effects of beta-2 agonists may be potentiated by concomitant use. Monitor the patient for tremors, nervousness, increased heart rate, or other additive side effects.
Fluticasone; Vilanterol: (Moderate) Administer sympathomimetics with caution with beta-agonists such as vilanterol. The cardiovascular effects of beta-2 agonists may be potentiated by concomitant use. Monitor the patient for tremors, nervousness, increased heart rate, or other additive side effects.
Formoterol: (Moderate) Monitor blood pressure and heart rate during concomitant pseudoephedrine and formoterol use. Concomitant use may potentiate sympathetic effects.
Formoterol; Mometasone: (Moderate) Monitor blood pressure and heart rate during concomitant pseudoephedrine and formoterol use. Concomitant use may potentiate sympathetic effects.
Fosinopril: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Furosemide: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Ginger, Zingiber officinale: (Minor) In vitro studies have demonstrated the positive inotropic effects of certain gingerol constituents of ginger; but it is unclear if whole ginger root exhibits these effects clinically in humans. It is theoretically possible that excessive doses of ginger could affect the action of vasopressors like pseudoephedrine; however, no clinical data are available.
Glipizide; Metformin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Glyburide; Metformin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Glycopyrrolate; Formoterol: (Moderate) Monitor blood pressure and heart rate during concomitant pseudoephedrine and formoterol use. Concomitant use may potentiate sympathetic effects.
Green Tea: (Moderate) Some, but not all, green tea products contain caffeine. Caffeine should be avoided or used cautiously with pseudoephedrine. CNS stimulants and sympathomimetics are associated with adverse effects such as nervousness, irritability, insomnia, and cardiac arrhythmias.
Guaifenesin; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Halogenated Anesthetics: (Major) Avoid administration of pseudoephedrine products to patients who have recently undergone, or will soon undergo, a procedure or treatment that requires general anesthesia. Specifically, halogenated anesthetics may sensitize the myocardium to the effects of sympathomimetics, including pseudoephedrine.
Haloperidol: (Moderate) Non-cardiovascular drugs with alpha-blocking activity such as haloperidol directly counteract the effects of pseudoephedrine and can counter the desired pharmacologic effect. They also can be used to treat excessive pseudoephedrine-induced hypertension.
Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Hydrochlorothiazide, HCTZ; Methyldopa: (Major) Sympathomimetics, such as pseudoephedrine, can antagonize the antihypertensive effects of methyldopa when administered concomitantly. Blood pressure should be monitored closely to confirm that the desired antihypertensive effect is achieved. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Iloprost: (Major) Avoid use of sympathomimetic agents with iloprost. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including iloprost. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications.
Incretin Mimetics: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Indacaterol: (Moderate) Administer sympathomimetics with caution with beta-agonists such as indacaterol. The cardiovascular effects of beta-2 agonists may be potentiated by concomitant use. Monitor the patient for tremors, nervousness, increased heart rate, or other additive side effects.
Indacaterol; Glycopyrrolate: (Moderate) Administer sympathomimetics with caution with beta-agonists such as indacaterol. The cardiovascular effects of beta-2 agonists may be potentiated by concomitant use. Monitor the patient for tremors, nervousness, increased heart rate, or other additive side effects.
Indapamide: (Moderate) Sympathomimetics can antagonize the antihypertensive effects of vasodilators when administered concomitantly. Patients should be monitored to confirm that the desired antihypertensive effect is achieved.
Insulin Degludec; Liraglutide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when
Insulin Glargine; Lixisenatide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Insulins: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Iobenguane I 123: (Major) Discontinue medications that decrease norepinephrine uptake, such as pseudoephedrine, for at least 5 biological half-lives prior to iobenguane I 123 administration. Consider medication tapering or additional supportive therapy as appropriate to minimize the risk for precipitating pseudoephedrine withdrawal symptoms. Medications that decrease the uptake of norepinephrine can cause false negative imaging results. Increasing the dose of iobenguane I 123 will not overcome any potential uptake limiting effect of this medication.
Iobenguane I 131: (Major) Discontinue sympathomimetics for at least 5 half-lives before the administration of the dosimetry dose or a therapeutic dose of iobenguane I-131. Do not restart sympathomimetics until at least 7 days after each iobenguane I-131 dose. Drugs that reduce catecholamine uptake or deplete catecholamine stores, such as sympathomimetics, may interfere with iobenguane I-131 uptake into cells and interfere with dosimetry calculations resulting in altered iobenguane I-131 efficacy.
Ipratropium; Albuterol: (Moderate) Monitor blood pressure and heart rate during concomitant albuterol and pseudoephedrine use. Concomitant use may potentiate sympathetic effects.
Irbesartan; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Isocarboxazid: (Contraindicated) In general, sympathomimetics should be avoided in patients receiving MAOIs due to an increased risk of hypertensive crisis. This applies to sympathomimetics including stimulants for ADHD, narcolepsy or weight loss, nasal, oral, and ophthalmic decongestants and cold products, and respiratory sympathomimetics (e.g., beta agonist drugs). Some local anesthetics also contain a sympathomimetic (e.g., epinephrine). In general, medicines containing sympathomimetic agents should not be used concurrently with MAOIs or within 14 days before or after their use.
Isradipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Ketamine: (Moderate) Closely monitor vital signs when ketamine and pseudoephedrine are coadministered; consider dose adjustment individualized to the patient's clinical situation. Pseudoephedrine may enhance the sympathomimetic effects of ketamine.
Labetalol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Levalbuterol: (Moderate) Monitor blood pressure and heart rate during concomitant albuterol and pseudoephedrine use. Concomitant use may potentiate sympathetic effects.
Levamlodipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Levobunolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Levothyroxine: (Moderate) Monitor hemodynamic parameters during concomitant sympathomimetic agent and thyroid hormone use; dosage adjustments may be necessary. Concomitant use may increase the effects of sympathomimetics or thyroid hormone.
Levothyroxine; Liothyronine (Porcine): (Moderate) Monitor hemodynamic parameters during concomitant sympathomimetic agent and thyroid hormone use; dosage adjustments may be necessary. Concomitant use may increase the effects of sympathomimetics or thyroid hormone.
Levothyroxine; Liothyronine (Synthetic): (Moderate) Monitor hemodynamic parameters during concomitant sympathomimetic agent and thyroid hormone use; dosage adjustments may be necessary. Concomitant use may increase the effects of sympathomimetics or thyroid hormone.
Lidocaine; Epinephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Linagliptin; Metformin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Linezolid: (Moderate) Linezolid may enhance the hypertensive effect of pseudoephedrine. Closely monitor for increased blood pressure during coadministration. Linezolid is an antibiotic that is also a weak, reversible nonselective inhibitor of monoamine oxidase (MAO). Therefore, linezolid has the potential for interaction with adrenergic agents, such as pseudoephedrine.
Liothyronine: (Moderate) Monitor hemodynamic parameters during concomitant sympathomimetic agent and thyroid hormone use; dosage adjustments may be necessary. Concomitant use may increase the effects of sympathomimetics or thyroid hormone.
Liraglutide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Lisinopril: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Lisinopril; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Lixisenatide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Loop diuretics: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Losartan; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Macitentan: (Major) Avoid use of sympathomimetic agents with macitentan. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including macitentan. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications.
Maprotiline: (Moderate) Use maprotiline and sympathomimetics together with caution and close clinical monitoring. Regularly assess blood pressure, heart rate, the efficacy of treatment, and the emergence of sympathomimetic/adrenergic adverse events. Carefully adjust dosages as clinically indicated. Maprotiline has pharmacologic activity similar to tricyclic antidepressant agents and may cause additive sympathomimetic effects when combined with agents with adrenergic/sympathomimetic activity.
Mecamylamine: (Major) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by mecamylamine. Close monitoring of blood pressure or the selection of alternative therapeutic agents may be needed.
Meglitinides: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Metaproterenol: (Major) Caution and close observation should also be used when metaproterenol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Metformin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Metformin; Repaglinide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Metformin; Rosiglitazone: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking thiazolidinediones. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Metformin; Saxagliptin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Metformin; Sitagliptin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Methazolamide: (Moderate) Methazolamide can decrease the urinary excretion and enhance the clinical effects of pseudoephedrine. Use caution if methazolamide is coadministered; monitor for excessive pseudoephedrine-related adverse effects.
Methyclothiazide: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Methyldopa: (Major) Sympathomimetics, such as pseudoephedrine, can antagonize the antihypertensive effects of methyldopa when administered concomitantly. Blood pressure should be monitored closely to confirm that the desired antihypertensive effect is achieved.
Methylergonovine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Metolazone: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Metoprolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Midodrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Miglitol: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Moexipril: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Monoamine oxidase inhibitors: (Contraindicated) In general, sympathomimetics should be avoided in patients receiving MAOIs due to an increased risk of hypertensive crisis. This applies to sympathomimetics including stimulants for ADHD, narcolepsy or weight loss, nasal, oral, and ophthalmic decongestants and cold products, and respiratory sympathomimetics (e.g., beta agonist drugs). Some local anesthetics also contain a sympathomimetic (e.g., epinephrine). In general, medicines containing sympathomimetic agents should not be used concurrently with MAOIs or within 14 days before or after their use.
Nabilone: (Moderate) Concurrent use of nabilone with sympathomimetics (e.g., amphetamine or cocaine) may result in additive hypertension, tachycardia, and possibly cardiotoxicity. In a study of 7 adult males, combinations of cocaine (IV) and smoked marijuana (1 g marijuana cigarette, 0 to 2.7% delta-9-THC) increased the heart rate above levels seen with either agent alone, with increases reaching a plateau at 50 bpm.
Nadolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Nebivolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Nebivolol; Valsartan: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Nicardipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Nicotine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e., nicotine nasal spray); however, no dosage adjustments are recommended.
Nifedipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Nimodipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Nisoldipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Nitrates: (Moderate) Sympathomimetics can antagonize the antianginal effects of nitrates, and can increase blood pressure and/or heart rate. Anginal pain may be induced when coronary insufficiency is present.
Norepinephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Olmesartan; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Ozanimod: (Major) Coadministration of ozanimod with sympathomimetics such as pseudoephedrine is not routinely recommended due to the potential for hypertensive crisis. If coadministration is medically necessary, closely monitor the patient for hypertension. An active metabolite of ozanimod inhibits MAO-B, which may increase the potential for hypertensive crisis. Sympathomimetics may increase blood pressure by increasing norepinephrine concentrations and monoamine oxidase inhibitors (MAOIs) are known to potentiate these effects. Concomitant use of ozanimod with pseudoephedrine did not potentiate the effects on blood pressure. However, hypertensive crisis has occurred with administration of ozanimod alone and also during coadministration of sympathomimetic medications and other selective or nonselective MAO inhibitors.
Perindopril: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Perindopril; Amlodipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Phenelzine: (Contraindicated) In general, sympathomimetics should be avoided in patients receiving MAOIs due to an increased risk of hypertensive crisis. This applies to sympathomimetics including stimulants for ADHD, narcolepsy or weight loss, nasal, oral, and ophthalmic decongestants and cold products, and respiratory sympathomimetics (e.g., beta agonist drugs). Some local anesthetics also contain a sympathomimetic (e.g., epinephrine). In general, medicines containing sympathomimetic agents should not be used concurrently with MAOIs or within 14 days before or after their use.
Phenobarbital; Hyoscyamine; Atropine; Scopolamine: (Major) Atropine blocks the vagal reflex bradycardia caused by pseudoephedrine, and increases its pressor effect. Patients need to be asked whether they have taken pseudoephedrine before receiving atropine.
Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Pindolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Pioglitazone: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking thiazolidinediones. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Pioglitazone; Glimepiride: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking thiazolidinediones. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Pioglitazone; Metformin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine is administered to patients taking metformin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking thiazolidinediones. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Potassium-sparing diuretics: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Pramlintide: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Prilocaine; Epinephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Probenecid; Colchicine: (Minor) The response to sympathomimetics may be enhanced by colchicine.
Procarbazine: (Major) Because procarbazine exhibits some monoamine oxidase inhibitory (MAOI) activity, sympathomimetic drugs should be avoided. As with MAOIs, the use of a sympathomimetic drug with procarbazine may precipitate hypertensive crisis or other serious side effects. In the presence of MAOIs, drugs that cause release of norepinephrine induce severe cardiovascular and cerebrovascular responses. In general, do not use a sympathomimetic drug unless clinically necessary (e.g., medical emergencies, agents like dopamine) within the 14 days prior, during or 14 days after procarbazine therapy. If use is necessary within 2 weeks of the MAOI drug, in general the initial dose of the sympathomimetic agent must be greatly reduced. Patients should be counseled to avoid non-prescription (OTC) decongestants and other drug products, weight loss products, and energy supplements that contain sympathomimetic agents.
Promethazine; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Propranolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Propranolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Quinapril: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Quinapril; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Racepinephrine: (Major) Racepinephrine is a sympathomimetic drug with agonist actions at both the alpha and beta receptors. Patients using racepinephrine inhalation are advised to avoid other non-prescription products containing sympathomimetics since additive adverse effects on the cardiovascular and nervous system are possible, some which may be undesirable. Side effects such as nausea, tremor, nervousness, difficulty with sleep, and increased heart rate or blood pressure may be additive. Patients should avoid use of non-prescription decongestants, such as phenylephrine and pseudoephedrine, while using racepinephrine inhalations. Patients should avoid dietary supplements containing ingredients that are reported or claimed to have a stimulant or weight-loss effect, such as ephedrine and ephedra, Ma huang, and phenylpropanolamine. Patients taking prescription sympathomimetic or stimulant medications (including amphetamines, methylphenidate, dexmethylphenidate, isometheptane, epinephrine) should seek health care professional advice prior to the use of racepinephrine inhalations; consider therapeutic alternatives to racepinephrine for these patients.
Ramipril: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Rasagiline: (Moderate) The concomitant use of rasagiline and sympathomimetics was not allowed in clinical studies; therefore, caution is advised during concurrent use of rasagiline and sympathomimetics including stimulants for ADHD and weight loss, non-prescription nasal, oral, and ophthalmic decongestants, and weight loss dietary supplements containing Ephedra. Although sympathomimetics are contraindicated for use with other non-selective monoamine oxidase inhibitors (MAOIs), hypertensive reactions generally are not expected to occur during concurrent use with rasagiline because of the selective monoamine oxidase-B (MAO-B) inhibition of rasagiline at manufacturer recommended doses. One case of elevated blood pressure has been reported in a patient during concurrent use of the recommended dose of rasagiline and ophthalmic tetrahydrozoline. One case of hypertensive crisis has been reported in a patient taking the recommended dose of another MAO-B inhibitor, selegiline, in combination with ephedrine. It should be noted that the MAO-B selectivity of rasagiline decreases in a dose-related manner as increases are made above the recommended daily dose and interactions with sympathomimetics may be more likely to occur at these higher doses.
Riociguat: (Major) Avoid use of sympathomimetic agents with riociguat. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including riociguat. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications.
Rosiglitazone: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking thiazolidinediones. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Safinamide: (Moderate) Severe hypertensive reactions, including hypertensive crisis, have been reported in patients taking monoamine oxidase inhibitors (MAOIs), such as safinamide concurrently with sympathomimetic medications, such as pseudoephedrine. If concomitant use of safinamide and pseudoephedrine is necessary, monitor for hypertension and hypertensive crisis.
Salmeterol: (Moderate) Monitor blood pressure and heart rate during concomitant salmeterol and pseudoephedrine use. Concomitant use may potentiate sympathetic effects.
Selegiline: (Contraindicated) The product label for pseudoephedrine contraindicates use with monoamine oxidase inhibitors (MAOIs) due to the risk of hypertensive crisis. Pseudoephedrine should generally not be used concurrently with MAOIs or within 14 days before or after their use. Uncontrolled hypertension has been reported when taking the recommended dose of oral selegiline and a sympathomimetic medication. The manufacturers of selegiline products recommend caution and monitoring of blood pressure during concurrent use with sympathomimetics.
Selexipag: (Major) Avoid use of sympathomimetic agents with selexipag. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including selexipag. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications.
Semaglutide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
SGLT2 Inhibitors: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Solriamfetol: (Moderate) Monitor blood pressure and heart rate during routine coadministration of solriamfetol, a norepinephrine and dopamine reuptake inhibitor, and pseudoephedrine, a CNS stimulant. Concurrent use of solriamfetol and other medications that increase blood pressure and/or heart rate may increase the risk of such effects. Coadministration of solriamfetol with other drugs that increase blood pressure or heart rate has not been evaluated.
Sotagliflozin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Sotalol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Spironolactone; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
St. John's Wort, Hypericum perforatum: (Moderate) Monitor blood pressure during concomitant use of pseudoephedrine and St. John's Wort. St. John's Wort has been shown to weakly inhibit monoamine oxidase and may potentiate the effects of pseudoephedrine on blood pressure.
Sulfonylureas: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Telmisartan; Amlodipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Telmisartan; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Terbutaline: (Major) Concomitant use of sympathomimetics with beta-agonists might result in additive cardiovascular effects such as increased blood pressure and heart rate.
Theophylline, Aminophylline: (Moderate) Concurrent administration of theophylline or aminophylline with some sympathomimetics can produce excessive stimulation and effects such as nervousness, irritability, or insomnia. Seizures or cardiac arrhythmias are also possible. (Moderate) Concurrent administration of theophylline or aminophylline with sympathomimetics can produce excessive stimulation manifested by skeletal muscle activity, agitation, and hyperactivity.
Thiazide diuretics: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Thiazolidinediones: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking thiazolidinediones. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Thyroid hormones: (Moderate) Monitor hemodynamic parameters during concomitant sympathomimetic agent and thyroid hormone use; dosage adjustments may be necessary. Concomitant use may increase the effects of sympathomimetics or thyroid hormone.
Timolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Tirzepatide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Torsemide: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Trandolapril: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Trandolapril; Verapamil: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Tranylcypromine: (Contraindicated) In general, sympathomimetics should be avoided in patients receiving MAOIs due to an increased risk of hypertensive crisis. This applies to sympathomimetics including stimulants for ADHD, narcolepsy or weight loss, nasal, oral, and ophthalmic decongestants and cold products, and respiratory sympathomimetics (e.g., beta agonist drugs). Some local anesthetics also contain a sympathomimetic (e.g., epinephrine). In general, medicines containing sympathomimetic agents should not be used concurrently with MAOIs or within 14 days before or after their use.
Treprostinil: (Major) Avoid use of sympathomimetic agents with treprostinil. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including treprostinil. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications.
Triamterene; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Tricyclic antidepressants: (Major) Avoid use of pseudoephedrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the effects of catecholamines.
Umeclidinium; Vilanterol: (Moderate) Administer sympathomimetics with caution with beta-agonists such as vilanterol. The cardiovascular effects of beta-2 agonists may be potentiated by concomitant use. Monitor the patient for tremors, nervousness, increased heart rate, or other additive side effects.
Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Vasodilators: (Moderate) Use sympathomimetic agents with caution in patients receiving therapy for hypertension. Patients should be monitored to confirm that the desired antihypertensive effect is achieved. Sympathomimetics can increase blood pressure and heart rate, and antagonize the antihypertensive effects of vasodilators when administered concomitantly. Anginal pain may be induced when coronary insufficiency is present.
Vasopressin, ADH: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Vasopressors: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Verapamil: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
How Supplied
Aldex GS/Ambi/Congestac/Entex T/ExeFen/ExeFen-IR/Guaifenesin, Pseudoephedrine/Guaifenesin, Pseudoephedrine Hydrochloride/Maxifed/Maxifed-G/Medent-LDI/Poly-Vent IR/SudaTex-G/Zephrex Oral Tab: 190-30mg, 360-60mg, 375-60mg, 380-60mg, 400-40mg, 400-60mg, 780-80mg
Aquatab D/D Feda II/Decongest II/Deconsal II/Defen LA/Desal II/Durasal II/Guaifenesin, Pseudoephedrine/Guaifenesin, Pseudoephedrine Hydrochloride/Guaifenex PSE-60/Guiatex II SR/Iosal II/Mucinex D/Mucus-D Oral Tab ER: 1200-120mg, 600-60mg
Respaire-30 Oral Cap: 150-30mg
Maximum Dosage
NOTE: Do not exceed recommended dosage limits for the specific product prescribed; the following are general guidelines:
AdultsGuaifenesin 2400 mg/day PO; pseudoephedrine 240 mg/day PO.
GeriatricGuaifenesin 2400 mg/day PO; pseudoephedrine 240 mg/day PO.
AdolescentsGuaifenesin 2400 mg/day PO; pseudoephedrine 240 mg/day PO.
Children12 years: Guaifenesin 2400 mg/day PO; pseudoephedrine 240 mg/day PO.
6 to 11 years: Guaifenesin 1200 mg/day PO; pseudoephedrine 120 mg/day PO.
Less than 5 years: Safety and efficacy have not been established.
Safety and efficacy have not been established.
Mechanism Of Action
Guaifenesin; pseudoephedrine delayed-release tablets have combined antitussive and sympathomimetic properties.
•Guaifenesin: Guaifenesin reduces the adhesiveness and surface tension of respiratory tract secretions, thereby easing their expectoration. The expectorant effect can reduce cough frequency. The increased flow of less viscous secretions promotes ciliary action and changes a dry, nonproductive cough to one that is more productive and less frequent. Guaifenesin loosens and thins phlegm and bronchial secretions to ease expectoration. By reducing the viscosity and adhesiveness of secretions, guaifenesin increases the efficacy of the mucociliary mechanism in removing accumulated secretions from the upper and lower airway. Guaifenesin can also be beneficial for irritating, nonproductive coughs and for conditions in which thick mucous secretions are produced.
•Pseudoephedrine: Pseudoephedrine is an agonist at both alpha- and, to a lesser degree, beta-adrenergic receptors. Like ephedrine, pseudoephedrine also has an indirect effect by releasing norepinephrine from its storage sites. By stimulating alpha-adrenergic receptors in the mucosa of the respiratory tract, pseudoephedrine shrinks swollen nasal mucous membranes; reduces tissue hyperemia, edema, and nasal congestion; and increases nasal airway patency. Also, drainage of sinus secretions is increased, and obstructed eustachian ostia may be opened. Oral administration of pseudoephedrine usually produces negligible effects on blood pressure. In some patients, especially those with preexisting cardiac disease receiving higher doses, pseudoephedrine may increase blood pressure or irritability of the heart muscle and may affect ventricular conduction.
Pharmacokinetics
Guaifenesin; pseudoephedrine combination products are administered orally. Various extended-release combinations are available which are formulated to provide therapeutic effects over the 12 hour dosing interval. Coadministration of guaifenesin with pseudoephedrine has no effect on the bioavailability or pharmacokinetics of either drug.
Guaifenesin: Guaifenesin has a plasma half-life of approximately 1 hour. Guaifenesin is rapidly hydrolyzed (60% within seven hours) and then excreted in the urine, with beta-(2-methoxyphenoxy)-lactic acid as its major urinary metabolite. No unchanged drug could be detected in the urine following administration of oral guaifenesin. Excessive use of guaifenesin may result in urolithiasis; renal stones have been documented to contain beta-(2-methoxyphenoxy)-lactic acid and other guaifenesin metabolites.
Pseudoephedrine: Pseudoephedrine is presumed to cross the placenta, blood brain barrier, and may be distributed into breast milk. Pseudoephedrine is incompletely metabolized in the liver to norpseudoephedrine, the primary active metabolite of the parent. The drug and metabolite are excreted in the urine; with 55 to 75% excreted as unchanged drug. The elimination half-life of the drug ranges from 9 to 16 hours dependent primarily upon urinary pH. The rate of urinary excretion is accelerated upon urinary acidification to a pH near 5. Upon alkalinization of the urine to a pH of approximately 8, some of the drug is reabsorbed into the kidney tubule and the rate of urinary excretion is slowed.
Guaifenesin: Guaifenesin is rapidly absorbed from the gastrointestinal tract.
Pseudoephedrine: Pseudoephedrine duration of action is dependent upon the dose and the extended release formulation (12 or 24 hours).
Pregnancy And Lactation
Combination products of guaifenesin; pseudoephedrine are not recommended for use during pregnancy. Pseudoephedrine may reduce blood flow to the placenta and the fetus, and there is some evidence use may be associated with birth defects if used during early pregnancy. Evidence from case-control studies in human pregnancy indicate there may be an increased risk of gastroschisis, small intestinal atresia, and hemifacial microsomia in babies exposed in utero to pseudoephedrine, particularly in the first trimester. A study examining the developmental toxicity of guaifenesin in pregnant rats reported decreased fetal weight and impaired skeletal development in fetuses of exposed rats. In a large, population-based case control study of maternal use of cough medications during early pregnancy, guaifenesin use was associated with a small number of birth defects, including small intestinal atresia/stenosis and omphalocele. Non-pharmacologic methods (e.g., fluids, rest) are recommended to be tried first for symptomatic relief of cough and congestion during pregnancy and patients should get treatment recommendations from their health care provider.
It is not known whether guaifenesin is excreted into human breast milk. Pseudoephedrine is excreted into breast milk, with peak milk concentrations occur 1—1.5 hours after a maternal oral dosage. Peak milk concentrations of pseudoephedrine usually exceed those of maternal plasma. The total amount of pseudoephedrine (measured by AUC) in milk is 2—3 times that of plasma. However, only 0.5% of a maternal dose would probably be ingested by an infant during breast-feeding within any 24 hours. The American Academy of Pediatrics has considered the use of pseudoephedrine to be compatible with lactation. Lactating women may want to avoid breast-feeding during times of peak concentrations (i.e., within 1—2 hours after a dose) when possible. Sympathomimetic adverse effects (irritability, excessive crying, and altered sleeping patterns) have been reported in a breast-fed infant following maternal administration of pseudoephedrine; symptoms resolved within 12 hours of drug discontinuation. Guaifenesin; pseudoephedrine should be given cautiously to women who are breast-feeding. The decision should be made as to whether to discontinue breast-feeding or discontinue the product based upon the importance of the drug to the mother.