Prandin
Classes
Meglitinide Antidiabetics
Administration
Administer within the 30 minutes (1 to 30 minutes) before a meal.
In patients who skip meals, instruct patients to skip a scheduled dose prior to the skipped meal to reduce the risk of hypoglycemia.
Adverse Reactions
arrhythmia exacerbation / Early / 0-1.0
myocardial infarction / Delayed / 0-1.0
anaphylactoid reactions / Rapid / 0-1.0
heart failure / Delayed / 0-1.0
pancreatitis / Delayed / Incidence not known
hemolytic anemia / Delayed / Incidence not known
Stevens-Johnson syndrome / Delayed / Incidence not known
secondary failure / Delayed / Incidence not known
hypoglycemia / Early / 16.0-16.0
constipation / Delayed / 2.0-2.0
chest pain (unspecified) / Early / 1.8-1.8
angina / Early / 1.8-1.8
hypertension / Early / 0-1.0
thrombocytopenia / Delayed / 0-1.0
leukopenia / Delayed / 0-1.0
elevated hepatic enzymes / Delayed / 0-1.0
confusion / Early / Incidence not known
palpitations / Early / Incidence not known
sinus tachycardia / Rapid / Incidence not known
hepatitis / Delayed / Incidence not known
jaundice / Delayed / Incidence not known
peripheral edema / Delayed / Incidence not known
infection / Delayed / 3.0-10.0
headache / Early / 9.0-9.0
rhinitis / Early / 7.0-7.0
back pain / Delayed / 6.0-6.0
dyspepsia / Early / 4.0-4.0
diarrhea / Early / 4.0-4.0
nausea / Early / 3.0-3.0
sinusitis / Delayed / 3.0-3.0
arthralgia / Delayed / 3.0-3.0
vomiting / Early / 2.0-2.0
paresthesias / Delayed / 2.0-2.0
tremor / Early / Incidence not known
pallor / Early / Incidence not known
alopecia / Delayed / Incidence not known
weight gain / Delayed / Incidence not known
Common Brand Names
Prandin
Dea Class
Rx
Description
Meglitinide oral hypoglycemic agent; stimulates insulin secretion
Rapid onset and short duration of action replicates physiological insulin profiles around meals
Used for the treatment of type 2 diabetes mellitus in adults; not commonly used as monotherapy
Dosage And Indications
0.5 mg PO before each meal for patients whose HbA1c is less than 8% and 1 or 2 mg PO before each meal for patients whose HbA1c is 8% or more. May double the dose after at least 1 week if needed. Usual dose range: 0.5 to 4 mg PO before each meal. Max: 4 mg/dose and 16 mg/day. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.
Dosing Considerations
No specific recommendations are available. Use with caution; it may be prudent to initiate therapy with 0.5 mg PO with each meal, followed by slow and careful dosage titration to desired clinical response.
Renal ImpairmentCrCl 40 mL/minute or more: No initial dosage adjustment is required.
CrCl 20 to 39 mL/minute: Initiate therapy with 0.5 mg PO with each meal, followed by careful dosage titration to desired clinical response.
CrCl less than 20 mL/minute: No data are available.
Drug Interactions
Abiraterone: (Moderate) Monitor blood sugar more frequently if coadministration of repaglinide with abiraterone is necessary. Repaglinide is a CYP2C8 substrate and abiraterone is a weak CYP2C8 inhibitor. Severe hypoglycemia has been reported when abiraterone was administered to patients receiving repaglinide.
Acebutolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Chlorpheniramine; Phenylephrine : (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Dextromethorphan; Phenylephrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Dichloralphenazone; Isometheptene: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Guaifenesin; Phenylephrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Phenylephrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Pseudoephedrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetazolamide: (Minor) Acetazolamide has rarely caused hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to drug-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between acetazolamide and repaglinide. Diabetic patients should be monitored for a loss of blood glucose control.
Acrivastine; Pseudoephedrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Adagrasib: (Moderate) A dose reduction of repaglinide and increased frequency of blood glucose monitoring may be required if coadministration with adagrasib is necessary. Repaglinide is a CYP3A substrate and adagrasib is a strong CYP3A inhibitor. Coadministration with other strong CYP3A inhibitors increased repaglinide exposure by up to 1.5-fold.
Aldesleukin, IL-2: (Moderate) Repaglinide is partly metabolized by CYP3A4. Drugs that inhibit CYP3A4 may increase plasma concentrations of repaglinide. Aldesleukin, IL-2 is a mild inhibitor of CYP3A4. If these drugs are co-administered, dose adjustment of repaglinide may be necessary.
Alogliptin; Metformin: (Moderate) Use of metformin with a meglitinide ("glinide") may increase the risk of hypoglycemia. Meglitinides are insulin secretagogues and are known to cause hypoglycemia. To manage hypoglycemic risk, lower doses of the meglitinide may be needed. Monitor blood sugar.
Amiodarone: (Moderate) Repaglinide is partly metabolized by CYP3A4. Drugs that inhibit CYP3A4 may increase plasma concentrations of repaglinide. Amiodarone is an inhibitor of CYP3A4. If these drugs are co-administered, dose adjustment of repaglinide may be necessary.
Amobarbital: (Major) Coadministration of barbiturates and repaglinide may decrease the serum concentration of repaglinide; if coadministration is necessary, a dose increase of repaglinide may be necessary and increased frequency of blood glucose monitoring. Barbiturates are CYP3A4 inducers and repaglinide is a CYP3A4 substrate. Monitor for the possibility of reduced effectiveness of repaglinide and possible symptoms indicating hyperglycemia.
Amoxicillin; Clarithromycin; Omeprazole: (Moderate) The concomitant use of clarithromycin and oral hypoglycemic agents can result in significant hypoglycemia. With certain hypoglycemic drugs such as repaglinide, inhibition of CYP3A enzyme by clarithromycin may be involved and could cause hypolgycemia when used concomitantly. Dosage reduction of repaglinide may be needed. Careful monitoring of glucose is recommended.
Amphetamine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Amphetamine; Dextroamphetamine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Androgens: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
Angiotensin II receptor antagonists: (Moderate) Angiotensin II receptor antagonists (ARB) may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving an ARB in combination with antidiabetic agents should be monitored for changes in glycemic control.
Angiotensin-converting enzyme inhibitors: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Apalutamide: (Moderate) An increased dose of repaglinide and increased frequency of blood glucose monitoring may be required if coadministration with apalutamide is necessary. Repaglinide is a CYP3A4 substrate and apalutamide is a strong CYP3A4 inducer. Coadministration with another strong CYP3A4 inducer decreased repaglinide exposure by 32% to 80%.
Aprepitant, Fosaprepitant: (Moderate) Use caution if repaglinide and aprepitant, fosaprepitant are used concurrently and monitor for an increase in repaglinide-related adverse effects for several days after administration of a multi-day aprepitant regimen. Repaglinide is a CYP3A4 substrate. Aprepitant, when administered as a 3-day oral regimen (125 mg/80 mg/80 mg), is a moderate CYP3A4 inhibitor and inducer and may increase plasma concentrations of repaglinide. For example, a 5-day oral aprepitant regimen increased the AUC of another CYP3A4 substrate, midazolam (single dose), by 2.3-fold on day 1 and by 3.3-fold on day 5. After a 3-day oral aprepitant regimen, the AUC of midazolam (given on days 1, 4, 8, and 15) increased by 25% on day 4, and then decreased by 19% and 4% on days 8 and 15, respectively. As a single 125 mg or 40 mg oral dose, the inhibitory effect of aprepitant on CYP3A4 is weak, with the AUC of midazolam increased by 1.5-fold and 1.2-fold, respectively. After administration, fosaprepitant is rapidly converted to aprepitant and shares many of the same drug interactions. However, as a single 150 mg intravenous dose, fosaprepitant only weakly inhibits CYP3A4 for a duration of 2 days; there is no evidence of CYP3A4 induction. Fosaprepitant 150 mg IV as a single dose increased the AUC of midazolam (given on days 1 and 4) by approximately 1.8-fold on day 1; there was no effect on day 4. Less than a 2-fold increase in the midazolam AUC is not considered clinically important.
Articaine; Epinephrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Asciminib: (Moderate) A dose reduction of repaglinide and increased frequency of blood glucose monitoring may be required if coadministration with asciminib is necessary. Repaglinide is a CYP2C8 and CYP3A substrate and asciminib is a weak CYP2C8 and CYP3A inhibitor. Coadministration of repaglinide with asciminib 40 mg twice daily, 80 mg once daily, and 200 mg twice daily increased the exposure of repaglinide by 8%, 12% and 42%, respectively.
Aspirin, ASA; Butalbital; Caffeine: (Major) Coadministration of barbiturates and repaglinide may decrease the serum concentration of repaglinide; if coadministration is necessary, a dose increase of repaglinide may be necessary and increased frequency of blood glucose monitoring. Barbiturates are CYP3A4 inducers and repaglinide is a CYP3A4 substrate. Monitor for the possibility of reduced effectiveness of repaglinide and possible symptoms indicating hyperglycemia.
Atazanavir; Cobicistat: (Moderate) Coadministration of repaglinide and cobicistat may increase plasma concentrations of repaglinide; if coadministration is necessary, repaglinide dosage adjustment may be required and an increased frequency of glucose monitoring is recommended. Cobicistat is a strong CYP3A4 inhibitor and an inhibitor of organic anion transporting polypeptide (OATP). Repaglinide is a CYP3A4 and OATP1B1 substrate. Coadministration with other strong CYP3A4 inhibitors increased repaglinide exposure by up to 1.5-fold.
Atenolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Atenolol; Chlorthalidone: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
atypical antipsychotic: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Barbiturates: (Major) Coadministration of barbiturates and repaglinide may decrease the serum concentration of repaglinide; if coadministration is necessary, a dose increase of repaglinide may be necessary and increased frequency of blood glucose monitoring. Barbiturates are CYP3A4 inducers and repaglinide is a CYP3A4 substrate. Monitor for the possibility of reduced effectiveness of repaglinide and possible symptoms indicating hyperglycemia.
Benzphetamine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Berotralstat: (Moderate) A dose reduction of repaglinide and increased frequency of blood glucose monitoring may be required if coadministration with berotralstat is necessary. Repaglinide is a CYP3A4 substrate and berotralstat is a moderate CYP3A4 inhibitor.
Beta-blockers: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Betaxolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Bexarotene: (Moderate) Systemic bexarotene may enhance the action of agents that enhance insulin secretion (e.g., meglitinides or "glinides") resulting in hypoglycemia. Patients should be closely monitored while receiving bexarotene capsules in combination with any of these agents; monitor for hypoglycemia and need for diabetic therapy adjustments. Hypoglycemia has not been associated with bexarotene monotherapy.
Bisoprolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Bortezomib: (Moderate) During clinical trials of bortezomib, hypoglycemia and hyperglycemia were reported in diabetic patients receiving antidiabetic agents. Patients taking antidiabetic agents and receiving bortezomib treatment may require close monitoring of their blood glucose levels and dosage adjustment of their medication.
Brimonidine; Timolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Brompheniramine; Dextromethorphan; Phenylephrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Brompheniramine; Phenylephrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Brompheniramine; Pseudoephedrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Brompheniramine; Pseudoephedrine; Dextromethorphan: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Bupivacaine; Epinephrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Butabarbital: (Major) Coadministration of barbiturates and repaglinide may decrease the serum concentration of repaglinide; if coadministration is necessary, a dose increase of repaglinide may be necessary and increased frequency of blood glucose monitoring. Barbiturates are CYP3A4 inducers and repaglinide is a CYP3A4 substrate. Monitor for the possibility of reduced effectiveness of repaglinide and possible symptoms indicating hyperglycemia.
Butalbital; Acetaminophen: (Major) Coadministration of barbiturates and repaglinide may decrease the serum concentration of repaglinide; if coadministration is necessary, a dose increase of repaglinide may be necessary and increased frequency of blood glucose monitoring. Barbiturates are CYP3A4 inducers and repaglinide is a CYP3A4 substrate. Monitor for the possibility of reduced effectiveness of repaglinide and possible symptoms indicating hyperglycemia.
Butalbital; Acetaminophen; Caffeine: (Major) Coadministration of barbiturates and repaglinide may decrease the serum concentration of repaglinide; if coadministration is necessary, a dose increase of repaglinide may be necessary and increased frequency of blood glucose monitoring. Barbiturates are CYP3A4 inducers and repaglinide is a CYP3A4 substrate. Monitor for the possibility of reduced effectiveness of repaglinide and possible symptoms indicating hyperglycemia.
Butalbital; Acetaminophen; Caffeine; Codeine: (Major) Coadministration of barbiturates and repaglinide may decrease the serum concentration of repaglinide; if coadministration is necessary, a dose increase of repaglinide may be necessary and increased frequency of blood glucose monitoring. Barbiturates are CYP3A4 inducers and repaglinide is a CYP3A4 substrate. Monitor for the possibility of reduced effectiveness of repaglinide and possible symptoms indicating hyperglycemia.
Butalbital; Aspirin; Caffeine; Codeine: (Major) Coadministration of barbiturates and repaglinide may decrease the serum concentration of repaglinide; if coadministration is necessary, a dose increase of repaglinide may be necessary and increased frequency of blood glucose monitoring. Barbiturates are CYP3A4 inducers and repaglinide is a CYP3A4 substrate. Monitor for the possibility of reduced effectiveness of repaglinide and possible symptoms indicating hyperglycemia.
Canagliflozin; Metformin: (Moderate) Use of metformin with a meglitinide ("glinide") may increase the risk of hypoglycemia. Meglitinides are insulin secretagogues and are known to cause hypoglycemia. To manage hypoglycemic risk, lower doses of the meglitinide may be needed. Monitor blood sugar.
Cannabidiol: (Moderate) Consider a dose reduction of repaglinide as clinically appropriate, if adverse reactions occur when administered with cannabidiol. Increased repaglinide exposure is possible. Repaglinide is a CYP2C8 substrate. In vitro data predicts inhibition of CYP2C8 by cannabidiol potentially resulting in clinically significant interactions.
Carbamazepine: (Major) Coadministration of carbamazepine and repaglinide may decrease the serum concentration of repaglinide; if coadministration is necessary, a dose increase of repaglinide may be required and an increased frequency of glucose monitoring is recommended. Carbamazepine is a potent CYP3A4 inducer and repaglinide is a CYP3A4 substrate. Monitor for the possibility of reduced effectiveness of repaglinide and possible symptoms indicating hyperglycemia.
Carteolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Carvedilol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Cenobamate: (Moderate) An increased dose of repaglinide and increased frequency of blood glucose monitoring may be required if coadministration with cenobamate is necessary. Repaglinide is a CYP3A4 substrate and cenobamate is a moderate CYP3A4 inducer.
Ceritinib: (Moderate) A dose reduction of repaglinide and increased frequency of blood glucose monitoring may be required if coadministration with ceritinib is necessary. Repaglinide is a CYP3A4 substrate and ceritinib is a strong CYP3A4 inhibitor. Coadministration with other strong CYP3A4 inhibitors increased repaglinide exposure by up to 1.5-fold.
Cetirizine; Pseudoephedrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Chloramphenicol: (Moderate) Coadministration of repaglinide and chloramphenicol may increase plasma concentrations of repaglinide; if coadministration is necessary, repaglinide dosage adjustment may be required and an increased frequency of glucose monitoring is recommended. Repaglinide is a CYP3A4 substrate and chloramphenicol is an inhibitor of CYP3A4.
Chloroquine: (Major) Careful monitoring of blood glucose is recommended when chloroquine and antidiabetic agents, including the meglitinides, are coadministered. A decreased dose of the antidiabetic agent may be necessary as severe hypoglycemia has been reported in patients treated concomitantly with chloroquine and an antidiabetic agent.
Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Chlorpheniramine; Phenylephrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Chlorpheniramine; Pseudoephedrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Chlorpromazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Chlorthalidone; Clonidine: (Minor) Increased frequency of blood glucose monitoring may be required when clonidine is given with antidiabetic agents. Since clonidine inhibits the release of catecholamines, clonidine may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Clonidine does not appear to impair recovery from hypoglycemia, and has not been found to impair glucose tolerance in diabetic patients.
Chromium: (Moderate) Chromium dietary supplements may lower blood glucose. As part of the glucose tolerance factor molecule, chromium appears to facilitate the binding of insulin to insulin receptors in tissues and to aid in glucose metabolism. Because blood glucose may be lowered by the use of chromium, patients who are on antidiabetic agents may need dose adjustments. Close monitoring of blood glucose is recommended.
Cimetidine: (Minor) In healthy volunteers, the coadministration of cimetidine with repaglinide did not significantly alter the absorption or disposition of repaglinide. Repaglinide is partly metabolized by CYP3A4. Drugs that inhibit CYP3A4 may increase plasma concentrations of repaglinide. Cimetidine has been shown to be a mild inhibitor of CYP3A4. If these drugs are co-administered, dose adjustment of repaglinide may rarely be necessary. Consider other H2-blockers as alternatives.
Cisapride: (Moderate) Because cisapride can enhance gastric emptying in diabetic patients, blood glucose can be affected, which, in turn, may affect the clinical response to antidiabetic agents. Monitor blood glucose and adjust if cliniically indicated.
Clarithromycin: (Moderate) The concomitant use of clarithromycin and oral hypoglycemic agents can result in significant hypoglycemia. With certain hypoglycemic drugs such as repaglinide, inhibition of CYP3A enzyme by clarithromycin may be involved and could cause hypolgycemia when used concomitantly. Dosage reduction of repaglinide may be needed. Careful monitoring of glucose is recommended.
Clofarabine: (Moderate) Concomitant use of clofarabine, a substrate of OAT1 and OAT3, and repaglinide, a substrate of OAT protein (OATP), may result in altered clofarabine levels. Therefore, monitor for signs of clofarabine toxicity such as gastrointestinal toxicity (e.g., nausea, vomiting, diarrhea, mucosal inflammation), hematologic toxicity, and skin toxicity (e.g., hand and foot syndrome, rash, pruritus) in patients also receiving OATP substrates.
Clonidine: (Minor) Increased frequency of blood glucose monitoring may be required when clonidine is given with antidiabetic agents. Since clonidine inhibits the release of catecholamines, clonidine may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Clonidine does not appear to impair recovery from hypoglycemia, and has not been found to impair glucose tolerance in diabetic patients.
Clopidogrel: (Major) Avoid concomitant use of clopidogrel and repaglinide. If coadministration cannot be avoided, initiate repaglinide at 0.5 mg PO before each meal, and do not exceed a total daily dose of 4 mg. Increased glucose monitoring may be required. Concomitant administration of clopidogrel and repaglinide increased the systemic exposure of repaglinide 5.1-fold after a clopidogrel 300 mg loading dose and 3.9-fold on day 3 of clopidogrel 75 mg/day. Repaglinide is a CYP2C8 substrate and clopidogrel is a moderate CYP2C8 inhibitor.
Cobicistat: (Moderate) Coadministration of repaglinide and cobicistat may increase plasma concentrations of repaglinide; if coadministration is necessary, repaglinide dosage adjustment may be required and an increased frequency of glucose monitoring is recommended. Cobicistat is a strong CYP3A4 inhibitor and an inhibitor of organic anion transporting polypeptide (OATP). Repaglinide is a CYP3A4 and OATP1B1 substrate. Coadministration with other strong CYP3A4 inhibitors increased repaglinide exposure by up to 1.5-fold.
Codeine; Guaifenesin; Pseudoephedrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Codeine; Phenylephrine; Promethazine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Codeine; Promethazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Conivaptan: (Moderate) A dose reduction of repaglinide and increased frequency of blood glucose monitoring may be required if coadministration with conivaptan is necessary. Repaglinide is a CYP3A substrate and conivaptan is a moderate CYP3A inhibitor.
Conjugated Estrogens: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Conjugated Estrogens; Bazedoxifene: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Conjugated Estrogens; Medroxyprogesterone: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Corticosteroids: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Crizotinib: (Moderate) Monitor blood sugar if coadministration of repaglinide with crizotinib is necessary; an increase in repaglinide-related adverse reactions may occur. Repaglinide is a CYP3A4 substrate and crizotinib is a moderate CYP3A inhibitor.
Cyclosporine: (Major) Use of cyclosporine with repaglinide results in increased repaglinide exposure and an increased risk for hypoglycemia. Limit the repaglinide daily dose to 6 mg/day and increase the frequency of glucose monitoring. Cyclosporine has additionally been associated with hyperglycemia and may independently alter blood glucose, via a directe effect on beta cells in the pancreas. Monitor closely for alterations in glycemic control. Cyclosporine inhibits the metabolism of repaglinide by inhibiting the drug transporter OATP1B1, which is an active hepatic uptake transporter, and also inhibits CYP3A4. In a drug interaction study, cyclosporine increased low-dose repaglinide exposures by 2.5 fold. Increased repaglinide concentrations were also noted among healthy patients who took oral cyclosporine 100 mg daily for 2 days; after a single 0.25 mg repaglinide dose, the mean AUC for repaglinide increased 244% (range, 119% to 533%) as compared with control data.
Dabrafenib: (Major) The concomitant use of dabrafenib and repaglinide may lead to decreased repaglinide concentrations and loss of efficacy. Use of an alternative agent is recommended. If concomitant use of these agents is unavoidable, monitor patients for loss of repaglinide efficacy. In vitro, dabrafenib is an inducer of CYP2C isoenzymes via activation of the pregnane X receptor and constitutive androstane receptor nuclear receptors. Repaglinide is a sensitive CYP2C8 substrate.
Daclatasvir: (Moderate) Closely monitor blood glucose levels if daclatasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as daclatasvir.
Danazol: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, th
Dapagliflozin; Metformin: (Moderate) Use of metformin with a meglitinide ("glinide") may increase the risk of hypoglycemia. Meglitinides are insulin secretagogues and are known to cause hypoglycemia. To manage hypoglycemic risk, lower doses of the meglitinide may be needed. Monitor blood sugar.
Darunavir; Cobicistat: (Moderate) Coadministration of repaglinide and cobicistat may increase plasma concentrations of repaglinide; if coadministration is necessary, repaglinide dosage adjustment may be required and an increased frequency of glucose monitoring is recommended. Cobicistat is a strong CYP3A4 inhibitor and an inhibitor of organic anion transporting polypeptide (OATP). Repaglinide is a CYP3A4 and OATP1B1 substrate. Coadministration with other strong CYP3A4 inhibitors increased repaglinide exposure by up to 1.5-fold.
Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Moderate) Coadministration of repaglinide and cobicistat may increase plasma concentrations of repaglinide; if coadministration is necessary, repaglinide dosage adjustment may be required and an increased frequency of glucose monitoring is recommended. Cobicistat is a strong CYP3A4 inhibitor and an inhibitor of organic anion transporting polypeptide (OATP). Repaglinide is a CYP3A4 and OATP1B1 substrate. Coadministration with other strong CYP3A4 inhibitors increased repaglinide exposure by up to 1.5-fold.
Deferasirox: (Moderate) Repaglinide is metabolized by CYP2C8 and deferasirox is a CYP2C8 inhibitor. Co-administration of deferasirox (30 mg/kg/day for 4 days) and repaglinide (single dose of 0.5 mg) resulted in an increase in repaglinide systemic exposure (AUC) to 2.3-fold of control and an increase in Cmax of 62%. If these drugs are co-administered, dose adjustment of repaglinide may be necessary.
Delavirdine: (Moderate) Repaglinide is partly metabolized by CYP3A4. Drugs that inhibit CYP3A4 may increase plasma concentrations of repaglinide. Delavirdine is a potent inhibitor of CYP3A4. If these drugs are co-administered, dose adjustment of repaglinide may be necessary.
Desloratadine; Pseudoephedrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Desogestrel; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Dexbrompheniramine; Pseudoephedrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dexmethylphenidate: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dextroamphetamine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dextromethorphan; Diphenhydramine; Phenylephrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Diazoxide: (Minor) Diazoxide, when administered intravenously or orally, produces a prompt dose-related increase in blood glucose level, due primarily to an inhibition of insulin release from the pancreas, and also to an extrapancreatic effect. The hyperglycemic effect begins within an hour and generally lasts no more than 8 hours in the presence of normal renal function. The hyperglycemic effect of diazoxide is expected to be antagonized by certain antidiabetic agents (e.g., insulin or a sulfonylurea). Blood glucose should be closely monitored.
Dienogest; Estradiol valerate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Diethylpropion: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Diethylstilbestrol, DES: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Diltiazem: (Moderate) Repaglinide is partly metabolized by CYP3A4. Drugs that inhibit CYP3A4 may increase plasma concentrations of repaglinide. Diltiazem is an inhibitor of CYP3A4. If these drugs are co-administered, dose adjustment of repaglinide may be necessary.
Diphenhydramine; Phenylephrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Disopyramide: (Moderate) Disopyramide may enhance the hypoglycemic effects of antidiabetic agents. Patients receiving disopyramide concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Dobutamine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dopamine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dorzolamide; Timolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Doxapram: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dronedarone: (Moderate) Dronedarone is metabolized by and is an inhibitor of CYP3A. Repaglinide is a substrate for CYP3A4. The concomitant administration of dronedarone and CYP3A substrates may result in increased exposure of the substrate and should, therefore, be undertaken with caution.
Drospirenone: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Drospirenone; Estetrol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Drospirenone; Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Drospirenone; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Drospirenone; Ethinyl Estradiol; Levomefolate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Dulaglutide: (Moderate) The risk of hypoglycemia is increased when dulaglutide is used in combination with insulin secretagogues such as meglitinides. Although specific dose recommendations are not available, a lower dose of the insulin secretagogue may be required to reduce the risk of hypoglycemia in this setting. Adequate blood glucose monitoring should be continued and followed.
Efavirenz: (Minor) Repaglinide is metabolized in the liver by cytochrome P450 isoenzyme CYP3A. Patients taking repaglinide concomitantly with a CYP3A inducer such as efavirenz or efavirenz-containing products (e.g., efavirenz; emtricitabine; tenofovir) should be monitored for reduced effectiveness of repaglinide and possible symptoms indicating hyperglycemia.
Efavirenz; Emtricitabine; Tenofovir Disoproxil Fumarate: (Minor) Repaglinide is metabolized in the liver by cytochrome P450 isoenzyme CYP3A. Patients taking repaglinide concomitantly with a CYP3A inducer such as efavirenz or efavirenz-containing products (e.g., efavirenz; emtricitabine; tenofovir) should be monitored for reduced effectiveness of repaglinide and possible symptoms indicating hyperglycemia.
Efavirenz; Lamivudine; Tenofovir Disoproxil Fumarate: (Minor) Repaglinide is metabolized in the liver by cytochrome P450 isoenzyme CYP3A. Patients taking repaglinide concomitantly with a CYP3A inducer such as efavirenz or efavirenz-containing products (e.g., efavirenz; emtricitabine; tenofovir) should be monitored for reduced effectiveness of repaglinide and possible symptoms indicating hyperglycemia.
Elagolix; Estradiol; Norethindrone acetate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Elbasvir; Grazoprevir: (Moderate) Administering repaglinide with elbasvir; grazoprevir may result in elevated repaglinide plasma concentrations. Repaglinide is a substrate of CYP3A; grazoprevir is a weak CYP3A inhibitor. If these drugs are used together, closely monitor for signs of adverse events. (Moderate) Closely monitor blood glucose levels if elbasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as elbasvir.
Elexacaftor; tezacaftor; ivacaftor: (Moderate) Monitor blood sugar more frequently during coadministration of repaglinide with elexacaftor; tezacaftor; ivacaftor as concurrent use may increase exposure of repaglinide. Repaglinide is a substrate for the transporter OATP1B1; elexacaftor; tezacaftor; ivacaftor may inhibit uptake of OATP1B1.
Eltrombopag: (Moderate) Eltrombopag is an inhibitor of the transporter OATP1B1. Drugs that are substrates for this transporter, such as repaglinide, may exhibit an increase in systemic exposure if coadministered with eltrombopag; monitor patients for adverse reactions if these drugs are coadministered.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Alafenamide: (Moderate) Coadministration of repaglinide and cobicistat may increase plasma concentrations of repaglinide; if coadministration is necessary, repaglinide dosage adjustment may be required and an increased frequency of glucose monitoring is recommended. Cobicistat is a strong CYP3A4 inhibitor and an inhibitor of organic anion transporting polypeptide (OATP). Repaglinide is a CYP3A4 and OATP1B1 substrate. Coadministration with other strong CYP3A4 inhibitors increased repaglinide exposure by up to 1.5-fold.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Moderate) Coadministration of repaglinide and cobicistat may increase plasma concentrations of repaglinide; if coadministration is necessary, repaglinide dosage adjustment may be required and an increased frequency of glucose monitoring is recommended. Cobicistat is a strong CYP3A4 inhibitor and an inhibitor of organic anion transporting polypeptide (OATP). Repaglinide is a CYP3A4 and OATP1B1 substrate. Coadministration with other strong CYP3A4 inhibitors increased repaglinide exposure by up to 1.5-fold.
Empagliflozin; Linagliptin; Metformin: (Moderate) Use of metformin with a meglitinide ("glinide") may increase the risk of hypoglycemia. Meglitinides are insulin secretagogues and are known to cause hypoglycemia. To manage hypoglycemic risk, lower doses of the meglitinide may be needed. Monitor blood sugar.
Empagliflozin; Metformin: (Moderate) Use of metformin with a meglitinide ("glinide") may increase the risk of hypoglycemia. Meglitinides are insulin secretagogues and are known to cause hypoglycemia. To manage hypoglycemic risk, lower doses of the meglitinide may be needed. Monitor blood sugar.
Enzalutamide: (Moderate) An increased dose of repaglinide and increased frequency of blood glucose monitoring may be required if coadministration with enzalutamide is necessary. Repaglinide is a CYP3A4 substrate and enzalutamide is a strong CYP3A4 inducer. Coadministration with another strong CYP3A4 inducer decreased repaglinide exposure by 32% to 80%.
Ephedrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Ephedrine; Guaifenesin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Epinephrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Ertugliflozin; Metformin: (Moderate) Use of metformin with a meglitinide ("glinide") may increase the risk of hypoglycemia. Meglitinides are insulin secretagogues and are known to cause hypoglycemia. To manage hypoglycemic risk, lower doses of the meglitinide may be needed. Monitor blood sugar.
Erythromycin: (Moderate) Repaglinide is metabolized in the liver by cytochrome P450 isoenzyme CYP3A4. Clarithromycin inhibits this enzyme and has been found to produce a greater hypoglycemic effect from repaglinide. These are clinically significant increases in repaglinide plasma levels which may necessitate a repaglinide dose adjustment. Erythromycin is likely to interact in a similar fashion.
Esmolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Esterified Estrogens: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Esterified Estrogens; Methyltestosterone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Estradiol; Levonorgestrel: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Estradiol; Norethindrone: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Estradiol; Norgestimate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Estradiol; Progesterone: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Estramustine: (Minor) Estramustine is an estrogen-containing medication and may decrease glucose tolerance. Patients receiving antidiabetic agents should monitor their blood glucose levels frequently due to this potential pharmacodynamic interaction.
Estrogens: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Estropipate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Ethanol: (Major) Patients should be advised to avoid or limit alcohol ingestion when treated with meglitinides. Alcohol ingestion increases hypoglycemic risk. In some patients, hypoglycemia can be prolonged. Patients should be educated regarding the signs, symptoms, and self-management of delayed hypoglycemia after drinking alcohol, especially when using meglitinides. The importance of glucose monitoring after drinking alcoholic beverages to reduce hypoglycemia risk should be emphasized.
Ethinyl Estradiol; Norelgestromin: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Ethinyl Estradiol; Norethindrone Acetate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Ethinyl Estradiol; Norgestrel: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Ethotoin: (Moderate) Coadministration of repaglinide with hydantoins may increase or decrease blood glucose; if coadministration is necessary, repaglinide dosage adjustment may be required and an increased frequency of glucose monitoring is recommended. Hydantoins are potent CYP3A4 inducers and repaglinide is a CYP3A4 substrate. In addition, phenytoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically.
Ethynodiol Diacetate; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Etonogestrel: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Etonogestrel; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Exenatide: (Moderate) The risk of hypoglycemia is increased when exenatide is used in combination with insulins or insulin secretagogues such as repaglinide. Although specific dose recommendations are not available, a lower dose of the insulin or secretagogue may be required to reduce the risk of hypoglycemia in this setting. Adequate blood glucose monitoring should be continued and followed.
Ezetimibe; Simvastatin: (Moderate) Coadministration of may lead to an increase in repaglinide. This interaction could result in an increased risk of adverse effects associated with repaglinide, specifically hypoglycemia.
Fedratinib: (Moderate) Monitor blood sugar if coadministration of repaglinide with fedratinib is necessary; an increase in repaglinide-related adverse reactions may occur. Repaglinide is a CYP3A4 substrate and fedratinib is a moderate CYP3A inhibitor.
Fenofibrate: (Moderate) Dose reductions and increased frequency of glucose monitoring may be required when antidiabetic agents are administered with fibric acid derivatives (e.g., clofibrate, fenofibric acid, fenofibrate, gemfibrozil). Fibric acid derivatives may enhance the hypoglycemic effects of antidiabetic agents through increased insulin sensitivity and decreased glucagon secretion.
Fenofibric Acid: (Moderate) Dose reductions and increased frequency of glucose monitoring may be required when antidiabetic agents are administered with fibric acid derivatives (e.g., clofibrate, fenofibric acid, fenofibrate, gemfibrozil). Fibric acid derivatives may enhance the hypoglycemic effects of antidiabetic agents through increased insulin sensitivity and decreased glucagon secretion.
Fexofenadine; Pseudoephedrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Fluconazole: (Moderate) Fluconazole should be used cautiously with oral hypoglycemic agents (i.e., nateglinide, repaglinide) because blood glucose response may be altered in patients with diabetes. However, concurrent fluconazole and nateglinide use did not significantly affect blood glucose concentrations despite an increase in the nateglinide AUC by 48% and an increase in the nateglinide half-life from 1.6 to 1.9 hours. The increases in systemic exposure and half-life of nateglinide may be due to fluconazole's inhibition of CYP2C9, which has been shown to participate in nateglinide's metabolism in vitro. Blood glucose concentrations should be monitored during fluconazole treatment; patients should be aware of the symptoms of hypoglycemia. In some cases, dosage adjustment of the sulfonylurea may be necessary.
Fluoxetine: (Moderate) In patients with diabetes mellitus, fluoxetine may alter glycemic control. Hypoglycemia has occurred during fluoxetine therapy. Hyperglycemia has developed in patients with diabetes mellitus following discontinuation of the drug. The dosage of insulin and/or other antidiabetic agents may need to be adjusted when therapy with fluoxetine is instituted or discontinued.
Fluphenazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Fosphenytoin: (Moderate) Coadministration of repaglinide with hydantoins may increase or decrease blood glucose; if coadministration is necessary, repaglinide dosage adjustment may be required and an increased frequency of glucose monitoring is recommended. Hydantoins are potent CYP3A4 inducers and repaglinide is a CYP3A4 substrate. In addition, phenytoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically.
Garlic, Allium sativum: (Moderate) Patients receiving antidiabetic agents should use dietary supplements of Garlic, Allium sativum with caution. Constituents in garlic might have some antidiabetic activity, and may increase serum insulin levels and increase glycogen storage in the liver. Monitor blood glucose and glycemic control. Patients with diabetes should inform their health care professionals of their intent to ingest garlic dietary supplements. Some patients may require adjustment to their hypoglycemic medications over time. One study stated that additional garlic supplementation (0.05 to 1.5 grams PO per day) contributed to improved blood glucose control in patients with type 2 diabetes mellitus within 1 to 2 weeks, and had positive effects on total cholesterol and high/low density lipoprotein regulation over time. It is unclear if hemoglobin A1C is improved or if improvements are sustained with continued treatment beyond 24 weeks. Other reviews suggest that garlic may provide modest improvements in blood lipids, but few studies demonstrate decreases in blood glucose in diabetic and non-diabetic patients. More controlled trials are needed to discern if garlic has an effect on blood glucose in patients with diabetes. When garlic is used in foods or as a seasoning, or at doses of 50 mg/day or less, it is unlikely that blood glucose levels are affected to any clinically significant degree.
Gemfibrozil: (Contraindicated) Concurrent use of repaglinide and gemfibrozil is contraindicated, due to significantly increased repaglinide exposure and hypoglycemic risk. Gemfibrozil is a potent inhibitor of CYP2C8, the primary pathway by which repaglinide is metabolized. Concurrent administration resulted in an 8.1-fold increase in repaglinide AUC as well as a 28.6-fold higher repaglinide plasma concentration 7 hours post-dose. The repaglinide half-life increased from 1.3 to 3.7 hours. Fibric acid derivatives are also known to enhance the hypoglycemic effects of antidiabetic agents through increased insulin sensitivity and decreased glucagon secretion.
Glecaprevir; Pibrentasvir: (Moderate) Closely monitor blood glucose levels if glecaprevir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as glecaprevir. (Moderate) Closely monitor blood glucose levels if pibrentasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as pibrentasvir.
Glipizide; Metformin: (Moderate) Use of metformin with a meglitinide ("glinide") may increase the risk of hypoglycemia. Meglitinides are insulin secretagogues and are known to cause hypoglycemia. To manage hypoglycemic risk, lower doses of the meglitinide may be needed. Monitor blood sugar.
Glyburide; Metformin: (Moderate) Use of metformin with a meglitinide ("glinide") may increase the risk of hypoglycemia. Meglitinides are insulin secretagogues and are known to cause hypoglycemia. To manage hypoglycemic risk, lower doses of the meglitinide may be needed. Monitor blood sugar.
Grapefruit juice: (Moderate) Repaglinide is partly metabolized by CYP3A4. Drugs or foods that inhibit CYP3A4 may increase plasma concentrations of repaglinide. Grapefruit juice contains furano-coumarins and certain flavonoids which may inhibit the CYP3A4 isozyme. It is recommended that patients not significantly alter their grapefruit ingestion while taking repaglinide.
Green Tea: (Moderate) Green tea catechins have been shown to decrease serum glucose concentrations in vitro. Patients with diabetes mellitus taking antidiabetic agents should be monitored closely for hypoglycemia if consuming green tea products.
Guaifenesin; Phenylephrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Guaifenesin; Pseudoephedrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Hydantoins: (Moderate) Coadministration of repaglinide with hydantoins may increase or decrease blood glucose; if coadministration is necessary, repaglinide dosage adjustment may be required and an increased frequency of glucose monitoring is recommended. Hydantoins are potent CYP3A4 inducers and repaglinide is a CYP3A4 substrate. In addition, phenytoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically.
Hydrocodone; Pseudoephedrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Hydroxychloroquine: (Moderate) Careful monitoring of blood glucose is recommended when hydroxychloroquine and antidiabetic agents, including the meglitinides, are coadministered. A decreased dose of the antidiabetic agent may be necessary as severe hypoglycemia has been reported in patients treated concomitantly with hydroxychloroquine and an antidiabetic agent.
Hydroxyprogesterone: (Minor) Progestins, like hydroxyprogesterone, can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Ibuprofen; Pseudoephedrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Idelalisib: (Major) Avoid concomitant use of idelalisib, a strong CYP3A inhibitor, with repaglinide, a CYP3A substrate, as repaglinide toxicities may be significantly increased. The AUC of a sensitive CYP3A substrate was increased 5.4-fold when coadministered with idelalisib.
Imatinib: (Moderate) Repaglinide is partly metabolized by CYP3A4. Drugs that inhibit CYP3A4 may increase plasma concentrations of repaglinide. Imatinib, STI-571 is an inhibitor of CYP3A4. If these drugs are co-administered, dose adjustment of repaglinide may be necessary.
Indapamide: (Moderate) A potential pharmacodynamic interaction exists between indapamide and antidiabetic agents, like meglitinides. Indapamide can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia.
Insulin Glargine; Lixisenatide: (Moderate) The risk of hypoglycemia is increased when lixisenatide is used in combination with insulin secretagogues such as repaglinide. Although specific dose recommendations are not available, a lower dose of repaglinide may be required to reduce the risk of hypoglycemia in this setting. Adequate blood glucose monitoring should be continued and followed.
Isavuconazonium: (Moderate) Concomitant use of isavuconazonium with repaglinide may result in increased serum concentrations of repaglinide. Repaglinide is a substrate of the hepatic isoenzyme CYP3A4; isavuconazole, the active moiety of isavuconazonium, is a moderate inhibitor of this enzyme. Caution and close monitoring for adverse effects, such as hypoglycemia, are advised if these drugs are used together.
Isoniazid, INH; Pyrazinamide, PZA; Rifampin: (Major) Coadministration of rifampin and repaglinide decreases the AUC and Cmax of repaglinide; if coadministration is necessary, a dose increase of repaglinide may be necessary and an increased frequency of glucose monitoring is recommended. Rifampin is a potent CYP3A4 inducer and also a moderate inducer of CYP2C8. Repaglinide is a CYP3A4 substrate and an in vitro sensitive CYP2C8 substrate. Monitor for the possibility of reduced effectiveness of repaglinide and possible symptoms indicating hyperglycemia.
Isoniazid, INH; Rifampin: (Major) Coadministration of rifampin and repaglinide decreases the AUC and Cmax of repaglinide; if coadministration is necessary, a dose increase of repaglinide may be necessary and an increased frequency of glucose monitoring is recommended. Rifampin is a potent CYP3A4 inducer and also a moderate inducer of CYP2C8. Repaglinide is a CYP3A4 substrate and an in vitro sensitive CYP2C8 substrate. Monitor for the possibility of reduced effectiveness of repaglinide and possible symptoms indicating hyperglycemia.
Isoproterenol: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Itraconazole: (Major) Coadministration of itraconazole and repaglinide increases the AUC of repaglinide by 1.4-fold; if coadministration is necessary, consider a dose reduction of repaglinide and increased frequency of glucose monitoring. Itraconazole is a CYP3A4 inhibitor and repaglinide is a CYP3A4 substrate. The possibility of an increased risk of hypoglycemia should be considered during concomitant use of itraconazole and repaglinide.
Ivosidenib: (Moderate) Monitor for loss of efficacy of repaglinide during coadministration of ivosidenib. A repaglinide dose increase may be necessary. Repaglinide is a sensitive substrate of CYP2C8; ivosidenib may induce CYP2C8 leadin g to decreased repaglinide concentrations.
Ketoconazole: (Moderate) A dose reduction of repaglinide and increased frequency of blood glucose monitoring may be required if coadministration with ketoconazole is necessary. Repaglinide is a CYP3A4 substrate and ketoconazole is a strong CYP3A4 inhibitor. Coadministration with ketoconazole increased repaglinide exposure by up to 1.5-fold.
Labetalol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Lanreotide: (Moderate) Monitor blood glucose levels regularly in patients with diabetes, especially when lanreotide treatment is initiated or when the dose is altered. Adjust treatment with antidiabetic agents as clinically indicated. Lanreotide inhibits the secretion of insulin and glucagon. Patients treated with lanreotide may experience either hypoglycemia or hyperglycemia.
Lansoprazole; Amoxicillin; Clarithromycin: (Moderate) The concomitant use of clarithromycin and oral hypoglycemic agents can result in significant hypoglycemia. With certain hypoglycemic drugs such as repaglinide, inhibition of CYP3A enzyme by clarithromycin may be involved and could cause hypolgycemia when used concomitantly. Dosage reduction of repaglinide may be needed. Careful monitoring of glucose is recommended.
Ledipasvir; Sofosbuvir: (Moderate) Closely monitor blood glucose levels if ledipasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agent(s) may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as ledipasvir. (Moderate) Closely monitor blood glucose levels if sofosbuvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as sofosbuvir.
Leflunomide: (Moderate) Closely monitor for hypoglycemia and for repaglinide-induced side effects when these drugs are used together. In some patients, a dosage reduction of repaglinide may be required. Following oral administration, leflunomide is metabolized to an active metabolite, teriflunomide, which is responsible for essentially all of leflunomide's in vivo activity. In vivo data suggest that teriflunomide is an inhibitor of CYP2C8, as increases in Cmax and AUC were observed following concurrent use of repaglinide, a CYP2C8 substrate. Repaglinide Cmax and AUC increased 1.7- and 2.4-fold, respectively, following a single dose of repaglinide 0.25 mg with repeated dosing of leflunomide's active metabolite.
Lenacapavir: (Moderate) A dose reduction of repaglinide and increased frequency of blood glucose monitoring may be required if coadministration with lenacapavir is necessary. Repaglinide is a CYP3A substrate and lenacapavir is a moderate CYP3A inhibitor.
Letermovir: (Moderate) Frequently monitor blood glucose concentrations and for evidence of hypoglycemia during concurrent use of repaglinide and letermovir. Concurrent use is not recommended in patients also receiving cyclosporine as the magnitude of this interaction may be amplified. A clinically relevant increase in the plasma concentration of repaglinide may occur during concurrent administration with letermovir. Repaglinide is a substrate of CYP3A4 and the organic anion-transporting polypeptides 1B1 and 1B3 (OATP1B1/3). Both letermovir and cyclosporine are moderate inhibitors of CYP3A4 and inhibitors of OATP1B1; letermovir is also an OATP1B3 inhibitor. The combined effect of letermovir and cyclosporine on CYP3A4 substrates may be similar to a strong CYP3A4 inhibitor.
Leuprolide; Norethindrone: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Levobunolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Levoketoconazole: (Moderate) A dose reduction of repaglinide and increased frequency of blood glucose monitoring may be required if coadministration with ketoconazole is necessary. Repaglinide is a CYP3A4 substrate and ketoconazole is a strong CYP3A4 inhibitor. Coadministration with ketoconazole increased repaglinide exposure by up to 1.5-fold.
Levonorgestrel: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Levonorgestrel; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Levonorgestrel; Ethinyl Estradiol; Ferrous Bisglycinate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Levonorgestrel; Ethinyl Estradiol; Ferrous Fumarate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Levothyroxine: (Minor) Addition of thyroid hormones to antidiabetic or insulin therapy may result in increased dosage requirements of the antidiabetic agents. Blood sugars should be carefully monitored when thyroid therapy is added, discontinued or doses changed.
Levothyroxine; Liothyronine (Porcine): (Minor) Addition of thyroid hormones to antidiabetic or insulin therapy may result in increased dosage requirements of the antidiabetic agents. Blood sugars should be carefully monitored when thyroid therapy is added, discontinued or doses changed.
Levothyroxine; Liothyronine (Synthetic): (Minor) Addition of thyroid hormones to antidiabetic or insulin therapy may result in increased dosage requirements of the antidiabetic agents. Blood sugars should be carefully monitored when thyroid therapy is added, discontinued or doses changed.
Lidocaine; Epinephrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Linagliptin; Metformin: (Moderate) Use of metformin with a meglitinide ("glinide") may increase the risk of hypoglycemia. Meglitinides are insulin secretagogues and are known to cause hypoglycemia. To manage hypoglycemic risk, lower doses of the meglitinide may be needed. Monitor blood sugar.
Linezolid: (Moderate) Hypoglycemia, including symptomatic episodes, has been noted in post-marketing reports with linezolid in patients with diabetes mellitus receiving therapy with antidiabetic agents, such as insulin and oral hypoglycemic agents. Diabetic patients should be monitored for potential hypoglycemic reactions while on linezolid. If hypoglycemia occurs, discontinue or decrease the dose of the antidiabetic agent or discontinue the linezolid therapy. Linezolid is a reversible, nonselective MAO inhibitor and other MAO inhibitors have been associated with hypoglycemic episodes in diabetic patients receiving insulin or oral hypoglycemic agents.
Liothyronine: (Minor) Addition of thyroid hormones to antidiabetic or insulin therapy may result in increased dosage requirements of the antidiabetic agents. Blood sugars should be carefully monitored when thyroid therapy is added, discontinued or doses changed.
Lisdexamfetamine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Lithium: (Moderate) Lithium may cause variable effects on glycemic control when used in patients receiving antidiabetic agents. Monitor blood glucose concentrations closely if lithium is coadministered with antidiabetic agents. Dosage adjustments of antidiabetic agents may be necessary.
Lixisenatide: (Moderate) The risk of hypoglycemia is increased when lixisenatide is used in combination with insulin secretagogues such as repaglinide. Although specific dose recommendations are not available, a lower dose of repaglinide may be required to reduce the risk of hypoglycemia in this setting. Adequate blood glucose monitoring should be continued and followed.
Lonafarnib: (Moderate) A dose reduction of repaglinide and increased frequency of blood glucose monitoring may be required if coadministration with lonafarnib is necessary. Repaglinide is a CYP3A4 substrate and lonafarnib is a strong CYP3A4 inhibitor. Coadministration with other strong CYP3A4 inhibitors increased repaglinide exposure by up to 1.5-fold.
Lonapegsomatropin: (Moderate) Patients with diabetes mellitus should be monitored closely during somatropin (recombinant rhGH) therapy. Antidiabetic drugs (e.g., insulin or oral agents) may require adjustment when somatropin therapy is instituted in these patients. Growth hormones, such as somatropin, may decrease insulin sensitivity, leading to glucose intolerance and loss of blood glucose control. Therefore, glucose levels should be monitored periodically in all patients treated with somatropin, especially in those with risk factors for diabetes mellitus.
Loop diuretics: (Minor) Loop diuretics have been associated with hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between loop diuretics and all antidiabetic agents. Monitor for a loss of diabetic control.
Loratadine; Pseudoephedrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Lorcaserin: (Moderate) In general, weight reduction may increase the risk of hypoglycemia in patients with type 2 diabetes mellitus treated with antidiabetic agents, such as insulin and/or insulin secretagogues (e.g., sulfonylureas). In clinical trials, lorcaserin use was associated with reports of hypoglycemia. Blood glucose monitoring is warranted in patients with type 2 diabetes prior to starting and during lorcaserin treatment. Dosage adjustments of anti-diabetic medications should be considered. If a patient develops hypoglycemia during treatment, adjust anti-diabetic drug regimen accordingly. Of note, lorcaserin has not been studied in combination with insulin.
Lumacaftor; Ivacaftor: (Moderate) Lumacaftor; ivacaftor may reduce the efficacy of repaglinide by decreasing its systemic exposure. If used together, monitor blood glucose concentrations closely; a repaglinide dosage adjustment may be required to obtain the desired therapeutic effect. Repaglinide is metabolized by CYP3A and CYP2C8. Lumacaftor; ivacaftor is a strong inducer of CYP3A; in vitro studies suggest lumacaftor also has the potential to induce and inhibit CYP2C8.
Mafenide: (Moderate) Sulfonamides may enhance the hypoglycemic action of antidiabetic agents; patients with diabetes mellitus should be closely monitored during sulfonamide treatment. Sulfonamides may induce hypoglycemia in some patients by increasing the secretion of insulin from the pancreas. Patients at risk include those with compromised renal function, those fasting for prolonged periods, those that are malnourished, and those receiving high or excessive doses of sulfonamides.
Mecasermin, Recombinant, rh-IGF-1: (Moderate) Use caution in combining mecasermin, recombinant, rh-IGF-1 or mecasermin rinfabate (rh-IGF-1/rh-IGFBP-3) with antidiabetic agents. Patients should be advised to eat within 20 minutes of mecasermin administration. Glucose monitoring is important when initializing or adjusting mecasermin therapies, when adjusting concomitant antidiabetic therapy, and in the event of hypoglycemic symptoms. An increased risk for hypoglycemia is possible. The hypoglycemic effect induced by IGF-1 activity may be exacerbated. The amino acid sequence of mecasermin (rh-IGF-1) is approximately 50 percent homologous to insulin and cross binding with either receptor is possible. Treatment with mecasermin has been shown to improve insulin sensitivity and to improve glycemic control in patients with either Type 1 or Type 2 diabetes mellitus when used alone or in conjunction with insulins.
Medroxyprogesterone: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Metformin: (Moderate) Use of metformin with a meglitinide ("glinide") may increase the risk of hypoglycemia. Meglitinides are insulin secretagogues and are known to cause hypoglycemia. To manage hypoglycemic risk, lower doses of the meglitinide may be needed. Monitor blood sugar.
Metformin; Repaglinide: (Moderate) Use of metformin with a meglitinide ("glinide") may increase the risk of hypoglycemia. Meglitinides are insulin secretagogues and are known to cause hypoglycemia. To manage hypoglycemic risk, lower doses of the meglitinide may be needed. Monitor blood sugar.
Metformin; Rosiglitazone: (Moderate) Use of metformin with a meglitinide ("glinide") may increase the risk of hypoglycemia. Meglitinides are insulin secretagogues and are known to cause hypoglycemia. To manage hypoglycemic risk, lower doses of the meglitinide may be needed. Monitor blood sugar.
Metformin; Saxagliptin: (Moderate) Use of metformin with a meglitinide ("glinide") may increase the risk of hypoglycemia. Meglitinides are insulin secretagogues and are known to cause hypoglycemia. To manage hypoglycemic risk, lower doses of the meglitinide may be needed. Monitor blood sugar.
Metformin; Sitagliptin: (Moderate) Use of metformin with a meglitinide ("glinide") may increase the risk of hypoglycemia. Meglitinides are insulin secretagogues and are known to cause hypoglycemia. To manage hypoglycemic risk, lower doses of the meglitinide may be needed. Monitor blood sugar.
Methamphetamine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Methazolamide: (Minor) Carbonic anhydrase inhibitors, such as methazolamide, may cause hyperglycemia and glycosuria that may decrease the hypoglycemic effect of oral antidiabetic agents, such as repaglinide. Additional serum glucose monitoring may be required with dose adjustment of repaglinide if indicated.
Methohexital: (Major) Coadministration of barbiturates and repaglinide may decrease the serum concentration of repaglinide; if coadministration is necessary, a dose increase of repaglinide may be necessary and increased frequency of blood glucose monitoring. Barbiturates are CYP3A4 inducers and repaglinide is a CYP3A4 substrate. Monitor for the possibility of reduced effectiveness of repaglinide and possible symptoms indicating hyperglycemia.
Methylphenidate: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Methyltestosterone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
Metoprolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Metreleptin: (Moderate) Use caution when administering metreleptin to patients treated with concomitant insulin secretagogue therapy (i.e., nateglinide, repaglinide). In clinical evaluation of metreleptin, hypoglycemia occurred in 13% of patients with generalized lipodystrophy. Most reported cases occurred with concomitant insulin use, with or without oral antihyperglycemic agents. Closely monitor blood glucose in patients on concomitant insulin or insulin secretagogue therapy. Dosage adjustments to their antihyperglycemic medications may be necessary.
Metyrapone: (Moderate) In patients taking insulin or other antidiabetic agents, the signs and symptoms of acute metyrapone toxicity (e.g., symptoms of acute adrenal insufficiency) may be aggravated or modified.
Midodrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Mifepristone: (Moderate) Repaglinide dose reductions and increased frequency of glucose monitoring may be required when mifepristone (for chronic conditions) is prescribed concurrently. When mifepristone is used chronically, such as with Cushing's syndrome, the lowest dose of repaglinide should be used that results in proper clinical response and tolerance. Monitor closely for hypoglycemia and adverse reactions. In some patients, a lower dose of repaglinide will be needed. Repaglinide is a CYP2C8 substrate. Mifepristone significantly increases exposure of drugs metabolized by CYP2C8, and can be expected to increase repaglinide exposure. Due to the slow elimination of mifepristone from the body, such interactions may be observed for a prolonged period after mifepristone administration.
Mitotane: (Major) Use caution if mitotane and repaglinide are used concomitantly, and monitor for decreased efficacy of repaglinide and a possible change in dosage requirements. Mitotane is a strong CYP3A4 inducer and repaglinide is a CYP3A4 substrate; coadministration may result in decreased plasma concentrations of repaglinide. When administered with another strong CYP3A inducer, rifampin, repaglinide AUC decreased by 31% and Cmax by 26%.
Monoamine oxidase inhibitors: (Moderate) Serum glucose should be monitored closely when monoamine oxidase inhibitors (MAOIs) are added to any regimen containing antidiabetic agents. Inhibitors of MAO type A have been shown to prolong the hypoglycemic response to insulin and other antidiabetic agents.
Nadolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Naproxen; Pseudoephedrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Nebivolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Nebivolol; Valsartan: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Nefazodone: (Moderate) Repaglinide is partly metabolized by CYP3A4. Drugs that inhibit CYP3A4 may increase plasma concentrations of repaglinide. Nefazodone is an inhibitor of CYP3A4. If these drugs are co-administered, dose adjustment of repaglinide may be necessary.
Niacin, Niacinamide: (Moderate) Niacin (nicotinic acid) interferes with glucose metabolism and can result in hyperglycemia. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy. Monitor patients taking antidiabetic agents for changes in glycemic control if niacin (nicotinic acid) is added or deleted to the medication regimen. Dosage adjustments may be necessary.
Niacin; Simvastatin: (Moderate) Coadministration of may lead to an increase in repaglinide. This interaction could result in an increased risk of adverse effects associated with repaglinide, specifically hypoglycemia. (Moderate) Niacin (nicotinic acid) interferes with glucose metabolism and can result in hyperglycemia. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy. Monitor patients taking antidiabetic agents for changes in glycemic control if niacin (nicotinic acid) is added or deleted to the medication regimen. Dosage adjustments may be necessary.
Nicardipine: (Moderate) Repaglinide is partly metabolized by CYP3A4 and CYP2C8. Drugs that inhibit these enzymes may increase plasma concentrations of repaglinide. In vitro data indicate that nicardipine is an inhibitor of both CYP3A4 and CYP2C8. If these drugs are co-administered, dose adjustment of repaglinide may be necessary.
Nicotine: (Minor) Nicotine activates neuroendocrine pathways and may increase plasma glucose; tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments in antidiabetic agents may be needed.
Niraparib; Abiraterone: (Moderate) Monitor blood sugar more frequently if coadministration of repaglinide with abiraterone is necessary. Repaglinide is a CYP2C8 substrate and abiraterone is a weak CYP2C8 inhibitor. Severe hypoglycemia has been reported when abiraterone was administered to patients receiving repaglinide.
Norepinephrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Norethindrone Acetate; Ethinyl Estradiol; Ferrous fumarate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Norethindrone: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Norethindrone; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Norethindrone; Ethinyl Estradiol; Ferrous fumarate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Norgestimate; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Norgestrel: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Octreotide: (Moderate) Monitor patients receiving octreotide concomitantly with insulin or other antidiabetic agents for changes in glycemic control and adjust doses of these medications accordingly. Octreotide alters the balance between the counter-regulatory hormones of insulin, glucagon, and growth hormone, which may result in hypoglycemia or hyperglycemia. The hypoglycemia or hyperglycemia which occurs during octreotide acetate therapy is usually mild but may result in overt diabetes mellitus or necessitate dose changes in insulin or other hypoglycemic agents. In patients with concomitant type1 diabetes mellitus, octreotide is likely to affect glucose regulation, and insulin requirements may be reduced. Symptomatic hypoglycemia, which may be severe, has been reported in type 1 diabetic patients. In Type 2 diabetes patients with partially intact insulin reserves, octreotide administration may result in decreases in plasma insulin levels and hyperglycemia.
Olanzapine; Fluoxetine: (Moderate) In patients with diabetes mellitus, fluoxetine may alter glycemic control. Hypoglycemia has occurred during fluoxetine therapy. Hyperglycemia has developed in patients with diabetes mellitus following discontinuation of the drug. The dosage of insulin and/or other antidiabetic agents may need to be adjusted when therapy with fluoxetine is instituted or discontinued.
Omeprazole; Amoxicillin; Rifabutin: (Minor) Repaglinide is metabolized in the liver by cytochrome P450 isoenzyme CYP3A4. Patients taking repaglinide concomitantly with a CYP3A4 inducer, such as rifabutin, should be monitored for reduced effectiveness of repaglinide and possible symptoms indicating hyperglycemia.
Oritavancin: (Moderate) Repaglinide is metabolized by CYP3A4; oritavancin is a weak CYP3A4 inducer. Plasma concentrations and efficacy of repaglinide may be reduced if these drugs are administered concurrently.
Orlistat: (Minor) Weight-loss may affect glycemic control in patients with diabetes mellitus. In many patients, glycemic control may improve. A reduction in dose of oral hypoglycemic medications may be required in some patients taking orlistat. Monitor blood glucose and glycemic control and adjust therapy as clinically indicated.
Oxandrolone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
Oxymetholone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
Pasireotide: (Moderate) Monitor blood glucose levels regularly in patients with diabetes, especially when pasireotide treatment is initiated or when the dose is altered. Adjust treatment with antidiabetic agents as clinically indicated. Pasireotide inhibits the secretion of insulin and glucagon. Patients treated with pasireotide may experience either hypoglycemia or hyperglycemia.
Pazopanib: (Moderate) Pazopanib is a weak inhibitor of CYP3A4 and CYP2C8. Coadministration of pazopanib and repaglinide, a CYP3A4 and CYP2C8 substrate, may cause an increase in systemic concentrations of repaglinide. Use caution when administering these drugs concomitantly.
Pegvisomant: (Moderate) Monitor blood glucose levels regularly in patients with diabetes, especially when pegvisomant treatment is initiated or when the dose is altered. Adjust treatment with antidiabetic agents as clinically indicated. Pegvisomant increases sensitivity to insulin by lowering the activity of growth hormone, and in some patients glucose tolerance improves with treatment. Patients with diabetes treated with pegvisomant and antidiabetic agents may be more likely to experience hypoglycemia.
Pentamidine: (Moderate) Pentamidine can be harmful to pancreatic cells. This effect may lead to hypoglycemia acutely, followed hyperglycemia with prolonged pentamidine therapy. Patients on antidiabetic agents should be monitored for the need for dosage adjustments during the use of pentamidine.
Pentobarbital: (Major) Coadministration of barbiturates and repaglinide may decrease the serum concentration of repaglinide; if coadministration is necessary, a dose increase of repaglinide may be necessary and increased frequency of blood glucose monitoring. Barbiturates are CYP3A4 inducers and repaglinide is a CYP3A4 substrate. Monitor for the possibility of reduced effectiveness of repaglinide and possible symptoms indicating hyperglycemia.
Pentoxifylline: (Moderate) Pentoxiphylline has been used concurrently with antidiabetic agents without observed problems, but it may enhance the hypoglycemic action of antidiabetic agents. Patients should be monitored for changes in glycemic control while receiving pentoxifylline in combination with antidiabetic agents.
Perphenazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Perphenazine; Amitriptyline: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Phendimetrazine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Phenobarbital: (Major) Coadministration of barbiturates and repaglinide may decrease the serum concentration of repaglinide; if coadministration is necessary, a dose increase of repaglinide may be necessary and increased frequency of blood glucose monitoring. Barbiturates are CYP3A4 inducers and repaglinide is a CYP3A4 substrate. Monitor for the possibility of reduced effectiveness of repaglinide and possible symptoms indicating hyperglycemia.
Phenobarbital; Hyoscyamine; Atropine; Scopolamine: (Major) Coadministration of barbiturates and repaglinide may decrease the serum concentration of repaglinide; if coadministration is necessary, a dose increase of repaglinide may be necessary and increased frequency of blood glucose monitoring. Barbiturates are CYP3A4 inducers and repaglinide is a CYP3A4 substrate. Monitor for the possibility of reduced effectiveness of repaglinide and possible symptoms indicating hyperglycemia.
Phenothiazines: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Phentermine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Phentermine; Topiramate: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Phenylephrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Phenytoin: (Moderate) Coadministration of repaglinide with hydantoins may increase or decrease blood glucose; if coadministration is necessary, repaglinide dosage adjustment may be required and an increased frequency of glucose monitoring is recommended. Hydantoins are potent CYP3A4 inducers and repaglinide is a CYP3A4 substrate. In addition, phenytoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically.
Pindolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Pioglitazone; Metformin: (Moderate) Use of metformin with a meglitinide ("glinide") may increase the risk of hypoglycemia. Meglitinides are insulin secretagogues and are known to cause hypoglycemia. To manage hypoglycemic risk, lower doses of the meglitinide may be needed. Monitor blood sugar.
Pirtobrutinib: (Moderate) A dose reduction of repaglinide and increased frequency of blood glucose monitoring may be required if coadministration with pirtobrutinib is necessary. Repaglinide is a CYP2C8 substrate and pirtobrutinib is a CYP2C8 inhibitor. Concomitant use was observed to increase repaglinide overall exposure by 130%.
Posaconazole: (Moderate) Coadministration of repaglinide and posaconazole may increase plasma concentrations of repaglinide; if coadministration is necessary, repaglinide dosage adjustment may be required and an increased frequency of glucose monitoring is recommended. Repaglinide is a CYP3A4 substrate and posaconazole is an inhibitor of CYP3A4.
Prasterone, Dehydroepiandrosterone, DHEA (Dietary Supplements): (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
Prasterone, Dehydroepiandrosterone, DHEA (FDA-approved): (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
Prilocaine; Epinephrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Primidone: (Major) Coadministration of barbiturates and repaglinide may decrease the serum concentration of repaglinide; if coadministration is necessary, a dose increase of repaglinide may be necessary and increased frequency of blood glucose monitoring. Barbiturates are CYP3A4 inducers and repaglinide is a CYP3A4 substrate. Monitor for the possibility of reduced effectiveness of repaglinide and possible symptoms indicating hyperglycemia.
Prochlorperazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Progesterone: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Progestins: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Promethazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Promethazine; Dextromethorphan: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Promethazine; Phenylephrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Propranolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Propranolol; Hydrochlorothiazide, HCTZ: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Protease inhibitors: (Moderate) Coadministration of repaglinide and protease inhibitors may increase or decrease glucose concentrations and increase repaglinide AUC; if coadministration is necessary, repaglinide dosage adjustment may be necessary and increased frequency of glucose monitoring is recommended. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. In addition, repaglinide is a substrate of the hepatic isoenzyme CYP3A4 and the drug transporter organic anion transporting polypeptide (OATP1B1); protease inhibitors are potent CYP3A4 inhibitors and inhibitors of OATP.
Pseudoephedrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of al pha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Pseudoephedrine; Triprolidine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Quinine: (Moderate) Repaglinide is partly metabolized by CYP3A4. Drugs that inhibit CYP3A4 may increase plasma concentrations of repaglinide. Quinine has been shown to be an inhibitor of CYP3A4. If these drugs are co-administered, dose adjustment of repaglinide may be necessary.
Quinolones: (Moderate) Monitor blood glucose carefully when systemic quinolones and antidiabetic agents, including meglitinides, are coadministered. Discontinue the quinolone if a hypoglycemic reaction occurs and initiate appropriate therapy immediately. Disturbances of blood glucose, including hyperglycemia and hypoglycemia, have been reported in patients treated concomitantly with quinolones and an antidiabetic agent. Hypoglycemia, sometimes resulting in coma, can occur.
Racepinephrine: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Ranolazine: (Moderate) Repaglinide is partly metabolized by CYP3A4. Drugs that inhibit CYP3A4 may increase plasma concentrations of repaglinide. Ranolazine is a mild inhibitor of CYP3A4. If these drugs are co-administered, dose adjustment of repaglinide may be necessary.
Regular Insulin; Isophane Insulin (NPH): (Major) Repaglinide is not indicated for use in combination with isophane insulin (NPH) since this combination has been reported to cause myocardial ischemia in controlled clinical trials.
Relugolix; Estradiol; Norethindrone acetate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Ribociclib: (Moderate) A dose reduction of repaglinide and increased frequency of blood glucose monitoring may be required if coadministration with ribociclib is necessary. Repaglinide is a CYP3A4 substrate and ribociclib is a strong CYP3A4 inhibitor. Coadministration with other strong CYP3A4 inhibitors increased repaglinide exposure by up to 1.5-fold.
Ribociclib; Letrozole: (Moderate) A dose reduction of repaglinide and increased frequency of blood glucose monitoring may be required if coadministration with ribociclib is necessary. Repaglinide is a CYP3A4 substrate and ribociclib is a strong CYP3A4 inhibitor. Coadministration with other strong CYP3A4 inhibitors increased repaglinide exposure by up to 1.5-fold.
Rifabutin: (Minor) Repaglinide is metabolized in the liver by cytochrome P450 isoenzyme CYP3A4. Patients taking repaglinide concomitantly with a CYP3A4 inducer, such as rifabutin, should be monitored for reduced effectiveness of repaglinide and possible symptoms indicating hyperglycemia.
Rifampin: (Major) Coadministration of rifampin and repaglinide decreases the AUC and Cmax of repaglinide; if coadministration is necessary, a dose increase of repaglinide may be necessary and an increased frequency of glucose monitoring is recommended. Rifampin is a potent CYP3A4 inducer and also a moderate inducer of CYP2C8. Repaglinide is a CYP3A4 substrate and an in vitro sensitive CYP2C8 substrate. Monitor for the possibility of reduced effectiveness of repaglinide and possible symptoms indicating hyperglycemia.
Rifapentine: (Moderate) A dose increase of repaglinide and increased frequency of blood glucose monitoring may be required if coadministration with rifapentine is necessary. Repaglinide is a CYP3A4 substrate and rifapentine is a strong CYP3A4 inducer.
Ritlecitinib: (Moderate) A dose reduction of repaglinide and increased frequency of blood glucose monitoring may be required if coadministration with ritlecitinib is necessary. Repaglinide is a CYP3A substrate and ritlecitinib is a moderate CYP3A inhibitor.
Salicylates: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar and may potentiate the effects of antidiabetic agents. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose or use of greater than maximum recommended daily dosages, salicylates can cause either hypoglycemia or hyperglycemia. Large doses of aspirin should be used cautiously in patients who receive antidiabetic agents.
Secobarbital: (Major) Coadministration of barbiturates and repaglinide may decrease the serum concentration of repaglinide; if coadministration is necessary, a dose increase of repaglinide may be necessary and increased frequency of blood glucose monitoring. Barbiturates are CYP3A4 inducers and repaglinide is a CYP3A4 substrate. Monitor for the possibility of reduced effectiveness of repaglinide and possible symptoms indicating hyperglycemia.
Segesterone Acetate; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Serdexmethylphenidate; Dexmethylphenidate: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Simvastatin: (Moderate) Coadministration of may lead to an increase in repaglinide. This interaction could result in an increased risk of adverse effects associated with repaglinide, specifically hypoglycemia.
Sodium Phenylbutyrate; Taurursodiol: (Moderate) A dose reduction of repaglinide and increased frequency of blood glucose monitoring may be required if coadministration with taurursodiol is necessary. Repaglinide is a CYP2C8 substrate and taurursodiol is a CYP2C8 inhibitor.
Sofosbuvir: (Moderate) Closely monitor blood glucose levels if sofosbuvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as sofosbuvir.
Sofosbuvir; Velpatasvir: (Moderate) Closely monitor blood glucose levels if sofosbuvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as sofosbuvir. (Moderate) Closely monitor blood glucose levels if velpatasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as velpatasvir.
Sofosbuvir; Velpatasvir; Voxilaprevir: (Moderate) Closely monitor blood glucose levels if sofosbuvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as sofosbuvir. (Moderate) Closely monitor blood glucose levels if velpatasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as velpatasvir. (Moderate) Closely monitor blood glucose levels if voxilaprevir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as voxilaprevir.
Somapacitan: (Moderate) Patients with diabetes mellitus should be monitored closely during somapacitan therapy. Antidiabetic drugs (e.g., insulin or oral agents) may require adjustment when somapacitan therapy is instituted in these patients. Growth hormones, such as somapacitan, may decrease insulin sensitivity, leading to glucose intolerance and loss of blood glucose control. Therefore, glucose levels should be monitored periodically in all patients treated with somapacitan, especially in those with risk factors for diabetes mellitus.
Somatrogon: (Moderate) Monitor for loss of glycemic control if concomitant use of somatrogon and antidiabetic drugs is necessary; a dose adjustment of the antidiabetic drug may be needed. Growth hormones, such as somatrogon, may decrease insulin sensitivity, leading to glucose intolerance and loss of blood glucose control.
Somatropin, rh-GH: (Moderate) Patients with diabetes mellitus should be monitored closely during somatropin (recombinant rhGH) therapy. Antidiabetic drugs (e.g., insulin or oral agents) may require adjustment when somatropin therapy is instituted in these patients. Growth hormones, such as somatropin, may decrease insulin sensitivity, leading to glucose intolerance and loss of blood glucose control. Therefore, glucose levels should be monitored periodically in all patients treated with somatropin, especially in those with risk factors for diabetes mellitus.
Sotalol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Spironolactone: (Moderate) A dose reduction of repaglinide and increased frequency of blood glucose monitoring may be required if coadministration with spironolactone is necessary. Repaglinide is a CYP2C8 substrate and spironolactone is a CYP2C8 inhibitor.
Spironolactone; Hydrochlorothiazide, HCTZ: (Moderate) A dose reduction of repaglinide and increased frequency of blood glucose monitoring may be required if coadministration with spironolactone is necessary. Repaglinide is a CYP2C8 substrate and spironolactone is a CYP2C8 inhibitor.
St. John's Wort, Hypericum perforatum: (Moderate) Coadministration of St. John's Wort and repaglinide may decrease the serum concentration of repaglinide; if coadministration is necessary, repaglinide dosage adjustment may be required and an increased frequency of glucose monitoring is recommended. St. John's Wort is a CYP3A4 inducer and repaglinide is a CYP3A4 substrate. Monitor for the possibility of reduced effectiveness of repaglinide and possible symptoms indicating hyperglycemia.
Stiripentol: (Moderate) Consider a dose reduction of repaglinide when coadministered with stiripentol. Coadministration may increase plasma concentrations of repaglinide resulting in an increased risk of adverse reactions. Repaglinide is a sensitive CYP2C8 substrate. In vitro data predicts inhibition of CYP2C8 by stiripentol potentially resulting in clinically significant interactions.
Sulfadiazine: (Moderate) Sulfonamides may enhance the hypoglycemic action of antidiabetic agents; patients with diabetes mellitus should be closely monitored during sulfonamide treatment. Sulfonamides may induce hypoglycemia in some patients by increasing the secretion of insulin from the pancreas. Patients at risk include those with compromised renal function, those fasting for prolonged periods, those that are malnourished, and those receiving high or excessive doses of sulfonamides.
Sulfamethoxazole; Trimethoprim, SMX-TMP, Cotrimoxazole: (Major) Coadministration of trimethoprim and repaglinide increases the AUC of repaglinide by 61%; if coadministration is necessary, consider a dose reduction of repaglinide and increased frequency of glucose monitoring. Trimethoprim is a CYP2C8 inhibitor and repaglinide is a CYP2C8 substrate. The possibility of an increased risk of hypoglycemia should be considered during concomitant use of trimethoprim and repaglinide. (Moderate) Sulfonamides may enhance the hypoglycemic action of antidiabetic agents; patients with diabetes mellitus should be closely monitored during sulfonamide treatment. Sulfonamides may induce hypoglycemia in some patients by increasing the secretion of insulin from the pancreas. Patients at risk include those with compromised renal function, those fasting for prolonged periods, those that are malnourished, and those receiving high or excessive doses of sulfonamides.
Sulfasalazine: (Moderate) Sulfonamides may enhance the hypoglycemic action of antidiabetic agents; patients with diabetes mellitus should be closely monitored during sulfonamide treatment. Sulfonamides may induce hypoglycemia in some patients by increasing the secretion of insulin from the pancreas. Patients at risk include those with compromised renal function, those fasting for prolonged periods, those that are malnourished, and those receiving high or excessive doses of sulfonamides.
Sulfonamides: (Moderate) Sulfonamides may enhance the hypoglycemic action of antidiabetic agents; patients with diabetes mellitus should be closely monitored during sulfonamide treatment. Sulfonamides may induce hypoglycemia in some patients by increasing the secretion of insulin from the pancreas. Patients at risk include those with compromised renal function, those fasting for prolonged periods, those that are malnourished, and those receiving high or excessive doses of sulfonamides.
Sympathomimetics: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Tacrolimus: (Moderate) Patients should be monitored for worsening of glycemic control if therapy with tacrolimus is initiated in patients receiving antidiabetic agents.
Tecovirimat: (Moderate) Closely monitor patients receiving repaglinide with tecovirimat for changes blood glucose concentrations. In a drug interaction study, cases of mild to moderate hypoglycemia were observed in repaglinide recipients who were administered tecovirimat. In all subjects, symptoms resolved after ingestion of food or oral glucose. Repaglinide is a sensitive CYP2C8 substrate; tecovirimat is a weak inhibitor of this enzyme.
Tegaserod: (Moderate) Because tegaserod can enhance gastric emptying in diabetic patients, blood glucose can be affected, which, in turn, may affect the clinical response to antidiabetic agents. The dosing of antidiabetic agents may require adjustment in patients who receive GI prokinetic agents concomitantly.
Teriflunomide: (Moderate) Closely monitor for hypoglycemia and for repaglinide-induced side effects when these drugs are used together. In some patients, a dosage reduction of repaglinide may be required. In vivo data suggest that teriflunomide is an inhibitor of CYP2C8, as increases in Cmax and AUC were observed following concurrent use of repaglinide, a CYP2C8 substrate. Repaglinide Cmax and AUC increased 1.7- and 2.4-fold, respectively, following a single dose of repaglinide 0.25 mg with repeated dosing of teriflunomide.
Testosterone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
Thiazide diuretics: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Thioridazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Thyroid hormones: (Minor) Addition of thyroid hormones to antidiabetic or insulin therapy may result in increased dosage requirements of the antidiabetic agents. Blood sugars should be carefully monitored when thyroid therapy is added, discontinued or doses changed.
Timolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Tirzepatide: (Moderate) When tirzepatide is used with insulin secretagogues such as meglitinides, consider lowering the dose of the meglitinides to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with meglitinides may have an increased risk of hypoglycemia, including severe hypoglycemia.
Trandolapril; Verapamil: (Moderate) Repaglinide is partly metabolized by CYP3A4. Drugs that inhibit CYP3A4 may increase plasma concentrations of repaglinide. Verapamil has been shown to be an inhibitor of CYP3A4. If these drugs are co-administered, dose adjustment of repaglinide may be necessary.
Trifluoperazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Trimethoprim: (Major) Coadministration of trimethoprim and repaglinide increases the AUC of repaglinide by 61%; if coadministration is necessary, consider a dose reduction of repaglinide and increased frequency of glucose monitoring. Trimethoprim is a CYP2C8 inhibitor and repaglinide is a CYP2C8 substrate. The possibility of an increased risk of hypoglycemia should be considered during concomitant use of trimethoprim and repaglinide.
Tucatinib: (Major) A dose reduction of repaglinide and increased frequency of blood glucose monitoring may be required if coadministration with tucatinib is necessary. Repaglinide is a CYP3A4 substrate and tucatinib is a strong CYP3A4 inhibitor. Coadministration with other strong CYP3A4 inhibitors increased repaglinide exposure by up to 1.5-fold.
Vemurafenib: (Moderate) Vemurafenib is an inducer of CYP3A4 and decreased plasma concentrations of drugs metabolized by this enzyme, such as repaglinide, could be expected with concurrent use. Use caution, and monitor therapeutic effects of repaglinide when coadministered with vemurafenib.
Verapamil: (Moderate) Repaglinide is partly metabolized by CYP3A4. Drugs that inhibit CYP3A4 may increase plasma concentrations of repaglinide. Verapamil has been shown to be an inhibitor of CYP3A4. If these drugs are co-administered, dose adjustment of repaglinide may be necessary.
Vonoprazan; Amoxicillin; Clarithromycin: (Moderate) The concomitant use of clarithromycin and oral hypoglycemic agents can result in significant hypoglycemia. With certain hypoglycemic drugs such as repaglinide, inhibition of CYP3A enzyme by clarithromycin may be involved and could cause hypolgycemia when used concomitantly. Dosage reduction of repaglinide may be needed. Careful monitoring of glucose is recommended.
Voriconazole: (Moderate) A dose reduction of repaglinide and increased frequency of blood glucose monitoring may be required if coadministration with voriconazole is necessary. Repaglinide is a CYP3A4 substrate and voriconazole is a strong CYP3A4 inhibitor. Coadministration with other strong CYP3A4 inhibitors increased repaglinide exposure by up to 1.5-fold.
Voxelotor: (Moderate) A dose reduction of repaglinide and increased frequency of blood glucose monitoring may be required if coadministration with voxelotor is necessary. Repaglinide is a CYP3A substrate and voxelotor is a moderate CYP3A inhibitor.
Zafirlukast: (Moderate) Repaglinide is partly metabolized by CYP3A4. Drugs that inhibit CYP3A4 may increase plasma concentrations of repaglinide. Zafirlukast has been shown to be an inhibitor of CYP3A4. If these drugs are co-administered, dose adjustment of repaglinide may be necessary.
How Supplied
Prandin/Repaglinide Oral Tab: 0.5mg, 1mg, 2mg
Maximum Dosage
16 mg/day PO.
Elderly16 mg/day PO.
AdolescentsSafety and efficacy have not been established.
ChildrenSafety and efficacy have not been established.
Mechanism Of Action
Repaglinide is an "insulinotropic" agent, i.e., it lowers blood glucose by stimulating insulin production from the pancreas. Repaglinide is highly tissue selective; the drug interacts with the ATP-sensitive potassium channel on the pancreatic beta cells. Depolarization of the beta cells opens the calcium channels, inducing calcium influx and insulin secretion. The extent of insulin secretion is glucose dependent and diminishes at low glucose levels; once blood glucose normalizes, the effects of the drug cease. Hemoglobin A1C concentrations decrease during therapy with repaglinide. Repaglinide primarily lowers postprandial blood glucose.[36049]
Pharmacokinetics
Repaglinide is administered orally. Greater than 98% of the drug is protein bound. It is completely metabolized by oxidative biotransformation and direct conjugation with glucuronic acid. The major metabolites are an oxidized dicarboxylic acid (M2), the aromatic amine (M1), and the acyl glucuronide (M7). The cytochrome P-450 enzyme system, specifically CYP2C8 and CYP3A4, have been shown to be involved in the N-dealkylation of repaglinide to M2 and the further oxidation to M1. The metabolites do not contribute to the glucose-lowering effect of repaglinide. Elimination is rapid with a half-life of 1 hour. Approximately 92% of repaglinide and its metabolites are excreted in the feces and the remaining 8% is eliminated in the urine.
Affected cytochrome P450 (CYP450) isoenzymes and drug transporters: CYP2C8, CYP3A4, OATP1B1
Repaglinide is metabolized by CYP2C8 and CYP3A4 and is a sensitive substrate for CYP2C8; clinically significant drug interactions may occur with inhibitors or inducers of these enzymes. For example, the CYP2C8 inhibitor gemfibrozil significantly increased repaglinide exposures by 8.1-fold and should not be taken with repaglinide. Dosage adjustments are recommended in patients taking other concomitant strong CYP3A4 or CYP2C8 inhibitors or strong CYP3A4 or CYP2C8 inducers. Repaglinide appears to be a substrate for the hepatic uptake transporter organic anion transporting protein 1B1 (OATP1B1).
Repaglinide is rapidly and completely absorbed from the gastrointestinal tract. The mean absolute bioavailability is 56%, and peak plasma levels are achieved within 1 hour of administration. When given with food, the Tmax does not change, but the mean Cmax and AUC are decreased by 20% and 12.4%, respectively.
Pregnancy And Lactation
There are no adequate and well-controlled studies of repaglinide use during pregnancy; it is unknown whether repaglinide can cause fetal harm when administered to a pregnant woman. Relevant human exposure has not occurred to date. Repaglinide should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Repaglinide was not teratogenic in rats or rabbits during organogenesis at doses 60 and 1 times the maximum daily clinical dose, based on body surface area. No adverse developmental effects were observed in the offspring of rats administered repaglinide during late gestation and lactation at approximately 4 times the maximum daily clinical dose. Offspring of rat dams exposed to repaglinide at 22 times or greater clinical exposure (based on body surface area) during days 17 to 22 of gestation and during lactation developed non-teratogenic skeletal deformities consisting of shortening, thickening, and bending of the humerus during the postnatal period. This effect was not seen at doses up to 4 times clinical exposure (based on body surface area). Poorly controlled diabetes during pregnancy also increases fetal risk. The American College of Obstetricians and Gynecologists (ACOG) and the American Diabetes Association (ADA) continue to recommend human insulin as the standard of care in pregnant women with diabetes mellitus and gestational diabetes mellitus (GDM) requiring medical therapy; insulin does not cross the placenta.
There are no data on the presence of repaglinide in human milk, the effects on the breastfeeding infant, or the effects on milk production. However, because of the possibility of hypoglycemia in nursing infants and the skeletal effects observed in studies of nursing animals, it is recommended that repaglinide not be used in women who are breast-feeding. In rat studies, measurable levels of repaglinide were detected in the breast milk of treated dams; the pups exhibited decreased blood glucose levels and skeletal changes could be induced, although skeletal changes occurred to a lesser degree than those pups exposed to the drug in utero. If repaglinide is discontinued and blood glucose is not controlled on diet and exercise alone, insulin therapy should be considered. Other oral hypoglycemics may be considered as possible alternatives during breast-feeding. Because acarbose has limited systemic absorption, which results in minimal maternal plasma concentrations, clinically significant exposure via breast milk is not expected. Also, while the manufacturers of metformin recommend against breast-feeding while taking the drug, data have shown that metformin is excreted into breast milk in small amounts and adverse effects on infant plasma glucose have not been reported in human studies. Tolbutamide is usually considered compatible with breast-feeding. Glyburide may be a suitable alternative since it was not detected in the breast milk of lactating women who received single and multiple doses of glyburide. If any oral hypoglycemics are used during breast feeding, the nursing infant should be monitored for signs of hypoglycemia, such as increased fussiness or somnolence.