Tranxene
Classes
Anxiolytics, Benzodiazepines
Administration
Clorazepate may be administered without regard to meals.
Adverse Reactions
suicidal ideation / Delayed / 0-0.5
neonatal respiratory depression / Rapid / Incidence not known
neonatal abstinence syndrome / Early / Incidence not known
amnesia / Delayed / Incidence not known
memory impairment / Delayed / Incidence not known
confusion / Early / Incidence not known
dysarthria / Delayed / Incidence not known
ataxia / Delayed / Incidence not known
depression / Delayed / Incidence not known
elevated hepatic enzymes / Delayed / Incidence not known
jaundice / Delayed / Incidence not known
blurred vision / Early / Incidence not known
urinary retention / Early / Incidence not known
urinary incontinence / Early / Incidence not known
hypotension / Rapid / Incidence not known
tolerance / Delayed / Incidence not known
physiological dependence / Delayed / Incidence not known
psychological dependence / Delayed / Incidence not known
withdrawal / Early / Incidence not known
respiratory depression / Rapid / Incidence not known
dizziness / Early / 1.0-10.0
drowsiness / Early / 10.0
headache / Early / Incidence not known
insomnia / Early / Incidence not known
restlessness / Early / Incidence not known
irritability / Delayed / Incidence not known
tremor / Early / Incidence not known
xerostomia / Early / Incidence not known
diplopia / Early / Incidence not known
libido decrease / Delayed / Incidence not known
rash / Early / Incidence not known
fatigue / Early / Incidence not known
Boxed Warning
The most serious adverse reactions to clorazepate are CNS depression and respiratory depression. As with other benzodiazepines, clorazepate should not be used in patients with known respiratory depression. Use with extreme caution in patients with severe pulmonary disease or conditions associated with compromised respiratory function or respiratory insufficiency such as sleep apnea or severe chronic obstructive pulmonary disease (COPD). Additionally, avoid coadministration with other CNS depressants, especially opioids, unless no other alternatives are available, as coadministration significantly increases the risk for profound sedation, respiratory depression, coma, and death. Reserve concomitant prescribing of these drugs in patients for whom alternative treatment options are inadequate. Limit dosages and durations to the minimum required. Follow patients for signs and symptoms of respiratory depression and sedation.[41555] [61143]
Use clorazepate with caution in patients with a history of alcoholism or substance abuse due to the potential for psychological dependence. The use of benzodiazepines exposes users to risks of abuse, misuse, and addiction, which can lead to overdose or death. Assess patients for risks of addiction, abuse, or misuse before drug initiation, and monitor patients who receive benzodiazepines routinely for development of these behaviors or conditions. A potential risk of abuse should not preclude appropriate treatment in any patient, but requires more intensive counseling and monitoring. To discourage abuse, the smallest appropriate quantity of the benzodiazepine should be prescribed, and proper disposal instructions for unused drug should be given to patients. Avoid or minimize concomitant use of CNS depressants or other medications associated with addiction or abuse. Abuse and misuse of benzodiazepines commonly involve concomitant use of other medications, alcohol, and/or illicit substances, which is associated with an increased frequency of serious adverse outcomes, including respiratory depression, overdose, and death. Advise patients to seek immediate medical attention if they experience symptoms such as trouble breathing. Generally, benzodiazepines should be prescribed for short periods (2 to 4 weeks) with continued reevaluation of the need for treatment. Abrupt discontinuation or rapid dosage reduction of benzodiazepines after continued use may precipitate acute withdrawal reactions, which can be life-threatening. The risks of physiological dependence and withdrawal increase with longer treatment duration and higher daily dose. Benzodiazepine dependence can occur after administration of therapeutic doses for as few as 1 to 2 weeks and withdrawal symptoms may be seen after the discontinuation of therapy. To reduce the risk of acute withdrawal reactions, use a gradual taper to reduce the dosage or to discontinue benzodiazepines. No standard benzodiazepine tapering schedule is suitable for all patients; therefore, create a patient-specific plan to gradually reduce the dosage. If a patient develops withdrawal reactions, consider pausing the taper or increasing the dosage to the previous tapered dosage level. Subsequently, decrease the dosage more slowly. Patients with a history of a seizure disorder should not be withdrawn abruptly from benzodiazepines due to the risk of precipitating seizures; status epilepticus has also been reported. Clinicians should be aware that the use of flumazenil may increase the risk of seizures, particularly in long-term users of benzodiazepines.
Common Brand Names
Gen-Xene, Tranxene, Tranxene T-Tab
Dea Class
Rx, schedule IV
Description
Oral benzodiazepine with a long half-life; essentially a prodrug for desmethyldiazepam, the primary active metabolite of diazepam.
Used primarily for partial seizures or anxiety.
Dosage And Indications
Initially, up to 7.5 mg PO 2 to 3 times per day. Increase by no more than 7.5 mg per week. Max: 90 mg/day PO, given in divided doses.
Initially, up to 7.5 mg PO 2 to 3 times per day. Increase by no more than 7.5 mg per week. Max: 90 mg/day PO, given in divided doses.
Initially, 3.75 to 7.5 mg PO twice daily. Increase by no more than 7.5 mg per week. Max: 60 mg/day PO, given in divided doses.
Safety and efficacy have not been established; there is a lack of sufficient clinical experience. Off-label use has been reported for refractory epilepsy. Dosages reported: 3.75 mg PO twice daily up to 3.75 mg PO 4 times per day (approximate weight-based dosing range of 0.3 mg/kg/day to 1 mg/kg/day PO, guided by serum concentration monitoring to optimize dosing).
Initially, 7.5 mg to 15 mg PO twice daily, or 15 mg PO once daily at bedtime. Debilitated patients may need a lower initial dose: 3.75 mg to 7.5 mg PO twice daily. Usual maintenance dose is 15 mg PO twice daily. Adjust gradually within the range of 15 to 60 mg/day, in divided doses, to the response of the patient. Drowsiness may occur at the initiation of treatment and with dosage increments. Max: 60 mg/day PO.
Initially, 3.75 mg to 7.5 mg PO twice daily, or 7.5 mg PO once daily at bedtime. Usual maintenance dose is 15 mg PO twice daily. Adjust gradually within the range of 15 to 60 mg/day, in divided doses, to patient response. Drowsiness may occur at the initiation of treatment and with dosage increments. Max: 60 mg/day PO. Per the federal Omnibus Budget Reconciliation Act (OBRA) do not exceed 15 mg/day PO in skilled care residents meeting criteria for treatment, except when documentation is provided showing that higher doses are necessary to maintain or improve the resident's functional status. In addition, the facility should attempt periodic tapering of the medication or provide documentation of medical necessity in accordance with OBRA guidelines.
Initially on Day 1: 30 mg PO as a single dose, followed by 30 to 60 mg/day PO in divided doses (given 3 to 4 times per day) during the first 24 hours; Day 2: 45 to 90 mg/day PO in divided doses during the second 24 hours; Day 3: 22.5 to 45 mg/day PO in divided doses during the third 24 hours; Day 4: 15 to 30 mg/day PO in divided doses. Thereafter, gradually reduce the daily dose to 7.5 to 15 mg/day PO in divided doses: avoid excessive reductions day-to day. Discontinue completely once tapered to 7.5 mg/day and patient is stable. Max: 90 mg/day PO, given in divided doses.
Dosing Considerations
The dosage or dosing interval may need to be altered to compensate for impaired hepatic metabolism of clorazepate; however, specific guidelines for dosage adjustment are not available.
Renal ImpairmentSpecific guidelines for dosage adjustments in renal impairment are not available; it appears that no dosage adjustments are needed.
Drug Interactions
Acetaminophen; Aspirin, ASA; Caffeine: (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Acetaminophen; Aspirin; Diphenhydramine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Acetaminophen; Caffeine: (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Acetaminophen; Caffeine; Dihydrocodeine: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines. (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Acetaminophen; Caffeine; Pyrilamine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination. (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Acetaminophen; Chlorpheniramine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Acetaminophen; Chlorpheniramine; Dextromethorphan: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination. (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Acetaminophen; Chlorpheniramine; Phenylephrine : (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination. (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Acetaminophen; Codeine: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Acetaminophen; Dextromethorphan; Doxylamine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Acetaminophen; Dextromethorphan; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Acetaminophen; Diphenhydramine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Acetaminophen; Guaifenesin; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Acetaminophen; Hydrocodone: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
Acetaminophen; Oxycodone: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Acetaminophen; Pamabrom; Pyrilamine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Acetaminophen; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Acrivastine; Pseudoephedrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Adagrasib: (Moderate) Monitor for an increase in sedation and respiratory depression if coadministration of clorazepate with adagrasib is necessary. Concurrent use may increase clorazepate exposure. Clorazepate is a prodrug whose active metabolite (N-desmethyldiazepam) is a CYP3A substrate. Adagrasib is a strong CYP3A inhibitor.
Aldesleukin, IL-2: (Moderate) Aldesleukin, IL-2 may affect CNS function significantly. Therefore, psychotropic pharmacodynamic interactions could occur following concomitant administration of drugs with significant CNS activity. Use with caution.
Alfentanil: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Alprazolam: (Moderate) Concomitant administration of alprazolam with CNS-depressant drugs can potentiate the CNS effects of either agent.
Amiodarone: (Moderate) Amiodarone is a CYP3A4 inhibitor and may reduce the metabolism of clorazepate and increase the potential for benzodiazepine toxicity.
Amobarbital: (Moderate) Additive CNS and/or respiratory depression may occur. Additionally, barbiturates may increase the metabolism of N-desmethyldiazepam, the active metabolite of clorazepate. N-desmethyldiazepam is a CYP3A4 and CYP2C19 substrate. Barbiturates are CYP3A4 and CYP2C19 inducers.
Amoxapine: (Moderate) Amoxapine may enhance the response to the effects of benzodiazepines and other CNS depressants. Patients should be warned of the possibility of drowsiness that may impair performance of potentially hazardous tasks such as driving an automobile or operating machinery.
Amoxicillin; Clarithromycin; Omeprazole: (Moderate) CYP3A4 inhibitors may reduce the metabolism of clorazepate and increase the potential for benzodiazepine toxicity. Monitor patients closely who receive concurrent therapy. (Moderate) Omeprazole inhibits CYP2C19. There have been some case reports describing an interaction between omeprazole and benzodiazepines metabolized via the cytochrome P450 system, such as clorazepate. Patients should be monitored to determine if it is necessary to adjust the dosage of the benzodiazepine when taken concomitantly with omeprazole.
Apalutamide: (Moderate) Monitor for decreased efficacy of clorazepate if coadministration with apalutamide is necessary. Clorazepate is a prodrug converted to N-desmethyldiazepam in the GI tract; N-desmethyldiazepam is metabolized by CYP2C19 and CYP3A4. Apalutamide is a strong CYP3A4 and CYP2C19 inducer. Concomitant use may decrease N-desmethyldiazepam plasma concentrations.
Apomorphine: (Moderate) Apomorphine causes significant somnolence. Concomitant administration of apomorphine and benzodiazepines could result in additive depressant effects.
Apraclonidine: (Minor) No specific drug interactions were identified with systemic agents and apraclonidine during clinical trials. Theoretically, apraclonidine might potentiate the effects of CNS depressant drugs such as the anxiolytics, sedatives, and hypnotics, including barbiturates or benzodiazepines.
Aprepitant, Fosaprepitant: (Major) Use caution if clorazepate and aprepitant, fosaprepitant are used concurrently and monitor for an increase in clorazepate-related adverse effects for several days after administration of a multi-day aprepitant regimen. Clorazepate is a pro-drug converted to N-desmethyldiazepam in the GI tract; N-desmethyldiazepam is partially metabolized by CYP3A4. Aprepitant, when administered as a 3-day oral regimen (125 mg/80 mg/80 mg), is a moderate CYP3A4 inhibitor and inducer and may increase plasma concentrations of N-desmethyldiazepam. For example, a 5-day oral aprepitant regimen increased the AUC of another CYP3A4 substrate, midazolam (single dose), by 2.3-fold on day 1 and by 3.3-fold on day 5. After a 3-day oral aprepitant regimen, the AUC of midazolam (given on days 1, 4, 8, and 15) increased by 25% on day 4, and then decreased by 19% and 4% on days 8 and 15, respectively. As a single 125 mg or 40 mg oral dose, the inhibitory effect of aprepitant on CYP3A4 is weak, with the AUC of midazolam increased by 1.5-fold and 1.2-fold, respectively. After administration, fosaprepitant is rapidly converted to aprepitant and shares many of the same drug interactions. However, as a single 150 mg intravenous dose, fosaprepitant only weakly inhibits CYP3A4 for a duration of 2 days; there is no evidence of CYP3A4 induction. Fosaprepitant 150 mg IV as a single dose increased the AUC of midazolam (given on days 1 and 4) by approximately 1.8-fold on day 1; there was no effect on day 4. Less than a 2-fold increase in the midazolam AUC is not considered clinically important.
Aripiprazole: (Moderate) Monitor blood pressure and for unusual drowsiness and sedation during coadministration of aripiprazole and benzodiazepines. Intensity of sedation and orthostatic hypotension were greater with the combination of oral aripiprazole and lorazepam compared to aripiprazole alone.
Asenapine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when asenapine is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics (including barbiturates), buprenorphine, buprenorphine; naloxone, butorphanol, dronabinol, THC, nabilone, nalbuphine, opiate agonists, pentazocine, acetaminophen; pentazocine, aspirin, ASA; pentazocine, and pentazocine; naloxone.
Aspirin, ASA; Butalbital; Caffeine: (Moderate) Additive CNS and/or respiratory depression may occur. Additionally, barbiturates may increase the metabolism of N-desmethyldiazepam, the active metabolite of clorazepate. N-desmethyldiazepam is a CYP3A4 and CYP2C19 substrate. Barbiturates are CYP3A4 and CYP2C19 inducers. (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Aspirin, ASA; Caffeine: (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Aspirin, ASA; Caffeine; Orphenadrine: (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Aspirin, ASA; Carisoprodol; Codeine: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Aspirin, ASA; Omeprazole: (Moderate) Omeprazole inhibits CYP2C19. There have been some case reports describing an interaction between omeprazole and benzodiazepines metabolized via the cytochrome P450 system, such as clorazepate. Patients should be monitored to determine if it is necessary to adjust the dosage of the benzodiazepine when taken concomitantly with omeprazole.
Aspirin, ASA; Oxycodone: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Atazanavir; Cobicistat: (Moderate) Use caution if coadministration of cobicistat with clorazepate is necessary, as the systemic exposure of the active metabolite of clorazepate may be increased resulting in an increase in treatment-related adverse reactions; adjust the dose of clorazepate if necessary. Cobicistat is a strong CYP3A4 inhibitor. Clorazepate is a pro-drug converted to N-desmethyldiazepam in the GI tract; N-desmethyldiazepam is metabolized by 2C19 and 3A4.
Atropine; Difenoxin: (Moderate) Concomitant administration of benzodiazepines with CNS-depressant drugs, such as diphenoxylate/difenoxin, can potentiate the CNS effects of either agent.
Azelastine: (Moderate) Monitor for excessive sedation and somnolence during coadministration of azelastine and benzodiazepines. Concurrent use may result in additive CNS depression.
Azelastine; Fluticasone: (Moderate) Monitor for excessive sedation and somnolence during coadministration of azelastine and benzodiazepines. Concurrent use may result in additive CNS depression.
Barbiturates: (Moderate) Additive CNS and/or respiratory depression may occur. Additionally, barbiturates may increase the metabolism of N-desmethyldiazepam, the active metabolite of clorazepate. N-desmethyldiazepam is a CYP3A4 and CYP2C19 substrate. Barbiturates are CYP3A4 and CYP2C19 inducers.
Belladonna; Opium: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Benzhydrocodone; Acetaminophen: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If benzhydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Benztropine: (Moderate) CNS depressants, such as anxiolytics, sedatives, and hypnotics, can increase the sedative effects of benztropine.
Brexanolone: (Moderate) Concomitant use of brexanolone with CNS depressants like the benzodiazepines may increase the likelihood or severity of adverse reactions related to sedation and additive CNS depression. Monitor for excessive sedation, dizziness, and a potential for loss of consciousness during brexanolone use.
Brimonidine: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of the anxiolytics, sedatives, and hypnotics including benzodiazepines.
Brimonidine; Brinzolamide: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of the anxiolytics, sedatives, and hypnotics including benzodiazepines.
Brimonidine; Timolol: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of the anxiolytics, sedatives, and hypnotics including benzodiazepines.
Brompheniramine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Brompheniramine; Dextromethorphan; Phenylephrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination. (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Brompheniramine; Phenylephrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination. (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Brompheniramine; Pseudoephedrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Brompheniramine; Pseudoephedrine; Dextromethorphan: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Buprenorphine: (Major) Concomitant use of mixed opiate agonists/antagonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of mixed opiate agonists/antagonists with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If a mixed opiate agonist/antagonist is initiated for pain in a patient taking a benzodiazepine, use a lower initial dose of the mixed opiate agonist/antagonist and titrate to clinical response. Reduce injectable buprenorphine dose by 1/2, and for the buprenorphine transdermal patch, start therapy with the 5 mcg/hour patch. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking a mixed opiate agonist/antagonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. In patients treated with buprenorphine for opioid use disorder, cessation of benzodiazepines or other CNS depressants is preferred in most cases. Consider alternatives to benzodiazepines for conditions such as anxiety or insomnia in patients receiving buprenorphine maintenance treatment. Educate patients about the risks and symptoms of respiratory depression and sedation.
Buprenorphine; Naloxone: (Major) Concomitant use of mixed opiate agonists/antagonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of mixed opiate agonists/antagonists with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If a mixed opiate agonist/antagonist is initiated for pain in a patient taking a benzodiazepine, use a lower initial dose of the mixed opiate agonist/antagonist and titrate to clinical response. Reduce injectable buprenorphine dose by 1/2, and for the buprenorphine transdermal patch, start therapy with the 5 mcg/hour patch. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking a mixed opiate agonist/antagonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. In patients treated with buprenorphine for opioid use disorder, cessation of benzodiazepines or other CNS depressants is preferred in most cases. Consider alternatives to benzodiazepines for conditions such as anxiety or insomnia in patients receiving buprenorphine maintenance treatment. Educate patients about the risks and symptoms of respiratory depression and sedation.
Buspirone: (Moderate) It is common for patients to overlap anxiety treatment when switching from benzodiazepines to buspirone. Buspirone has a slow onset of action and the drug will not block the withdrawal syndrome often seen with cessation of benzodiazepine therapy in those with benzodiazepine dependence. Therefore, before starting therapy with buspirone, withdraw patients gradually from the benzodiazepine. Alternatively, conversion to buspirone therapy may require treatment overlap to allow for the downward titration of the benzodiazepine while buspirone takes effect. It should be noted that the combination of buspirone and benzodiazepines can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent.
Butabarbital: (Moderate) Additive CNS and/or respiratory depression may occur. Additionally, barbiturates may increase the metabolism of N-desmethyldiazepam, the active metabolite of clorazepate. N-desmethyldiazepam is a CYP3A4 and CYP2C19 substrate. Barbiturates are CYP3A4 and CYP2C19 inducers.
Butalbital; Acetaminophen: (Moderate) Additive CNS and/or respiratory depression may occur. Additionally, barbiturates may increase the metabolism of N-desmethyldiazepam, the active metabolite of clorazepate. N-desmethyldiazepam is a CYP3A4 and CYP2C19 substrate. Barbiturates are CYP3A4 and CYP2C19 inducers.
Butalbital; Acetaminophen; Caffeine: (Moderate) Additive CNS and/or respiratory depression may occur. Additionally, barbiturates may increase the metabolism of N-desmethyldiazepam, the active metabolite of clorazepate. N-desmethyldiazepam is a CYP3A4 and CYP2C19 substrate. Barbiturates are CYP3A4 and CYP2C19 inducers. (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Butalbital; Acetaminophen; Caffeine; Codeine: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines. (Moderate) Additive CNS and/or respiratory depression may occur. Additionally, barbiturates may increase the metabolism of N-desmethyldiazepam, the active metabolite of clorazepate. N-desmethyldiazepam is a CYP3A4 and CYP2C19 substrate. Barbiturates are CYP3A4 and CYP2C19 inducers. (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Butalbital; Aspirin; Caffeine; Codeine: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines. (Moderate) Additive CNS and/or respiratory depression may occur. Additionally, barbiturates may increase the metabolism of N-desmethyldiazepam, the active metabolite of clorazepate. N-desmethyldiazepam is a CYP3A4 and CYP2C19 substrate. Barbiturates are CYP3A4 and CYP2C19 inducers. (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Butorphanol: (Major) Concomitant use of mixed opiate agonists/antagonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of mixed opiate agonists/antagonists with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If a mixed opiate agonist/antagonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the mixed opiate agonist/antagonist and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking a mixed opiate agonist/antagonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Caffeine: (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Caffeine; Sodium Benzoate: (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Calcium, Magnesium, Potassium, Sodium Oxybates: (Contraindicated) Sodium oxybate should not be used in combination with CNS depressant anxiolytics, sedatives, and hypnotics or other sedative CNS depressant drugs. Specifically, sodium oxybate use is contraindicated in patients being treated with sedative hypnotic drugs. Sodium oxybate (GHB) has the potential to impair cognitive and motor skills. For example, the concomitant use of barbiturates and benzodiazepines increases sleep duration and may contribute to rapid onset, pronounced CNS depression, respiratory depression, or coma when combined with sodium oxybate.
Cannabidiol: (Moderate) Monitor for excessive sedation and somnolence during coadministration of cannabidiol and clorazepate. CNS depressants can potentiate the effects of cannabidiol.
Carbamazepine: (Moderate) Carbamazepine is a hepatic inducers and can theoretically increase the clearance of clorazepate, leading to lower benzodiazepine concentrations.
Carbinoxamine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Cariprazine: (Moderate) Due to the CNS effects of cariprazine, caution should be used when cariprazine is given in combination with other centrally-acting medications including benzodiazepines and other anxiolytics, sedatives, and hypnotics.
Celecoxib; Tramadol: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Cenobamate: (Moderate) Monitor for excessive sedation and somnolence during coadministration of cenobamate and benzodiazepines. Concurrent use may result in additive CNS depression.
Ceritinib: (Moderate) Monitor for an increase in sedation and respiratory depression if coadministration of clorazepate with ceritinib is necessary. Clorazepate is a prodrug whose active metabolite (N-desmethyldiazepam) is a CYP3A4 substrate. Ceritinib is a strong CYP3A4 inhibitor.
Cetirizine: (Moderate) Concurrent use of cetirizine/levocetirizine with benzodiazepines should generally be avoided. Coadministration may increase the risk of CNS depressant-related side effects. If concurrent use is necessary, monitor for excessive sedation and somnolence.
Cetirizine; Pseudoephedrine: (Moderate) Concurrent use of cetirizine/levocetirizine with benzodiazepines should generally be avoided. Coadministration may increase the risk of CNS depressant-related side effects. If concurrent use is necessary, monitor for excessive sedation and somnolence.
Chlophedianol; Dexbrompheniramine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Chlorcyclizine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Chlorpheniramine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Chlorpheniramine; Codeine: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines. (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Chlorpheniramine; Dextromethorphan: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination. (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines. (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination. (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Chlorpheniramine; Hydrocodone: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines. (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Chlorpheniramine; Phenylephrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination. (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Chlorpheniramine; Pseudoephedrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Chlorthalidone; Clonidine: (Moderate) Clonidine has CNS depressive effects and can potentiate the actions of other CNS depressants including benzodiazepines.
Cimetidine: (Moderate) Cimetidine can inhibit the hepatic clearance of some benzodiazepines that undergo oxidative metabolism, including clorazepate.
Ciprofloxacin: (Moderate) Ciprofloxacin is a CYP3A4 inhibitor and may reduce the metabolism of clorazepate and increase the potential for benzodiazepine toxicity. Clorazepate is a pro-drug converted to N-desmethyldiazepam in the GI tract; N-desmethyldiazepam is metabolized by CYP3A4.
Cisapride: (Moderate) Cisapride may enhance the sedative effects of benzodiazepines. Patients should not drive or operate heavy machinery until they know how the combination affects them. Patient counseling is important, as cisapride alone does not cause drowsiness or affect psychomotor function.
Clarithromycin: (Moderate) CYP3A4 inhibitors may reduce the metabolism of clorazepate and increase the potential for benzodiazepine toxicity. Monitor patients closely who receive concurrent therapy.
Clemastine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Clobazam: (Major) Use clobazam with other benzodiazepines with caution due to the risk for additive CNS depression.
Clonidine: (Moderate) Clonidine has CNS depressive effects and can potentiate the actions of other CNS depressants including benzodiazepines.
Clozapine: (Moderate) If concurrent therapy with clozapine and a benzodiazepine is necessary, it is advisable to begin with the lowest possible benzodiazepine dose and closely monitor the patient, particularly at initiation of treatment and following dose increases. Although the combination has been used safely, adverse reactions such as confusion, ataxia, somnolence, delirium, collapse, cardiac arrest, respiratory arrest, and death have occurred rarely in patients receiving clozapine concurrently or following benzodiazepine therapy. Several benzodiazepines, including clonazepam, oxazepam, flurazepam, diazepam, clobazam, flunitrazepam, and lorazepam have been implicated in these reactions. At least one case of sudden death was reported following intravenous administration of lorazepam to a patient receiving clozapine.
Cobicistat: (Moderate) Use caution if coadministration of cobicistat with clorazepate is necessary, as the systemic exposure of the active metabolite of clorazepate may be increased resulting in an increase in treatment-related adverse reactions; adjust the dose of clorazepate if necessary. Cobicistat is a strong CYP3A4 inhibitor. Clorazepate is a pro-drug converted to N-desmethyldiazepam in the GI tract; N-desmethyldiazepam is metabolized by 2C19 and 3A4.
Codeine: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Codeine; Guaifenesin: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Codeine; Guaifenesin; Pseudoephedrine: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Codeine; Phenylephrine; Promethazine: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines. (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Codeine; Promethazine: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Colesevelam: (Moderate) Colesevelam may decrease the bioavailability of clorazepate if coadministered. To minimize potential for interactions, consider administering oral anticonvulsants such as clorazepate at least 1 hour before or at least 4 hours after colesevelam.
COMT inhibitors: (Major) Concomitant administration of benzodiazepines with other drugs have CNS depressant properties, including COMT inhibitors, can potentiate the CNS effects of either agent. COMT inhibitors have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment. Patients should be advised to avoid driving or other tasks requiring mental alertness until they know how the combination affects them.
Cyclizine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Cyproheptadine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Danazol: (Moderate) Danazol is a CYP3A4 inhibitor and can decrease the hepatic metabolism of clorazepate, a CYP3A4 substrate.
Daridorexant: (Major) Monitor for excessive sedation and somnolence during use of daridorexant with benzodiazepines. Dosage adjustments may be necessary when administered together because of potentially additive CNS effects. Use of more than 2 hypnotics should be avoided due to the additive CNS depressant and complex sleep-related behaviors that may occur. While anxiolytic medications may be used concurrently with daridorexant, a reduction in dose of one or both agents may be needed. The risk of next-day impairment, including impaired driving, is increased if daridorexant is taken with other CNS depressants.
Darunavir; Cobicistat: (Moderate) Use caution if coadministration of cobicistat with clorazepate is necessary, as the systemic exposure of the active metabolite of clorazepate may be increased resulting in an increase in treatment-related adverse reactions; adjust the dose of clorazepate if necessary. Cobicistat is a strong CYP3A4 inhibitor. Clorazepate is a pro-drug converted to N-desmethyldiazepam in the GI tract; N-desmethyldiazepam is metabolized by 2C19 and 3A4.
Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Moderate) Use caution if coadministration of cobicistat with clorazepate is necessary, as the systemic exposure of the active metabolite of clorazepate may be increased resulting in an increase in treatment-related adverse reactions; adjust the dose of clorazepate if necessary. Cobicistat is a strong CYP3A4 inhibitor. Clorazepate is a pro-drug converted to N-desmethyldiazepam in the GI tract; N-desmethyldiazepam is metabolized by 2C19 and 3A4.
Delavirdine: (Moderate) Due to potential inhibition of clorazepate metabolism, it is recommended that clorazepate be avoided or reduced doses given when concurrent therapy includes delavirdine.
Desflurane: (Moderate) Concurrent use with benzodiazepines can decrease the minimum alveolar concentration (MAC) of desflurane needed to produce anesthesia.
Desogestrel; Ethinyl Estradiol: (Minor) Ethinyl estradiol may inhibit the clearance of benzodiazepines that undergo oxidation, thereby increasing serum concentrations of concomitantly administered benzodiazepines.
Deutetrabenazine: (Moderate) Advise patients that concurrent use of deutetrabenazine and drugs that can cause CNS depression, such as clorazepate, may have additive effects and worsen drowsiness or sedation.
Dexbrompheniramine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Dexbrompheniramine; Pseudoephedrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Dexchlorpheniramine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Dexmedetomidine: (Moderate) Concurrent use of dexmedetomidine and benzodiazepines may result in additive CNS depression. A reduction in dosage of dexmedetomidine or the benzodiazepine may be required.
Dextromethorphan; Diphenhydramine; Phenylephrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination. (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Dicyclomine: (Moderate) Dicyclomine can cause drowsiness, so it should be used cautiously in patients receiving CNS depressants like benzodiazepines.
Difelikefalin: (Moderate) Monitor for dizziness, somnolence, mental status changes, and gait disturbances if concomitant use of difelikefalin with CNS depressants is necessary. Concomitant use may increase the risk for these adverse reactions.
Diltiazem: (Moderate) Diltiazem is a CYP3A4 inhibitor and may reduce the metabolism of clorazepate and increase the potential for benzodiazepine toxicity.
Dimenhydrinate: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Diphenhydramine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Diphenhydramine; Ibuprofen: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Diphenhydramine; Naproxen: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Diphenhydramine; Phenylephrine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination. (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Diphenoxylate; Atropine: (Moderate) Concomitant administration of benzodiazepines with CNS-depressant drugs, such as diphenoxylate/difenoxin, can potentiate the CNS effects of either agent.
Disulfiram: (Moderate) Disulfiram can decrease the hepatic oxidative metabolism of benzodiazepines if administered concomitantly. Patients receiving clorazepate should be monitored for signs of an exaggerated response if any of the above drugs are used concomitantly.
Doxylamine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Doxylamine; Pyridoxine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Dronabinol: (Moderate) Use caution if the use of benzodiazepines are necessary with dronabinol, and monitor for additive dizziness, confusion, somnolence, and other CNS effects.
Droperidol: (Major) Droperidol administration is associated with an established risk for QT prolongation and torsades de pointes. In December 2001, the FDA issued a black box warning regarding the use of droperidol and its association with QT prolongation and potential for cardiac arrhythmias based on post-marketing surveillance data. Risk factors for the development of prolonged QT syndrome may include the use of benzodiazepines. Also, droperidol and benzodiazepines can both cause CNS depression. If used with a benzodiazepine, droperidol should be initiated at a low dose and adjusted upward, with caution, as needed to achieve the desired effect.
Drospirenone; Ethinyl Estradiol: (Minor) Ethinyl estradiol may inhibit the clearance of benzodiazepines that undergo oxidation, thereby increasing serum concentrations of concomitantly administered benzodiazepines.
Drospirenone; Ethinyl Estradiol; Levomefolate: (Minor) Ethinyl estradiol may inhibit the clearance of benzodiazepines that undergo oxidation, thereby increasing serum concentrations of concomitantly administered benzodiazepines.
Efavirenz: (Moderate) In vivo, efavirenz has been shown to induce hepatic enzymes CYP3A4 and CYP2B6. Patients receiving benzodiazepines that are metabolized by these isoenzymes may experience decreased benzodiazepine serum concentrations, if administered concurrently with efavirenz. Efavirenz should be used with caution with oxidized benzodiazepines including (e.g., clorazepate). Monitor patients closely for excessive side effects.
Efavirenz; Emtricitabine; Tenofovir Disoproxil Fumarate: (Moderate) In vivo, efavirenz has been shown to induce hepatic enzymes CYP3A4 and CYP2B6. Patients receiving benzodiazepines that are metabolized by these isoenzymes may experience decreased benzodiazepine serum concentrations, if administered concurrently with efavirenz. Efavirenz should be used with caution with oxidized benzodiazepines including (e.g., clorazepate). Monitor patients closely for excessive side effects.
Efavirenz; Lamivudine; Tenofovir Disoproxil Fumarate: (Moderate) In vivo, efavirenz has been shown to induce hepatic enzymes CYP3A4 and CYP2B6. Patients receiving benzodiazepines that are metabolized by these isoenzymes may experience decreased benzodiazepine serum concentrations, if administered concurrently with efavirenz. Efavirenz should be used with caution with oxidized benzodiazepines including (e.g., clorazepate). Monitor patients closely for excessive side effects.
Elbasvir; Grazoprevir: (Major) Administering clorazepate with grazoprevir may result in elevated clorazepate plasma concentrations. Clorazepate is a pro-drug converted to N-desmethyldiazepam in the GI tract; N-desmethyldiazepam is metabolized by 2C19 and 3A4. Grazoprevir is a weak CYP3A inhibitor. If these drugs are used together, closely monitor for signs of adverse events.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Alafenamide: (Moderate) Use caution if coadministration of cobicistat with clorazepate is necessary, as the systemic exposure of the active metabolite of clorazepate may be increased resulting in an increase in treatment-related adverse reactions; adjust the dose of clorazepate if necessary. Cobicistat is a strong CYP3A4 inhibitor. Clorazepate is a pro-drug converted to N-desmethyldiazepam in the GI tract; N-desmethyldiazepam is metabolized by 2C19 and 3A4.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Moderate) Use caution if coadministration of cobicistat with clorazepate is necessary, as the systemic exposure of the active metabolite of clorazepate may be increased resulting in an increase in treatment-related a
Ergotamine; Caffeine: (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Erythromycin: (Moderate) CYP3A4 inhibitors, such as erythromycin, may reduce the metabolism of clorazepate and increase the potential for benzodiazepine toxicity.
Esketamine: (Major) Closely monitor patients receiving esketamine and benzodiazepines for sedation and other CNS depressant effects. Instruct patients who receive a dose of esketamine not to drive or engage in other activities requiring alertness until the next day after a restful sleep.
Eszopiclone: (Moderate) Concomitant administration of benzodiazepines with eszopiclone can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. The concurrent use of eszopiclone with other anxiolytics, sedatives, and hypnotics at bedtime or in the middle of the night is not recommended. In addition, the risk of next-day psychomotor impairment is increased during co-administration of eszopiclone and other CNS depressants, which may decrease the ability to perform tasks requiring full mental alertness such as driving. If used together, a reduction in the dose of one or both drugs may be needed.
Ethanol: (Major) Advise patients to avoid alcohol consumption while taking CNS depressants. Alcohol consumption may result in additive CNS depression.
Ethinyl Estradiol; Norelgestromin: (Minor) Ethinyl estradiol may inhibit the clearance of benzodiazepines that undergo oxidation, thereby increasing serum concentrations of concomitantly administered benzodiazepines.
Ethinyl Estradiol; Norethindrone Acetate: (Minor) Ethinyl estradiol may inhibit the clearance of benzodiazepines that undergo oxidation, thereby increasing serum concentrations of concomitantly administered benzodiazepines.
Ethinyl Estradiol; Norgestrel: (Minor) Ethinyl estradiol may inhibit the clearance of benzodiazepines that undergo oxidation, thereby increasing serum concentrations of concomitantly administered benzodiazepines.
Ethotoin: (Moderate) Hydantoins are hepatic inducers and can theoretically increase the clearance of benzodiazepines metabolized by oxidative metabolism, leading to lower benzodiazepine concentrations.
Ethynodiol Diacetate; Ethinyl Estradiol: (Minor) Ethinyl estradiol may inhibit the clearance of benzodiazepines that undergo oxidation, thereby increasing serum concentrations of concomitantly administered benzodiazepines.
Etomidate: (Moderate) Concomitant administration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent.
Etonogestrel; Ethinyl Estradiol: (Minor) Ethinyl estradiol may inhibit the clearance of benzodiazepines that undergo oxidation, thereby increasing serum concentrations of concomitantly administered benzodiazepines.
Fenfluramine: (Moderate) Monitor for excessive sedation and somnolence during coadministration of fenfluramine and benzodiazepines. Concurrent use may result in additive CNS depression.
Fentanyl: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Flumazenil: (Major) Flumazenil competes with benzodiazepines for binding at the GABA/benzodiazepine-receptor complex, the specific binding site of benzodiazepines. Because binding at the receptor is competitive and flumazenil has a much shorter duration of action than do most benzodiazepines, it is possible for the effects of flumazenil to dissipate sooner than the effects of the benzodiazepine. Flumazenil does not affect the pharmacokinetics of the benzodiazepines. Abrupt awakening can cause dysphoria, agitation, and possibly increased adverse effects. If administered to patients who have received a benzodiazepine chronically, abrupt interruption of benzodiazepine agonism by flumazenil can induce benzodiazepine withdrawal including seizures. Flumazenil has minimal effects on benzodiazepine-induced respiratory depression; suitable ventilatory support should be available, especially in treating acute benzodiazepine overdose. Flumazenil does not reverse the actions of barbiturates, opiate agonists, or tricyclic antidepressants.
Fluoxetine: (Moderate) Fluoxetine could theoretically inhibit CYP3A4 metabolism of oxidized benzodiazepines, including clorazepate. Patients should be monitored for clinical response, and adjust benzodiazepine dosage if needed.
Fluvoxamine: (Moderate) Fluvoxamine may inhibit the metabolism of benzodiazepines that undergo hepatic oxidation, including clorazepate.
Food: (Major) Advise patients to avoid cannabis use while taking CNS depressants due to the risk for additive CNS depression and potential for other cognitive adverse reactions.
Fosphenytoin: (Moderate) Hydantoins are hepatic inducers and can theoretically increase the clearance of benzodiazepines metabolized by oxidative metabolism, leading to lower benzodiazepine concentrations.
Gabapentin: (Major) Concomitant use of benzodiazepines with gabapentin may cause excessive sedation, somnolence, and respiratory depression. If concurrent use is necessary, initiate gabapentin at the lowest recommended dose and monitor patients for symptoms of respiratory depression and sedation. Educate patients about the risks and symptoms of excessive CNS depression and respiratory depression.
General anesthetics: (Moderate) Concomitant administration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent.
Green Tea: (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products, such as green tea, prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Guaifenesin; Hydrocodone: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
Guaifenesin; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Guanfacine: (Moderate) Guanfacine has been associated with sedative effects and can potentiate the actions of other CNS depressants including benzodiazepines.
Haloperidol: (Moderate) Haloperidol can potentiate the actions of other CNS depressants, such as benzodiazepines, Caution should be exercised with simultaneous use of these agents due to potential excessive CNS effects.
Homatropine; Hydrocodone: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
Hydrochlorothiazide, HCTZ; Methyldopa: (Moderate) Methyldopa is associated with sedative effects. Methyldopa can potentiate the effects of CNS depressants such as barbiturates, benzodiazepines, opiate agonists, or phenothiazines when administered concomitantly.
Hydrocodone: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
Hydrocodone; Ibuprofen: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
Hydrocodone; Pseudoephedrine: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
Hydromorphone: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydromorphone is initiated in a patient taking a benzodiazepine, reduce the initial dosage of hydromorphone and titrate to clinical response; for hydromorphone extended-release tablets, use 1/3 to 1/2 of the estimated hydromorphone starting dose. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Hydroxychloroquine: (Moderate) Caution is warranted with the coadministration of hydroxychloroquine and antiepileptic drugs, such as clorazepate. Hydroxychloroquine can lower the seizure threshold; therefore, the activity of antiepileptic drugs may be impaired with concomitant use.
Hydroxyzine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Ibuprofen; Oxycodone: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Idelalisib: (Major) Avoid concomitant use of idelalisib, a strong CYP3A inhibitor, with clorazepate, a CYP3A substrate, as clorazepate toxicities may be significantly increased. The AUC of a sensitive CYP3A substrate was increased 5.4-fold when coadministered with idelalisib.
Iloperidone: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics.
Imatinib: (Moderate) Imatinib, STI-571 may inhibit the metabolism of clorazepate and leading to increased levels and potential toxicity. Monitor patients closely who receive concurrent therapy.
Isavuconazonium: (Moderate) Concomitant use of isavuconazonium with clorazepate may result in increased serum concentrations of clorazepate. Clorazepate is a substrate of the hepatic isoenzyme CYP3A4; isavuconazole, the active moiety of isavuconazonium, is a moderate inhibitor of this enzyme. Caution and close monitoring are advised if these drugs are used together.
Isoflurane: (Moderate) Concomitant administration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent.
Isoniazid, INH: (Moderate) Administering clorazepate with isoniazid may result in elevated clorazepate plasma concentrations. If these drugs are used together, closely monitor for signs of adverse events. Clorazepate is a pro-drug converted to N-desmethyldiazepam in the GI tract; N-desmethyldiazepam is metabolized by 2C19 and 3A4. Isoniazid is a CYP3A and CYP2C19 inhibitor.
Isoniazid, INH; Pyrazinamide, PZA; Rifampin: (Major) Rifampin, a hepatic inducer can theoretically increase the clearance of benzodiazpines metabolized by oxidative metabolism, leading to lower benzodiazepine concentrations. (Moderate) Administering clorazepate with isoniazid may result in elevated clorazepate plasma concentrations. If these drugs are used together, closely monitor for signs of adverse events. Clorazepate is a pro-drug converted to N-desmethyldiazepam in the GI tract; N-desmethyldiazepam is metabolized by 2C19 and 3A4. Isoniazid is a CYP3A and CYP2C19 inhibitor.
Isoniazid, INH; Rifampin: (Major) Rifampin, a hepatic inducer can theoretically increase the clearance of benzodiazpines metabolized by oxidative metabolism, leading to lower benzodiazepine concentrations. (Moderate) Administering clorazepate with isoniazid may result in elevated clorazepate plasma concentrations. If these drugs are used together, closely monitor for signs of adverse events. Clorazepate is a pro-drug converted to N-desmethyldiazepam in the GI tract; N-desmethyldiazepam is metabolized by 2C19 and 3A4. Isoniazid is a CYP3A and CYP2C19 inhibitor.
Itraconazole: (Moderate) Itraconazole is a CYP3A4 inhibitor and may reduce the metabolism of clorazepate and increase the potential for benzodiazepine toxicity. Monitor patients closely who receive concurrent therapy.
Ketamine: (Moderate) Concomitant administration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent.
Ketoconazole: (Moderate) Monitor for an increase in sedation and respiratory depression if coadministration of clorazepate with ketoconazole is necessary. Concurrent use may increase clorazepate exposure. Clorazepate is a prodrug whose active metabolite (N-desmethyldiazepam) is a CYP3A4 substrate; ketoconazole is a strong CYP3A4 inhibitor.
Lansoprazole; Amoxicillin; Clarithromycin: (Moderate) CYP3A4 inhibitors may reduce the metabolism of clorazepate and increase the potential for benzodiazepine toxicity. Monitor patients closely who receive concurrent therapy.
Lasmiditan: (Moderate) Monitor for excessive sedation and somnolence during coadministration of lasmiditan and benzodiazepines. Concurrent use may result in additive CNS depression.
Lemborexant: (Moderate) Monitor for excessive sedation and somnolence during use of lemborexant with benzodiazepines. Dosage adjustments may be necessary when administered together because of potentially additive CNS effects. Use of more than 2 hypnotics should be avoided due to the additive CNS depressant and complex sleep-related behaviors that may occur. While anxiolytic medications may be used concurrently with lemborexant, a reduction in dose of one or both agents may be needed. The risk of next-day impairment, including impaired driving, is increased if lemborexant is taken with other CNS depressants.
Letermovir: (Moderate) Plasma concentrations of clorazepate could be increased when administered concurrently with letermovir. The magnitude of this interaction may be increased in patients who are also receiving cyclosporine. If these drugs are given together, monitor for clorazepate-related adverse events. Clorazepate is a pro-drug converted to N-desmethyldiazepam in the GI tract; N-desmethyldiazepam is metabolized by CYP3A4. Letermovir is a moderate inhibitor of CYP3A4. When given with cyclosporine, the combined effect of letermovir and cyclosporine on CYP3A4 substrates may be similar to a strong CYP3A4 inhibitor.
Levocetirizine: (Moderate) Concurrent use of cetirizine/levocetirizine with benzodiazepines should generally be avoided. Coadministration may increase the risk of CNS depressant-related side effects. If concurrent use is necessary, monitor for excessive sedation and somnolence.
Levoketoconazole: (Moderate) Monitor for an increase in sedation and respiratory depression if coadministration of clorazepate with ketoconazole is necessary. Concurrent use may increase clorazepate exposure. Clorazepate is a prodrug whose active metabolite (N-desmethyldiazepam) is a CYP3A4 substrate; ketoconazole is a strong CYP3A4 inhibitor.
Levomilnacipran: (Moderate) Concurrent use of many CNS active drugs, including benzodiazepines, with levomilnacipran has not been evaluated by the manufacturer. Therefore, caution is advisable when combining anxiolytics, sedatives, and hypnotics or other psychoactive medications with levomilnacipran.
Levonorgestrel; Ethinyl Estradiol: (Minor) Ethinyl estradiol may inhibit the clearance of benzodiazepines that undergo oxidation, thereby increasing serum concentrations of concomitantly administered benzodiazepines.
Levonorgestrel; Ethinyl Estradiol; Ferrous Bisglycinate: (Minor) Ethinyl estradiol may inhibit the clearance of benzodiazepines that undergo oxidation, thereby increasing serum concentrations of concomitantly administered benzodiazepines.
Levonorgestrel; Ethinyl Estradiol; Ferrous Fumarate: (Minor) Ethinyl estradiol may inhibit the clearance of benzodiazepines that undergo oxidation, thereby increasing serum concentrations of concomitantly administered benzodiazepines.
Levorphanol: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If levorphanol is initiated in a patient taking a benzodiazepine, reduce the initial dose of levorphanol by approximately 50% or more. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Lisdexamfetamine: (Major) Patients who are taking anticonvulsants for epilepsy/seizure control should use lisdexamfetamine with caution. Amphetamines may decrease the seizure threshold and may increase the risk of seizures. If seizures occur, amphetamine discontinuation may be necessary.
Lofexidine: (Moderate) Monitor for excessive hypotension and sedation during coadministration of lofexidine and benzodiazepines. Lofexidine can potentiate the effects of CNS depressants such as benzodiazepines.
Lonafarnib: (Moderate) Monitor for an increase in sedation and respiratory depression if coadministration of clorazepate with lonafarnib is necessary. Concurrent use may increase clorazepate exposure. Clorazepate is a prodrug whose active metabolite (N-desmethyldiazepam) is a CYP3A4 substrate; lonafarnib is a strong CYP3A4 inhibitor.
Lumacaftor; Ivacaftor: (Moderate) Lumacaftor; ivacaftor may reduce the efficacy of clorazepate by decreasing the systemic exposure of its active metabolite. If used together, monitor patients closely for clorazepate efficacy; a clorazepate dosage adjustment may be required to obtain the desired therapeutic effect. Clorazepate is a prodrug converted to N-desmethyldiazepam in the GI tract; N-desmethyldiazepam is metabolized by CYP3A4 and CYP2C19. Lumacaftor is a strong CYP3A inducer; in vitro data also suggest that lumacaftor may induce CYP2C19.
Lumateperone: (Moderate) Monitor for excessive sedation and somnolence during coadministration of lumateperone and benzodiazepines. Concurrent use may result in additive CNS depression.
Lurasidone: (Moderate) Due to the CNS effects of lurasidone, caution should be used when lurasidone is given in combination with other centrally acting medications such as anxiolytics, sedatives, and hypnotics, including benzodiazepines. In one study, co-administration of lurasidone and midazolam increased the Cmax and AUC of midazolam by about 21% and 44%, respectively, compared to midazolam alone; however, dosage adjustment of midazolam based upon pharmacokinetic parameters is not required during concurrent use of lurasidone.
Maprotiline: (Moderate) Benzodiazepines or other CNS depressants should be combined cautiously with maprotiline because they could cause additive depressant effects and possible respiratory depression or hypotension. The combination of benzodiazepines and maprotiline is commonly used clinically and is considered to be safe as long as patients are monitored for excessive adverse effects from either agent. Maprotiline may lower the seizure threshold, so when benzodiazepines are used for anticonvulsant effects the patient should be monitored for desired clinical outcomes.
Meclizine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Melatonin: (Major) Use caution when combining melatonin with the benzodiazepines; when the benzodiazepine is used for sleep, co-use of melatonin should be avoided. Use of more than 1 agent for hypnotic purposes may increase the risk for over-sedation, CNS effects, or sleep-related behaviors. Be alert for unusual changes in moods or behaviors. Use caution when combining melatonin with benzodiazepines for other uses. Patients reporting unusual sleep-related behaviors should likely discontinue melatonin use. In animal studies, melatonin has been shown to increase benzodiazepine binding to receptor sites. In one case report, a benzodiazepine-dependent woman with an 11 year history of insomnia weaned and discontinued her benzodiazepine prescription within a few days without rebound insomnia or apparent benzodiazepine withdrawal when melatonin was given. In another case report, the ingestion of excessive melatonin along with normal doses of chlordiazepoxide and an antidepressant resulted in lethargy and short-term amnestic responses. Both cases suggest additive pharmacodynamic effects. In a clinical trial, there was clear evidence for a transitory pharmacodynamic interaction between melatonin and another hypnotic agent one hour following co-dosing. Concomitant administration resulted in increased impairment of attention, memory and coordination compared to the hypnotic agent alone.
Meperidine: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Meprobamate: (Moderate) Concomitant administration of benzodiazepines with meprobamate can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. If used together, a reduction in the dose of one or both drugs may be needed.
Methadone: (Major) Concurrent use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective dose and minimum duration possible. If methadone is initiated for pain in an opioid-naive patient taking a benzodiazepine, use an initial methadone dose of 2.5 mg PO every 12 hours. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial benzodiazepine dose and titrate to response. In patients treated with methadone for opioid use disorder, cessation of benzodiazepines or other CNS depressants is preferred in most cases. Consider alternatives to benzodiazepines for conditions such as anxiety or insomnia during methadone maintenance treatment. Educate patients about the risks and symptoms of respiratory depression and sedation.
Methocarbamol: (Moderate) Concurrent use of benzodiazepines and other CNS active medications including skeletal muscle relaxants, can potentiate the CNS effects of either agent. Lower doses of one or both agents may be required. The severity of this interaction may be increased when additional CNS depressants are given.
Methohexital: (Moderate) Additive CNS and/or respiratory depression may occur. Additionally, barbiturates may increase the metabolism of N-desmethyldiazepam, the active metabolite of clorazepate. N-desmethyldiazepam is a CYP3A4 and CYP2C19 substrate. Barbiturates are CYP3A4 and CYP2C19 inducers.
Methscopolamine: (Moderate) CNS depression can be increased when methscopolamine is combined with other CNS depressants such as any anxiolytics, sedatives, and hypnotics.
Methyldopa: (Moderate) Methyldopa is associated with sedative effects. Methyldopa can potentiate the effects of CNS depressants such as barbiturates, benzodiazepines, opiate agonists, or phenothiazines when administered concomitantly.
Metoclopramide: (Minor) Combined use of metoclopramide and other CNS depressants, such as anxiolytics, sedatives, and hypnotics, can increase possible sedation.
Metyrapone: (Moderate) Metyrapone may cause dizziness and/or drowsiness. Other drugs that may also cause drowsiness, such as benzodiazepines, should be used with caution. Additive drowsiness and/or dizziness is possible.
Metyrosine: (Moderate) The concomitant administration of metyrosine with benzodiazepines can result in additive sedative effects.
Milnacipran: (Moderate) Concurrent use of many CNS-active drugs with milnacipran or levomilnacipran has not been evaluated by the manufacturer. Therefore, caution is advisable when combining anxiolytics, sedatives, and hypnotics or other psychoactive medications with these medications.
Minocycline: (Minor) Injectable minocycline contains magnesium sulfate heptahydrate. Because of the CNS-depressant effects of magnesium sulfate, additive central-depressant effects can occur following concurrent administration with CNS depressants such as benzodiazepines. Caution should be exercised when using these agents concurrently.
Mirtazapine: (Moderate) Monitor for unusual drowsiness and sedation during coadministration of benzodiazepines and mirtazapine due to the risk for additive CNS depression.
Mitotane: (Major) Use caution if mitotane and clorazepate are used concomitantly, and monitor for decreased efficacy of clorazepate and a possible change in dosage requirements. Mitotane is a strong CYP3A4 inducer. Clorazepate is a pro-drug converted to N-desmethyldiazepam in the GI tract; N-desmethyldiazepam is metabolized by 2C19 and 3A4. Coadministration may result in decreased plasma concentrations of N-desmethyldiazepam. Additionally, mitotane can cause sedation, lethargy, vertigo, and other CNS adverse reactions; additive CNS effects may occur initially when mitotane is given concurrently with clorazepate.
Molindone: (Moderate) Consistent with the pharmacology of molindone, additive central nervous system (CNS) effects may occur with other CNS active drugs such as anxiolytics, sedatives, and hypnotics. Caution is advisable during concurrent use.
Monoamine oxidase inhibitors: (Moderate) Monitor for unusual drowsiness and sedation during coadministration of benzodiazepines and monoamine oxidase inhibitors (MAOIs) due to the risk for additive CNS depression.
Morphine: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If morphine is initiated in a patient taking a benzodiazepine, reduce initial dosages and titrate to clinical response. For extended-release tablets, start with morphine 15 mg PO every 12 hours, and for extended-release capsules, start with 30 mg PO every 24 hours or less. Use an initial morphine; naltrexone dose of 20 mg/0.8 mg PO every 24 hours. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Morphine; Naltrexone: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If morphine is initiated in a patient taking a benzodiazepine, reduce initial dosages and titrate to clinical response. For extended-release tablets, start with morphine 15 mg PO every 12 hours, and for extended-release capsules, start with 30 mg PO every 24 hours or less. Use an initial morphine; naltrexone dose of 20 mg/0.8 mg PO every 24 hours. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Nabilone: (Major) Nabilone should not be taken with benzodiazepines or other sedative/hypnotic agents because these substances can potentiate the central nervous system effects of nabilone. Additive drowsiness and CNS depression can occur.
Nalbuphine: (Major) Concomitant use of mixed opiate agonists/antagonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of mixed opiate agonists/antagonists with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If a mixed opiate agonist/antagonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the mixed opiate agonist/antagonist and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking a mixed opiate agonist/antagonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Nefazodone: (Moderate) Nefazodone is a CYP3A4 inhibitor and may reduce the metabolism of clorazepate and increase the potential for benzodiazepine toxicity.
Nicardipine: (Moderate) Nicardipine is a CYP3A4 inhibitor and may reduce the metabolism of clorazepate and increase the potential for benzodiazepine toxicity.
Nirmatrelvir; Ritonavir: (Major) Consider withholding clorazepate, if clinically appropriate, during receipt of ritonavir-boosted nirmatrelvir. If this is not feasible, consider using an alternative COVID-19 therapy or reducing the clorazepate dose. However, do not stop clorazepate abruptly or rapidly reduce the dose as this may precipitate an acute withdrawal reaction, especially in patients who have been receiving high doses over an extended period. Coadministration may increase clorazepate exposure resulting in increased toxicity and excessive sedation. Clorazepate is a CYP3A substrate and nirmatrelvir is a CYP3A inhibitor.
Nitroglycerin: (Minor) Nitroglycerin can cause hypotension. This action may be additive with other agents that can cause hypotension such as benzodiazepines. Patients should be monitored more closely for hypotension if nitroglycerin is used concurrently with benzodiazepines.
Norethindrone Acetate; Ethinyl Estradiol; Ferrous fumarate: (Minor) Ethinyl estradiol may inhibit the clearance of benzodiazepines that undergo oxidation, thereby increasing serum concentrations of concomitantly administered benzodiazepines.
Norethindrone; Ethinyl Estradiol: (Minor) Ethinyl estradiol may inhibit the clearance of benzodiazepines that undergo oxidation, thereby increasing serum concentrations of concomitantly administered benzodiazepines.
Norethindrone; Ethinyl Estradiol; Ferrous fumarate: (Minor) Ethinyl estradiol may inhibit the clearance of benzodiazepines that undergo oxidation, thereby increasing serum concentrations of concomitantly administered benzodiazepines.
Norgestimate; Ethinyl Estradiol: (Minor) Ethinyl estradiol may inhibit the clearance of benzodiazepines that undergo oxidation, thereby increasing serum concentrations of concomitantly administered benzodiazepines.
Olanzapine: (Moderate) Although oral formulations of olanzapine and benzodiazepines may be used together, additive effects on respiratory depression and/or CNS depression are possible. Drugs that can cause CNS depression, if used concomitantly with olanzapine, can increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, dizziness, and orthostatic hypotension. Besides ethanol, clinicians should use other anxiolytics, sedatives, and hypnotics cautiously with olanzapine.
Olanzapine; Fluoxetine: (Moderate) Although oral formulations of olanzapine and benzodiazepines may be used together, additive effects on respiratory depression and/or CNS depression are possible. Drugs that can cause CNS depression, if used concomitantly with olanzapine, can increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, dizziness, and orthostatic hypotension. Besides ethanol, clinicians should use other anxiolytics, sedatives, and hypnotics cautiously with olanzapine. (Moderate) Fluoxetine could theoretically inhibit CYP3A4 metabolism of oxidized benzodiazepines, including clorazepate. Patients should be monitored for clinical response, and adjust benzodiazepine dosage if needed.
Olanzapine; Samidorphan: (Moderate) Although oral formulations of olanzapine and benzodiazepines may be used together, additive effects on respiratory depression and/or CNS depression are possible. Drugs that can cause CNS depression, if used concomitantly with olanzapine, can increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, dizziness, and orthostatic hypotension. Besides ethanol, clinicians should use other anxiolytics, sedatives, and hypnotics cautiously with olanzapine.
Oliceridine: (Major) Concomitant use of oliceridine with clorazepate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with clorazepate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Omeprazole: (Moderate) Omeprazole inhibits CYP2C19. There have been some case reports describing an interaction between omeprazole and benzodiazepines metabolized via the cytochrome P450 system, such as clorazepate. Patients should be monitored to determine if it is necessary to adjust the dosage of the benzodiazepine when taken concomitantly with omeprazole.
Omeprazole; Amoxicillin; Rifabutin: (Moderate) Omeprazole inhibits CYP2C19. There have been some case reports describing an interaction between omeprazole and benzodiazepines metabolized via the cytochrome P450 system, such as clorazepate. Patients should be monitored to determine if it is necessary to adjust the dosage of the benzodiazepine when taken concomitantly with omeprazole. (Moderate) Rifabutin is a hepatic inducers and can theoretically increase the clearance of benzodiazpines metabolized by oxidative metabolism, such as clorazepate, leading to lower benzodiazepine concentrations.
Omeprazole; Sodium Bicarbonate: (Moderate) Omeprazole inhibits CYP2C19. There have been some case reports describing an interaction between omeprazole and benzodiazepines metabolized via the cytochrome P450 system, such as clorazepate. Patients should be monitored to determine if it is necessary to adjust the dosage of the benzodiazepine when taken concomitantly with omeprazole.
Oritavancin: (Moderate) Coadministration of oritavancin and clorazepate may result in increases or decreases in the exposure of N-desmethyldiazepam, the active metabolite of clorazepate. N-desmethyldiazepam is metabolized by CYP3A4 and CYP2C19. Oritavancin weakly induces CYP3A4, while weakly inhibiting CYP2C19. If these drugs are administered concurrently, monitor the patient for signs of toxicity or lack of efficacy.
Oxycodone: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Oxymorphone: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxymorphone is initiated in a patient taking a benzodiazepine, use an initial dose of oxymorphone at 1/3 to 1/2 the usual dosage and titrate to clinical response. If the extended-release oxymorphone tablets are used concurrently with a CNS depressant, use an initial dosage of 5 mg PO every 12 hours. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Paliperidone: (Moderate) Drugs that can cause CNS depression, such as benzodiazepines, can increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness when coadministered with paliperidone. Monitor for signs and symptoms of CNS depression and advise patients to avoid driving or engaging in other activities requiring mental alertness until they know how this combination affects them.
Papaverine: (Moderate) Concurrent use of papaverine with potent CNS depressants such as benzodiazepines could lead to enhanced sedation.
Pentazocine: (Major) Concomitant use of mixed opiate agonists/antagonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of mixed opiate agonists/antagonists with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If a mixed opiate agonist/antagonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the mixed opiate agonist/antagonist and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking a mixed opiate agonist/antagonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Pentazocine; Naloxone: (Major) Concomitant use of mixed opiate agonists/antagonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of mixed opiate agonists/antagonists with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If a mixed opiate agonist/antagonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the mixed opiate agonist/antagonist and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking a mixed opiate agonist/antagonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Pentobarbital: (Moderate) Additive CNS and/or respiratory depression may occur. Additionally, barbiturates may increase the metabolism of N-desmethyldiazepam, the active metabolite of clorazepate. N-desmethyldiazepam is a CYP3A4 and CYP2C19 substrate. Barbiturates are CYP3A4 and CYP2C19 inducers.
Perampanel: (Moderate) Patients taking benzodiazepines with perampanel may experience increased CNS depression. Monitor patients for adverse effects; dose adjustment of either drug may be necessary. Use of midazolam in healthy subjects who received perampanel 6 mg once daily for 20 days decreased the AUC and Cmax of midazolam by 13% and 15%, respectively, possibly due to weak induction of CYP3A4 by perampanel; the specific clinical significance of this interaction is unknown.
Phenobarbital: (Moderate) Additive CNS and/or respiratory depression may occur. Additionally, barbiturates may increase the metabolism of N-desmethyldiazepam, the active metabolite of clorazepate. N-desmethyldiazepam is a CYP3A4 and CYP2C19 substrate. Barbiturates are CYP3A4 and CYP2C19 inducers.
Phenobarbital; Hyoscyamine; Atropine; Scopolamine: (Moderate) Additive CNS and/or respiratory depression may occur. Additionally, barbiturates may increase the metabolism of N-desmethyldiazepam, the active metabolite of clorazepate. N-desmethyldiazepam is a CYP3A4 and CYP2C19 substrate. Barbiturates are CYP3A4 and CYP2C19 inducers. (Moderate) Scopolamine may cause dizziness and drowsiness. Concurrent use of scopolamine and CNS depressants can adversely increase the risk of CNS depression.
Phenothiazines: (Major) Limit dosage and duration of benzodiazepines during concomitant phenothiazine use and monitor for unusual drowsiness and sedation due to the risk for additive CNS depression.
Phentermine; Topiramate: (Moderate) Topiramate has the potential to cause CNS depression as well as other cognitive and/or neuropsychiatric adverse reactions. The CNS depressant effects of topiramate can be potentiated pharmacodynamically by concurrent use of CNS depressant agents such as the benzodiazepines.
Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Phenytoin: (Moderate) Phenytoin is a hepatic inducer and can theoretically increase the clearance of benzodiazpines metabolized by oxidative metabolism, leading to lower benzodiazepine concentrations.
Pimozide: (Moderate) Due to the effects of pimozide on cognition, it should be used cautiously with other CNS depressants including benzodiazepines.
Posaconazole: (Moderate) Posaconazole inhibits CYP3A4 and may increase serum concentrations of benzodiazepines metabolized by this enzyme, including clorazepate.
Pramipexole: (Major) Concomitant administration of benzodiazepines with CNS-depressant drugs, including pramipexole, can potentiate the CNS effects.
Prasterone, Dehydroepiandrosterone, DHEA (Dietary Supplements): (Major) Prasterone, dehydroepiandrosterone, DHEA may inhibit the metabolism of benzodiazepines (e.g., alprazolam, estazolam, midazolam) which undergo CYP3A4-mediated metabolism. In one study of elderly volunteers, half of the patients received DHEA 200 mg/day PO for 2 weeks, followed by a single dose of triazolam 0.25 mg. Triazolam clearance was reduced by close to 30% in the DHEA-pretreated patients vs. the control group; however, the effect of DHEA on CYP3A4 metabolism appeared to vary widely among subjects. While more study is needed, benzodiazepine-induced CNS sedation and other adverse effects might be increased in some individuals if DHEA is co-administered.
Prasterone, Dehydroepiandrosterone, DHEA (FDA-approved): (Major) Prasterone, dehydroepiandrosterone, DHEA may inhibit the metabolism of benzodiazepines (e.g., alprazolam, estazolam, midazolam) which undergo CYP3A4-mediated metabolism. In one study of elderly volunteers, half of the patients received DHEA 200 mg/day PO for 2 weeks, followed by a single dose of triazolam 0.25 mg. Triazolam clearance was reduced by close to 30% in the DHEA-pretreated patients vs. the control group; however, the effect of DHEA on CYP3A4 metabolism appeared to vary widely among subjects. While more study is needed, benzodiazepine-induced CNS sedation and other adverse effects might be increased in some individuals if DHEA is co-administered.
Pregabalin: (Major) Concomitant use of benzodiazepines with pregabalin may cause excessive sedation, somnolence, and respiratory depression. If concurrent use is necessary, initiate pregabalin at the lowest recommended dose and monitor patients for symptoms of respiratory depression and sedation. Educate patients about the risks and symptoms of excessive CNS depression and respiratory depression.
Primidone: (Moderate) Additive CNS and/or respiratory depression may occur. Additionally, barbiturates may increase the metabolism of N-desmethyldiazepam, the active metabolite of clorazepate. N-desmethyldiazepam is a CYP3A4 and CYP2C19 substrate. Barbiturates are CYP3A4 and CYP2C19 inducers.
Procarbazine: (Minor) CNS depressants benzodiazepines can potentiate the CNS depression caused by procarbazine therapy, so these drugs should be used together cautiously.
Promethazine; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Propofol: (Moderate) Concomitant administration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent.
Protease inhibitors: (Major) CYP3A4 inhibitors, such as protease inhibitors, may reduce the metabolism of N-desmethyldiazepam, the active metabolite of clorazepate, and increase the potential for benzodiazepine toxicity. Monitor patients closely who receive concurrent therapy.
Pseudoephedrine; Triprolidine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Pyrilamine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Ramelteon: (Moderate) Ramelteon is a sleep-promoting agent; therefore, additive pharmacodynamic effects are possible when combining ramelteon with benzodiazepines or other miscellaneous anxiolytics, sedatives, and hypnotics. Pharmacokinetic interactions have been observed with the use of zolpidem. Use of ramelteon 8 mg/day for 11 days and a single dose of zolpidem 10 mg resulted in an increase in the median Tmax of zolpidem of about 20 minutes; exposure to zolpidem was unchanged. Ramelteon use with hypnotics of any kind is considered duplicative therapy and these drugs are generally not co-administered.
Ranolazine: (Moderate) CYP3A4 inhibitors, like ranolazine, may reduce the metabolism of clorazepate and increase the potential for benzodiazepine toxicity.
Rasagiline: (Moderate) The CNS-depressant effects of MAOIs can be potentiated with concomitant administration of other drugs known to cause CNS depression including buprenorphine, butorphanol, dronabinol, THC, nabilone, nalbuphine, and anxiolytics, sedatives, and hypnotics. Use these drugs cautiously with MAOIs; warn patients to not drive or perform other hazardous activities until they know how a particular drug combination affects them. In some cases, the dosages of the CNS depressants may need to be reduced.
Remifentanil: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Benzodiazepine doses may need to be reduced up to 75% during coadministration with remifentanil. Educate patients about the risks and symptoms of respiratory depression and sedation.
Remimazolam: (Major) The sedative effect of remimazolam can be accentuated by clorazepate. Titrate the dose of remimazolam to the desired clinical response and continuously monitor sedated patients for hypotension, airway obstruction, hypoventilation, apnea, and oxygen desaturation.
Ribociclib: (Moderate) Use caution if coadministration of ribociclib with clorazepate is necessary, as the systemic exposure of the active metabolite of clorazepate may be increased resulting in an increase in treatment-related adverse reactions; adjust the dose of clorazepate if necessary. Ribociclib is a strong CYP3A4 inhibitor. Clorazepate is a pro-drug converted to N-desmethyldiazepam in the GI tract; N-desmethyldiazepam is metabolized by 2C19 and 3A4.
Ribociclib; Letrozole: (Moderate) Use caution if coadministration of ribociclib with clorazepate is necessary, as the systemic exposure of the active metabolite of clorazepate may be increased resulting in an increase in treatment-related adverse reactions; adjust the dose of clorazepate if necessary. Ribociclib is a strong CYP3A4 inhibitor. Clorazepate is a pro-drug converted to N-desmethyldiazepam in the GI tract; N-desmethyldiazepam is metabolized by 2C19 and 3A4.
Rifabutin: (Moderate) Rifabutin is a hepatic inducers and can theoretically increase the clearance of benzodiazpines metabolized by oxidative metabolism, such as clorazepate, leading to lower benzodiazepine concentrations.
Rifampin: (Major) Rifampin, a hepatic inducer can theoretically increase the clearance of benzodiazpines metabolized by oxidative metabolism, leading to lower benzodiazepine concentrations.
Risperidone: (Moderate) Due to the primary CNS effects of risperidone, caution should be used when risperidone is given in combination with other centrally acting medications including anxiolytics, sedatives, and hypnotics.
Ropinirole: (Moderate) Concomitant use of ropinirole with other CNS depressants can potentiate the sedation effects of ropinirole.
Rotigotine: (Major) Concomitant use of rotigotine with other CNS depressants, such as benzodiazepines, can potentiate the sedative effects of rotigotine.
Safinamide: (Moderate) Dopaminergic medications, including safinamide, may cause a sudden onset of somnolence which sometimes has resulted in motor vehicle accidents. Patients may not perceive warning signs, such as excessive drowsiness, or they may report feeling alert immediately prior to the event. Because of possible additive effects, advise patients about the potential for increased somnolence during concurrent use of safinamide with other sedating medications, such as benzodiazepines.
Scopolamine: (Moderate) Scopolamine may cause dizziness and drowsiness. Concurrent use of scopolamine and CNS depressants can adversely increase the risk of CNS depression.
Secobarbital: (Moderate) Additive CNS and/or respiratory depression may occur. Additionally, barbiturates may increase the metabolism of N-desmethyldiazepam, the active metabolite of clorazepate. N-desmethyldiazepam is a CYP3A4 and CYP2C19 substrate. Barbiturates are CYP3A4 and CYP2C19 inducers.
Sedating H1-blockers: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Segesterone Acetate; Ethinyl Estradiol: (Minor) Ethinyl estradiol may inhibit the clearance of benzodiazepines that undergo oxidation, thereby increasing serum concentrations of concomitantly administered benzodiazepines.
Selegiline: (Moderate) Monitor for unusual drowsiness and sedation during coadministration of benzodiazepines and selegiline due to the risk for additive CNS depression.
Sevoflurane: (Moderate) Concomitant administration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent.
Sincalide: (Moderate) Sincalide-induced gallbladder ejection fraction may be affected by benzodiazepines. False study results are possible in patients with drug-induced hyper- or hypo-responsiveness; thorough patient history is important in the interpretation of procedure results.
Skeletal Muscle Relaxants: (Moderate) Concomitant use of skeletal muscle relaxants with benzodiazepines can result in additive CNS depression. The severity of this interaction may be increased when additional CNS depressants are given. Monitor patients who take benzodiazepines with another CNS depressant for symptoms of excess sedation.
Sodium Oxybate: (Contraindicated) Sodium oxybate should not be used in combination with CNS depressant anxiolytics, sedatives, and hypnotics or other sedative CNS depressant drugs. Specifically, sodium oxybate use is contraindicated in patients being treated with sedative hypnotic drugs. Sodium oxybate (GHB) has the potential to impair cognitive and motor skills. For example, the concomitant use of barbiturates and benzodiazepines increases sleep duration and may contribute to rapid onset, pronounced CNS depression, respiratory depression, or coma when combined with sodium oxybate.
St. John's Wort, Hypericum perforatum: (Major) St. John's Wort may induce the hepatic CYP3A4 metabolism of clorazepate which is metabolized by oxidation. It would be prudent to avoid co-administration of St. John's Wort with clorazepate. Benzodiazepines that are not metabolized by CYP3A4 such as oxazepam or lorazepam may be alternatives if a benzodiazepine is required in combination with St. John's Wort.
Stiripentol: (Moderate) Monitor for excessive sedation and somnolence during coadministration of stiripentol and clorazepate. CNS depressants can potentiate the effects of stiripentol.
Sufentanil: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate an d titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Suvorexant: (Moderate) CNS depressant drugs may have cumulative effects when administered concurrently and they should be used cautiously with suvorexant. A reduction in dose of the CNS depressant may be needed in some cases. These agents include the benzodiazepines.
Tapentadol: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If tapentadol is initiated in a patient taking a benzodiazepine, a reduced initial dosage of tapentadol is recommended. If the extended-release tapentadol tablets are used concurrently with a benzodiazepine, use an initial tapentadol dose of 50 mg PO every 12 hours. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Teduglutide: (Moderate) Altered mental status has been observed in patients taking teduglutide and benzodiazepines in the adult clinical studies for teduglutide. Careful monitoring and possible dose adjustment of the benzodiazepine agent may be required. Teduglutide has direct effects on the gut that may increase benzodiazepine exposure by improving oral absorption.
Tetrabenazine: (Moderate) Concurrent use of tetrabenazine and drugs that can cause CNS depression, such as benzodiazepines, can increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, dizziness, and orthostatic hypotension.
Thalidomide: (Major) The use of benzodiazepine anxiolytics, sedatives, or hypnotics with thalidomide may cause an additive sedative effect and should be avoided. Thalidomide frequently causes drowsiness and somnolence. Dose reductions may be required. Patients should be instructed to avoid situations where drowsiness may be a problem and not to take other medications that may cause drowsiness without adequate medical advice. Advise patients as to the possible impairment of mental and/or physical abilities required for the performance of hazardous tasks, such as driving a car or operating other complex or dangerous machinery.
Theophylline, Aminophylline: (Minor) Aminophylline or Theophylline have been reported to counteract the pharmacodynamic effects of diazepam and possibly other benzodiazepines. The clinical significance of this interaction is not certain. A proposed mechanism is competitive binding of these methylxanthines to adenosine receptors in the brain. If such therapy is initiated or discontinued, monitor the clinical response to the benzodiazepine.
Thiothixene: (Moderate) Thiothixene can potentiate the CNS-depressant action of other drugs such as benzodiazepines. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects or additive hypotension.
Tiagabine: (Moderate) Because of the possible additive effects of drugs that depress the central nervous system, benzodiazepines should be used with caution in patients receiving tiagabine.
Tizanidine: (Moderate) Concurrent use of tizanidine and CNS depressants like the benzodiazepines can cause additive CNS depression. The severity of this interaction may be increased when additional CNS depressants are given.
Topiramate: (Moderate) Topiramate has the potential to cause CNS depression as well as other cognitive and/or neuropsychiatric adverse reactions. The CNS depressant effects of topiramate can be potentiated pharmacodynamically by concurrent use of CNS depressant agents such as the benzodiazepines.
Tramadol: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Tramadol; Acetaminophen: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Trandolapril; Verapamil: (Moderate) CYP3A4 inhibitors, such as verapamil, may reduce the metabolism of clorazepate and increase the potential for benzodiazepine toxicity.
Trazodone: (Major) Monitor for excessive sedation and somnolence during coadministration of trazodone and benzodiazepines. Concurrent use may result in additive CNS depression.
Tricyclic antidepressants: (Major) Limit dosage and duration of benzodiazepines during concomitant use with tricyclic antidepressants, and monitor patients closely for respiratory depression and sedation. Additive CNS depression may occur.
Trihexyphenidyl: (Moderate) CNS depressants, such as anxiolytics, sedatives, and hypnotics, can increase the sedative effects of trihexyphenidyl.
Trimethobenzamide: (Moderate) The concurrent use of trimethobenzamide with other medications that cause CNS depression, like the benzodiazepines, may potentiate the effects of either trimethobenzamide or the benzodiazepine.
Triprolidine: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
Tucatinib: (Moderate) Monitor for an increase in sedation and respiratory depression if coadministration of clorazepate with tucatinib is necessary. Concurrent use may increase clorazepate exposure. Clorazepate is a prodrug whose active metabolite (N-desmethyldiazepam) is a CYP3A4 substrate. Tucatinib is a strong CYP3A4 inhibitor.
Valerian, Valeriana officinalis: (Major) Any substances that act on the CNS, including psychoactive drugs and drugs used as anesthetic adjuvants (e.g., barbiturates, benzodiazepines), may theoretically interact with valerian, Valeriana officinalis. The valerian derivative, dihydrovaltrate, binds at barbiturate binding sites; valerenic acid has been shown to inhibit enzyme-induced breakdown of GABA in the brain; the non-volatile monoterpenes (valepotriates) have sedative activity. These interactions are probably pharmacodynamic in nature. There is a possibility of interaction with valerian at normal prescription dosages of anxiolytics, sedatives, and hypnotics (including barbiturates and benzodiazepines). Patients who are taking barbiturates or other sedative/hypnotic drugs should avoid concomitant administration of valerian. Patients taking medications such as tricyclic antidepressants, lithium, MAOIs, skeletal muscle relaxants, SSRIs and serotonin norepinephrine reuptake inhibitors (e.g., duloxetine, venlafaxine) should discuss the use of herbal supplements with their health care professional prior to consuming valerian; combinations should be approached with caution in the absence of clinical data. Patients should not abruptly stop taking their prescribed psychoactive medications.
Verapamil: (Moderate) CYP3A4 inhibitors, such as verapamil, may reduce the metabolism of clorazepate and increase the potential for benzodiazepine toxicity.
Vigabatrin: (Moderate) Vigabatrin may cause somnolence and fatigue. Drugs that can cause CNS depression, if used concomitantly with vigabatrin, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when vigabatrin is given in combination with benzodiazepines.
Vilazodone: (Moderate) Due to the CNS effects of vilazodone, caution should be used when vilazodone is given in combination with other centrally acting medications such as the benzodiazepines.
Vonoprazan; Amoxicillin; Clarithromycin: (Moderate) CYP3A4 inhibitors may reduce the metabolism of clorazepate and increase the potential for benzodiazepine toxicity. Monitor patients closely who receive concurrent therapy.
Voriconazole: (Moderate) Use caution if coadministration of voriconazole with clorazepate is necessary, as the systemic exposure of the active metabolite of clorazepate may be increased resulting in an increase in treatment-related adverse reactions; adjust the dose of clorazepate if necessary. Voriconazole is a strong CYP3A4 inhibitor. Clorazepate is a pro-drug converted to N-desmethyldiazepam in the GI tract; N-desmethyldiazepam is metabolized by 2C19 and 3A4.
Zafirlukast: (Moderate) In vitro data indicate that zafirlukast inhibits the CYP2C9 and CYP3A4 isoenzymes at concentrations close to the clinically achieved total plasma concentrations. Until more clinical data are available, zafirlukast should be used cautiously in patients stabilized on drugs metabolized by CYP3A4, such as clorazepate.
Zaleplon: (Major) Monitor for excessive sedation and somnolence during coadministration of zaleplon and benzodiazepines. Concurrent use may result in additive CNS depression. If used together, a reduction in the dose of one or both drugs may be needed.
Ziprasidone: (Moderate) Ziprasidone has the potential to impair cognitive and motor skills. Additive CNS depressant effects are possible when ziprasidone is used concurrently with any CNS depressant.
Zolpidem: (Major) Concomitant administration of benzodiazepines with zolpidem can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. If used together, a reduction in the dose of one or both drugs may be needed. For Intermezzo brand of sublingual zolpidem tablets, reduce the dose to 1.75 mg/night. Concurrent use of zolpidem with other sedative-hypnotics, including other zolpidem products, at bedtime or the middle of the night is not recommended. In addition, sleep-related behaviors, such as sleep-driving, are more likely to occur during concurrent use of zolpidem and other CNS depressants than with zolpidem alone.
How Supplied
Clorazepate/Clorazepate Dipotassium/Gen-Xene/Tranxene/Tranxene T-Tab Oral Tab: 3.75mg, 7.5mg, 15mg
Maximum Dosage
60 mg/day PO for anxiety; 90 mg/day PO for acute alcohol withdrawal or partial seizures.
Geriatric60 mg/day PO for anxiety; 90 mg/day PO for acute alcohol withdrawal or partial seizures.
Adolescents60 mg/day PO for anxiety; 90 mg/day PO for partial seizures.
Children9 to 12 years: 60 mg/day PO for partial seizures; safety and efficacy for the treatment of anxiety have not been established.
Less than 9 years: Safety and efficacy have not been established; off label use for seizures reported in literature in children as young as 3 years.
Safety and efficacy have not been established.
NeonatesSafety and efficacy have not been established.
Mechanism Of Action
Benzodiazepines act at the level of the limbic, thalamic, and hypothalamic regions of the CNS and can produce any level of CNS depression required including sedation, hypnosis, skeletal muscle relaxation, and anticonvulsant activity. Recent evidence indicates that benzodiazepines exert their effects through enhancement of the gamma-aminobutyric acid (GABA)-benzodiazepine receptor complex. GABA is an inhibitory neurotransmitter that exerts its effects at specific receptor subtypes designated GABA-A and GABA-B. GABA-A is the primary receptor subtype in the CNS and is thought to be involved in the actions of anxiolytics and sedatives.
Specific benzodiazepine receptor subtypes are thought to be coupled to GABA-A receptors. Three types of BNZ receptors are located in the CNS and other tissues; the BNZ1 receptors are located in the cerebellum and cerebral cortex, the BNZ2 receptors in the cerebral cortex and spinal cord, and the BNZ3 receptors in peripheral tissues. Activation of the BNZ1 receptor is thought to mediate sleep while the BNZ2 receptor affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. Benzodiazepines bind nonspecifically to BNZ1 and BNZ2 which ultimately enhances the effects of GABA. Unlike barbiturates which augment GABA responses by increasing the length of time that chloride channels are open, benzodiazepines enhance the effects of GABA by increasing GABA affinity for the GABA receptor. Binding of GABA to the site opens the chloride channel resulting in a hyperpolarized cell membrane that prevents further excitation of the cell.
Benzodiazepines alleviate insomnia by decreasing the latency to sleep and increasing sleep continuity and total sleep time through their effects on GABA.
As anticonvulsants, benzodiazepines appear to act as presynaptic inhibitors, suppressing transmission of seizure impulses. They do not eliminate the abnormal discharge of the epileptogenic focus, but suppress the spread of seizure activity of foci in the cortex, thalamus, and limbic structures.
Pharmacokinetics
Clorazepate is administered orally. Clorazepate is pharmacologically inactive until decarboxylated in the GI tract to desmethyldiazepam (also known as nordiazepam); there is essentially no circulating parent drug. Desmethyldiazepam is widely distributed throughout body tissues. It is 97 to 98% protein-bound and readily crosses the blood-brain barrier. The half-life of this active metabolite generally ranges from 40 to 50 hours. Desmethyldiazepam is further metabolized by hydroxylation to another active form, oxazepam. Glucuronide conjugation of oxazepam is the last step in the metabolic pathway before renal elimination. Within 10 days after oral administration of a 15 mg radiolabeled dose of clorazepate, 62 to 67% of the radioactivity was excreted in the urine and 15 to 19% was eliminated in the feces. Subjects were still excreting measurable amounts of radioactivity in the urine (about 1% of the dose) on day 10. The major urinary metabolite is conjugated oxazepam (3-hydroxynordiazepam), and smaller amounts of conjugated p-hydroxynordiazepam and desmethyldiazepam are also found in the urine.
Affected cytochrome P450 (CYP450) isoenzymes and drug transporters: CYP3A4, CYP2C19
In vitro data suggest that the metabolism of desmethyldiazepam, the active moiety of clorazepate, is primarily mediated by CYP3A4 and to a lesser extent by 2C19.
Clorazepate is very rapidly absorbed. Peak plasma levels are reached in 1 to 2 hours. Clorazepate is pharmacologically inactive until decarboxylated in the GI tract to desmethyldiazepam, which is then absorbed into systemic circulation. The activation rate decreases as stomach pH increases and may lead to a slower onset. Steady-state levels of active forms of clorazepate are attained in 5 to 14 days.
Pregnancy And Lactation
Due to the potential risks for serious adverse reactions, including sedation and withdrawal symptoms, breast-feeding is not recommended during treatment with clorazepate. Clorazepate and its active metabolite, nordiazepam, are excreted into human breast milk. There are reports of sedation, poor feeding and poor weight gain in infants exposed to benzodiazepines through breast milk. Monitor for sedation, poor feeding, and poor weight gain in the breastfed infant. The effects of clorazepate on milk production are unknown.