PDR MEMBER LOGIN:
  • PDR Search

    Required field
  • Advertisement
  • CLASSES

    Concentrated Long-acting Human Insulins and Analogs
    Long-acting Human Insulins and Analogs

    DEA CLASS

    Rx

    DESCRIPTION

    Long-acting basal insulin analog without pronounced peaks; administered subcutaneously once daily
    Used in adult and pediatric patients 6 years and older with type 1 and type 2 diabetes mellitus
    Hypoglycemia is the most common adverse reaction; risk increases with intensive glycemic control

    COMMON BRAND NAMES

    BASAGLAR, Lantus, Lantus SoloStar, REZVOGLAR, Semglee, Toujeo Max SoloStar, Toujeo SoloStar

    HOW SUPPLIED

    BASAGLAR/Insulin Glargine/Lantus/Lantus SoloStar/Semglee/Toujeo Max SoloStar/Toujeo SoloStar Subcutaneous Inj Sol: 1mL, 100U, 300U

    DOSAGE & INDICATIONS

    For the treatment of type 1 diabetes mellitus.
    Subcutaneous dosage (100 or 300 units/mL) for insulin-naive persons
    Adults

    33% to 50% of the total daily insulin dose subcutaneously once daily, initially. Adjust dose based on metabolic needs, blood glucose, and glycemic control goal. Use short-acting, prandial insulin to satisfy the remainder of the daily insulin requirements.  The typical total daily insulin dose is 0.4 to 1 unit/kg/day.

    Children and Adolescents 6 to 17 years

    30% to 50% of the total daily insulin dose subcutaneously once daily, initially. Adjust dose based on metabolic needs, blood glucose, and glycemic control goal. Use short-acting, prandial insulin to satisfy the remainder of the daily insulin requirements.    The typical total daily insulin dose is often less than 0.5 unit/kg/day during the partial remission phase, 0.7 to 1 unit/kg/day for prepubertal children outside the partial remission phase, and 1 to 2 units/kg/day during puberty.

    Children 2 to 5 years†

    Limited data available. 40% of the total daily insulin dose subcutaneously once daily, initially. Adjust dose based on metabolic needs, blood glucose, and glycemic control goal. Use short-acting, prandial insulin to satisfy the remainder of the daily insulin requirements. A study in patients approximately 2 to 6 years of age (n = 35) that evaluated the effect of a flexible multiple daily insulin regimen containing insulin glargine and pre-meal insulin lispro demonstrated improved glycemic control in normal weight patients when compared to a regimen of pre-meal insulin lispro and ultralente insulin twice daily (HbA1c 9 +/- 1% vs. 8.3 +/- 1%, p less than 0.05). HbA1c measurements were not significantly improved among overweight patients, and BMI was not affected by the regimen change.

    Subcutaneous dosage (100 or 300 units/mL) for conversion from other once daily long- or intermediate-acting insulin
    Adults

    100% of total daily long- or intermediate-acting insulin dose given as insulin glargine subcutaneously once daily, initially. Adjust dose based on metabolic needs, blood glucose, and glycemic control goal. 

    Children and Adolescents 6 to 17 years

    100% of total daily long- or intermediate-acting insulin dose given as insulin glargine subcutaneously once daily, initially. Adjust dose based on metabolic needs, blood glucose, and glycemic control goal. 

    Subcutaneous dosage (100 units/mL) for conversion from insulin glargine 300 units/mL or twice daily insulin NPH
    Adults

    80% of total daily insulin glargine 300 units/mL or NPH dose given as insulin glargine 100 units/mL subcutaneously once daily, initially. Adjust dose based on metabolic needs, blood glucose, and glycemic control goal.

    Children and Adolescents 6 to 17 years

    80% of total daily insulin glargine 300 units/mL or NPH dose given as insulin glargine 100 units/mL subcutaneously once daily, initially. Adjust dose based on metabolic needs, blood glucose, and glycemic control goal.

    Subcutaneous dosage (300 units/mL) for conversion from insulin glargine 100 units/mL
    Adults

    100% of total daily insulin glargine 300 units/mL given as insulin glargine 100 units/mL subcutaneously once daily, initially. Adjust dose based on metabolic needs, blood glucose, and glycemic control goal. Expect that a higher dose of insulin glargine 300 units/mL will be needed to maintain the same level of glycemic control.

    Children and Adolescents 6 to 17 years

    100% of total daily insulin glargine 300 units/mL given as insulin glargine 100 units/mL subcutaneously once daily, initially. Adjust dose based on metabolic needs, blood glucose, and glycemic control goal. Expect that a higher dose of insulin glargine 300 units/mL will be needed to maintain the same level of glycemic control.

    Subcutaneous dosage (300 units/mL) for conversion from twice daily insulin detemir or insulin NPH
    Adults

    80% of total daily insulin detemir or NPH dose given as insulin glargine 300 units/mL subcutaneously once daily, initially. Adjust dose based on metabolic needs, blood glucose, and glycemic control goal.

    Children and Adolescents 6 to 17 years

    80% of total daily insulin detemir or NPH dose given as insulin glargine 300 units/mL subcutaneously once daily, initially. Adjust dose based on metabolic needs, blood glucose, and glycemic control goal.

    For the treatment of type 2 diabetes mellitus.
    Subcutaneous dosage (100 units/mL) for insulin-naive persons
    Adults

    10 units subcutaneously once daily, or alternately, 0.1 to 0.2 units/kg/dose subcutaneously once daily, initially. Increase dose by 2 units every 3 days to achieve target fasting plasma glucose without hypoglycemia; reduce dose by 10% to 20% if hypoglycemia of undetermined cause occurs.

    Children† and Adolescents†

    0.25 to 0.5 units/kg/day subcutaneously once daily, initially, for children with ketosis/ketonuria/ketoacidosis. Increase dose every 2 to 3 days based on blood glucose; reduce dose by 10% to 30% every few days over 2 to 6 weeks to transition to metformin monotherapy once acidosis is resolved. If target HbA1c is not achieved within 4 months of metformin monotherapy, consider readding basal insulin; add prandial insulin if target HbA1c is not achieved on combination metformin and basal insulin (up to 1.5 units/kg).

    Children† and Adolescents† who are overweight

    0.5 units/kg/day subcutaneously once daily, initially, in combination with metformin for children with HbA1c of 8.5% or more without ketosis/acidosis. Increase dose every 2 to 3 days based on blood glucose; reduce dose by 10% to 30% every few days over 2 to 6 weeks to transition to metformin monotherapy. If target HbA1c is not achieved within 4 months of metformin monotherapy, consider readding basal insulin; add prandial insulin if target HbA1c is not achieved on combination metformin and basal insulin (up to 1.5 units/kg).

    Subcutaneous dosage (100 units/mL) for conversion from once daily insulin NPH
    Adults

    100% of total daily insulin NPH dose given as insulin glargine 100 units/mL subcutaneously once daily, initially. Increase dose by 2 units every 3 days to achieve target fasting plasma glucose without hypoglycemia; reduce dose by 10% to 20% if hypoglycemia of undetermined cause occurs.

    Subcutaneous dosage (100 units/mL) for conversion from insulin glargine 300 units/mL or twice daily insulin NPH
    Adults

    80% of total daily insulin glargine 300 units/mL or NPH dose given as insulin glargine 100 units/mL subcutaneously once daily, initially. Increase dose by 2 units every 3 days to achieve target fasting plasma glucose without hypoglycemia; reduce dose by 10% to 20% if hypoglycemia of undetermined cause occurs.

    Subcutaneous dosage (300 units/mL) for insulin-naive persons
    Adults

    10 units subcutaneously once daily, or alternately, 0.1 to 0.2 units/kg/dose subcutaneously once daily, initially. Increase dose by 2 units every 3 days to achieve target fasting plasma glucose without hypoglycemia; reduce dose by 10% to 20% if hypoglycemia of undetermined cause occurs.

    Children and Adolescents 6 to 17 years

    0.2 units/kg/dose subcutaneously once daily, initially. Adjust dose every 3 to 4 days based on metabolic needs, blood glucose, and glycemic control goal as needed.

    Subcutaneous dosage (300 units/mL) for conversion from once daily long- or intermediate-acting insulin
    Adults

    100% of total daily long- or intermediate-acting insulin dose given as insulin glargine 300 units/mL subcutaneously once daily, initially. Increase dose by 2 units every 3 days to achieve target fasting plasma glucose without hypoglycemia; reduce dose by 10% to 20% if hypoglycemia of undetermined cause occurs.

    Children and Adolescents 6 to 17 years

    100% of total daily long- or intermediate-acting insulin dose given as insulin glargine 300 units/mL subcutaneously once daily, initially. Adjust dose every 3 to 4 days based on metabolic needs, blood glucose, and glycemic control goal as needed.

    Subcutaneous dosage (300 units/mL) for conversion from twice daily insulin detemir or insulin NPH
    Adults

    80% of total daily insulin detemir or NPH dose given as insulin glargine 300 units/mL subcutaneously once daily, initially. Increase dose by 2 units every 3 days to achieve target fasting plasma glucose without hypoglycemia; reduce dose by 10% to 20% if hypoglycemia of undetermined cause occurs. 

    Children and Adolescents 6 to 17 years

    80% of total daily insulin detemir or NPH dose given as insulin glargine 300 units/mL subcutaneously once daily, initially. Adjust dose every 3 to 4 days based on metabolic needs, blood glucose, and glycemic control goal as needed.

    For the treatment of gestational diabetes or for the treatment of patients with pre-existing diabetes mellitus (type 1 or type 2) who are now pregnant.
    For pregnant patients with gestational-onset diabetes not controlled by diet-therapy alone.
    Subcutaneous dosage
    Adults and Adolescents (pregnant females)

    Dosage guidelines are variable and must be individualized. For women with persistent fasting and postprandial hyperglycemia after most meals, initial suggested total daily insulin requirements are roughly 0.7 to 1 units/kg/day. This dosage should be divided with a regimen of multiple injections using long-acting or intermediate-acting insulin in combination with short-acting insulin. If only isolated abnormal values are present at a specific time of day, the insulin regimen should be focused to correct the specific hyperglycemia. Dose adjustments are based on fasting and postprandial blood glucose levels. During labor, insulin requirements decrease and usually return to normoglycemia several days postpartum. Insulin is often discontinued during or after labor; monitor blood glucose during labor and the days postpartum; follow-up at 6 weeks postpartum.

    For pregnant patients with preexisting diabetes prior to pregnancy.
    Subcutaneous dosage
    Adults and Adolescents (pregnant females)

    On average, insulin needs increase from a range of 0.7 to 0.8 units/kg of actual body weight/day in the first trimester to 0.8 to 1 units/kg/day in the second trimester, to 0.9 to 1.2 units/kg/day in the third trimester; individualize dosage. The daily dose is usually divided and administered in varying ratios of long-acting or intermediate-acting insulin: short-acting insulin, to fit individual patient needs. Dose adjustments are based on fasting and postprandial blood glucose as per goals defined in ADA and ACOG guidelines. To prevent fetal and maternal complications, meticulous blood glucose control and monitoring is required. During labor and postpartum, hyperglycemia must be closely managed due to the changes in insulin requirements and variable calorie intake.

    For the treatment of transient neonatal diabetes mellitus†.
    Subcutaneous dosage
    Neonates


    A starting dose of 0.25 to 0.27 units/kg/day has been used. A dose of 0.25 units/kg/day subcutaneously once daily was administered in a 44 day old premature neonate. The 680-g male was born at 23-week gestational age and experienced hyperglycemia while on dexamethasone. After 3 days the neonate experienced hypoglycemia so the dose was decreased by one-half to 0.12 units/kg/day. The hypoglycemia was most likely a result of the dexamethasone wean.[65213] A dose of 0.27 units/kg/day subcutaneously divided every 12 hours and administered into the abdomen or buttocks was used to control transient neonatal diabetes in a 28-week gestational age, 680 g twin. The neonate received the drug for 6 days with excellent response, with most blood glucose measurements in the euglycemic range. As a small volume of the commercially available insulin glargine 100 units/mL was necessary for the low birth weight neonate, a 1:100 dilution in 0.9% Sodium Chloride Injection was prepared to enable accurate dosing; dilution is not recommended in the FDA-approved product labeling.[44086] [54817]

    †Indicates off-label use

    MAXIMUM DOSAGE

    Specific maximum dosage information is not available. Individualize dosage based on careful monitoring of blood glucose and other clinical parameters in all patient populations.

    DOSING CONSIDERATIONS

    Hepatic Impairment

    Dosage should be modified depending on clinical response and degree of hepatic impairment, but no quantitative recommendations are available. Some studies have noted increased circulating levels of insulin in patients with hepatic failure. Individualize dosage based on blood glucose and other clinical parameters.

    Renal Impairment

    The pharmacokinetics of insulin are generally unchanged with renal impairment; however, pharmacodynamic differences occur in insulin sensitivity as renal function declines, resulting in increased responses to a given dosage. Individualize dosage based on blood glucose and other clinical parameters.

    ADMINISTRATION

    Injectable Administration

    Insulin glargine is administered by subcutaneous injection only. Do NOT administer intravenously, intramuscularly, or via an insulin pump.
    Visually inspect parenteral products for particulate matter and discoloration prior to administration whenever solution and container permit. Do not use injections that are unusually viscous, cloudy, discolored, or contain particulate matter or clumps. Insulin glargine is clear and colorless.
    Patients using insulin vials should never share needles or syringes with another person.
     
    Insulin Pens:
    Insulin glargine is available in two concentrations as a prefilled pen: 100 units/mL and 300 units/mL. It is essential that clinicians and patients ensure that the correct concentration of insulin glargine is used. Inadvertent use of the 300 units/mL concentration could result in severe overdose and hypoglycemia.
    Insulin pens should never be shared among patients. Even if the disposable needle is changed, sharing may result in transmission of hepatitis viruses, HIV, or other blood-borne pathogens. Do not share pens among multiple patients in an inpatient setting; use multidose vials instead, if available, or, reserve the use of any pen for 1 patient only.
    Ensure that the patient knows how to use the type of pen needles being dispensed.
    For standard pen needles with both an outer cover and an inner needle cover, remove both covers before use.
    For the safety pen needle, remove only the outer cover; the fixed inner needle shield remains in place.

    Subcutaneous Administration

    Intermittent Subcutaneous Injection
    Administer at the same time every day.
    Double-check the insulin concentration and dosage in the syringe or injection device prior to administration. If using a pen or other injector device, prime the device prior to each injection to ensure accurate dosing.
     
    Administration
    Subcutaneous injections of insulin glargine are usually made into the anterior and lateral aspects of the thigh, the upper arms, or the abdomen.[44086] [60453] [58899]
    Rotate injection sites within the same region with each injection to prevent lipodystrophy and localized cutaneous amyloidosis. Do not inject into areas of lipodystrophy or localized cutaneous amyloidosis. During changes to a patient's insulin regimen, increase the frequency of blood glucose monitoring.[44086] [60453] [58899]
     
    Insulin Glargine Pens:
    Lantus SoloStar Pen:
    The needle should remain in the skin for at least 10 seconds to ensure complete delivery of the insulin dose (the patient should slowly count to 10).
    Dial doses in 1 unit increments and delivers a maximum dose of 80 units per injection.
    Storage of opened pens: Once in use, store pens at room temperature (up to 86 degrees F [30 degrees C]) for up to 28 days; do NOT refrigerate. Once removed from refrigeration, pens should be discarded after 28 days, even if they have not been opened and even if they still contain insulin.[44086]
    Semglee Pen:
    The needle should remain in the skin for at least 10 seconds to ensure complete delivery of the insulin dose (the patient should slowly count to 10).
    Dial doses in 1 unit increments and delivers a maximum dose of 80 units per injection.
    Storage of opened pens: Once in use, store pens at room temperature (up to 86 degrees F [30 degrees C]) for up to 28 days; do NOT refrigerate. Once removed from refrigeration, pens should be discarded after 28 days, even if they have not been opened and even if they still contain insulin.
    Basaglar KwikPen or Basaglar Tempo Pen:
    The needle should remain in the skin for at least 5 seconds to ensure complete delivery of the insulin dose (the patient should slowly count to 5).
    Dial doses in 1 unit increments and delivers a maximum dose of 80 units per injection
    Storage of opened pens: Once in use, store pens at room temperature (up to 86 degrees F [30 degrees C]) for up to 28 days; do NOT refrigerate. Once removed from refrigeration, pens should be discarded after 28 days, even if they have not been opened and even if they still contain insulin.[60453]
    Toujeo Solostar and Toujeo Max Solostar Pen:
    The needle should remain in the skin for at least 5 seconds to ensure complete delivery of the insulin dose (the patient should slowly count to 5).
    The Toujeo Solostar delivers doses in 1 unit increments and can deliver up to 80 units in a single injection.
    The Toujeo Max SoloStar delivers doses in 2 unit increments and can deliver up to 160 units in a single injection; it is recommended for use in patients requiring at least 20 units of insulin per day.
    When changing between Toujeo SoloStar and Toujeo Max SoloStar, if the patient's previous dose was an odd number, increase or decrease the patient's dose by 1 unit to match the dose increments dialable on each prefilled pen.
    Storage of opened pens: Once in use, store pens at room temperature (below 86 degrees F [30 degrees C]) for up to 56 days; do NOT refrigerate. Once removed from refrigeration, pens should be discarded after 56 days, even if they have not been opened and even if they still contain insulin.[58899]
     
    Insulin Glargine Vials:
    Insulin glargine should not be diluted or mixed with any other insulin or solution.[44086] [58899] [60453] However, 2 small studies have demonstrated that mixing insulin glargine with either insulin lispro or insulin aspart does not affect glycemic control or rates of hypoglycemia in children with type 1 diabetes mellitus; one study was 10 days in duration, and the other was 6 months in duration. The insulins were mixed immediately before injection, and, in 1 study, the rapid-acting insulin analog was drawn into the syringe first. Cloudiness upon mixing was noted in both studies, but neither pain upon injection nor clogging of the needle was reported.[32377] [32378]
    Storage of opened vials: Once opened, may refrigerate or store at room temperature [below 30 degrees C (86 degrees F)]. Do not freeze. Protect from heat and light. Once opened, vials must be discarded after 28 days, even if they still contain insulin.[44086]

    STORAGE

    BASAGLAR:
    - Discard 28 days after first use
    - Discard if product has been frozen
    - Discard product if it contains particulate matter, is cloudy, or discolored
    - Do not freeze
    - Do not refrigerate once opened
    - Opened container can be stored for up to 28 days at temperatures below 86 degrees F
    - Protect from heat
    - Protect from light
    - Store in original container
    - Store unopened containers in refrigerator (36 to 46 degrees F)
    Lantus:
    - Discard 28 days after first use
    - Discard if product has been frozen
    - Discard product if it contains particulate matter, is cloudy, or discolored
    - Do not freeze
    - Do not refrigerate once opened
    - Opened container can be stored for up to 28 days at temperatures below 86 degrees F
    - Protect from heat
    - Protect from light
    - Store in original container
    - Store unopened containers in refrigerator (36 to 46 degrees F)
    Lantus SoloStar:
    - Discard 28 days after first use
    - Discard if product has been frozen
    - Discard product if it contains particulate matter, is cloudy, or discolored
    - Do not freeze
    - Do not refrigerate once opened
    - Opened container can be stored for up to 28 days at temperatures below 86 degrees F
    - Protect from heat
    - Protect from light
    - Store in original container
    - Store unopened containers in refrigerator (36 to 46 degrees F)
    REZVOGLAR:
    - Discard 28 days after first use
    - Discard if product has been frozen
    - Discard product if it contains particulate matter, is cloudy, or discolored
    - Do not freeze
    - Do not refrigerate once opened
    - Opened container can be stored for up to 28 days at temperatures below 86 degrees F
    - Protect from heat
    - Protect from light
    - Store in original container
    - Store unopened containers in refrigerator (36 to 46 degrees F)
    Semglee:
    - Discard 28 days after first use
    - Discard if product has been frozen
    - Discard product if it contains particulate matter, is cloudy, or discolored
    - Do not freeze
    - Do not refrigerate once opened
    - Opened container can be stored for up to 28 days at temperatures below 86 degrees F
    - Protect from heat
    - Protect from light
    - Store in original container
    - Store unopened containers in refrigerator (36 to 46 degrees F)
    Toujeo Max SoloStar:
    - Discard if product has been frozen
    - Discard product if it contains particulate matter, is cloudy, or discolored
    - Do not freeze
    - Do not refrigerate once opened
    - Protect from extreme heat
    - Protect from light
    - Store opened (in use) product at room temperature (below 86 degrees F) for up to 56 days (8 weeks)
    - Store unopened containers in refrigerator (36 to 46 degrees F)
    Toujeo SoloStar:
    - Discard if product has been frozen
    - Discard product if it contains particulate matter, is cloudy, or discolored
    - Do not freeze
    - Do not refrigerate once opened
    - Protect from extreme heat
    - Protect from light
    - Store opened (in use) product at room temperature (below 86 degrees F) for up to 56 days (8 weeks)
    - Store unopened containers in refrigerator (36 to 46 degrees F)

    CONTRAINDICATIONS / PRECAUTIONS

    Diarrhea, fever, infection, surgery, thyroid disease, trauma, vomiting

    Changes in insulin products should be made by experienced medical personnel. Changes in insulin species source (i.e., animal versus human, etc.), purity, or brand can necessitate dosage adjustments. The physiologic response resulting from the mixing of different insulins for subcutaneous administration together may differ from the response occurring when the insulins are administered separately. Treatment must be individualized. Diabetic patients must follow a regular, prescribed diet and exercise schedule to avoid either hypo- or hyperglycemia. The timing of meals and exercise with insulin doses is extremely important, and should remain consistent, unless prescribed otherwise. Fever, thyroid disease, infection, recent trauma or surgery, diarrhea secondary to malabsorption, vomiting, and certain medications can also affect insulin requirements, requiring dosage adjustments. Diabetic patients should be given a 'sick-day' plan to take appropriate action with blood glucose monitoring and insulin glargine therapy when acute illness is present.

    Hepatic disease, renal failure, renal impairment

    Hepatic disease, renal impairment, or renal failure may affect insulin glargine dosage requirements. Some pharmacokinetic studies have shown increased circulating levels of insulin in patients with hepatic or renal failure. Insulin dosage adjustments may be needed in some patients.

    Coma, continuous subcutaneous insulin infusion (CSII) administration, diabetic ketoacidosis, hyperosmolar hyperglycemic state (HHS), intravenous administration

    Insulin glargine is not appropriate for intravenous administration (IV); the prolonged activity of insulin glargine is dependent on injection into subcutaneous tissue. IV administration of the usual subcutaneous dosage could result in severely low blood glucose concentrations. Long-acting insulin preparations should not be used for diabetic ketoacidosis (DKA), hyperosmolar hyperglycemic state (HHS), diabetic coma, or other emergencies requiring rapid onset of insulin action. Several types, routes, and frequencies of administration of insulin have been studied in patients with DKA and HHS; however, the American Diabetes Association recommends that regular insulin (versus the rapid-acting analogs) by continuous intravenous infusion be used to treat these conditions unless they are considered mild. Regular insulin is also preferred for those patients with poor tissue perfusion, shock, or cardiovascular collapse, or in patients requiring insulin for the treatment of hyperkalemia. Insulin glargine should not be used for continuous subcutaneous insulin infusion (CSII) administration; only quick-acting insulins (e.g., regular insulin, insulin lispro, insulin glulisine, and insulin aspart) should be used by this route of administration.

    Hypoglycemia

    Insulin glargine should not be administered to patients during episodes of hypoglycemia. Hypoglycemia is the most common adverse effect of insulin therapy; hypoglycemia is the major barrier to achieving optimal glycemic control long term. Severe or frequent hypoglycemia in a patient is an indication for the modification of treatment regimens, including setting higher glycemic goals. Hypoglycemia may occur with overdose of insulin, a delayed or decreased food intake, or following intense exercise. Patients at risk for severe, iatrogenic hypoglycemia include those with insulin deficiency (i.e., Type 1 diabetes mellitus and advanced Type 2 diabetes mellitus), those with a history of severe hypoglycemia or hypoglycemia unawareness, the elderly, and those undergoing intensive insulin therapy. The long-acting effect of insulin glargine may delay recovery from hypoglycemia compared to shorter-acting insulins. Changes in insulin, manufacturer, type, or method or site of administration may affect glycemic control. It is essential that clinicians and patients ensure the correct insulin is dispensed and administered; this includes the correct insulin brand and concentration. Repeated insulin injections into areas of lipodystrophy or localized cutaneous amyloidosis have been reported to result in hyperglycemia; and a sudden change in the injection site (to an unaffected area) has been reported to result in hypoglycemia. Make any changes to a patient's insulin regimen under close medical supervision with increased frequency of blood glucose monitoring. Advise patients who have repeatedly injected into areas of lipodystrophy or localized cutaneous amyloidosis to change the injection site to unaffected areas and closely monitor for hypoglycemia. Patient and family education regarding hypoglycemia management is crucial; the patient and patient's family should be instructed on how to recognize and manage the symptoms of hypoglycemia. Early warning signs of hypoglycemia may be less obvious in patients with hypoglycemia unawareness which can be due to a long history of diabetes (where deficiencies in the release or response to counter-regulatory hormones exist), with autonomic neuropathy, or taking medications such as beta-blockers. Patients should be aware of the need to have a readily available source of glucose (dextrose, d-glucose) or other carbohydrate to treat hypoglycemic episodes. In patients who are currently taking an alpha-glucosidase inhibitor (i.e., acarbose or miglitol) along with their insulin, oral glucose (dextrose) should be used to treat hypoglycemia; sucrose (table sugar) is unsuitable. In severe hypoglycemia, intravenous dextrose or glucagon injections may be needed. Insulin injections should not be used by the family to treat those patients who are unconscious.

    Hypokalemia

    In addition to hypoglycemia, hypokalemia may also occur as insulin facilitates the intracellular uptake of potassium. Patients taking insulin glargine who are at risk for hypokalemia (e.g., patients who are using potassium-lowering drugs or taking potassium concentration sensitive drugs) should be monitored closely for these effects.

    Cresol hypersensitivity

    Insulin glargine is contraindicated for use in patients hypersensitive to the insulin or the excipients in the formulations. Minor, local sensitivity characterized by redness, swelling, or itching at the site of injection does not usually contraindicate therapy. Insulin glargine contains m-cresol and should be avoided in patients with m-cresol hypersensitivity; localized reactions and general myalgias have been reported with the use of cresol as an injectable excipient. Less common, but potentially more serious, is generalized allergy to insulin, which may cause rash, pruritus, shortness of breath, wheezing, hypotension, tachycardia, and diaphoresis. Severe cases, including anaphylactoid reactions, may be life threatening.

    Neonates, pregnancy

    Published studies with use of insulin glargine during pregnancy have not reported a clear association with insulin glargine and adverse developmental outcomes; however, these studies cannot definitely establish the absence of any risk because of methodological limitations including small sample size and some lacking comparator groups. Hypoglycemia and hyperglycemia occur more frequently during pregnancy in patients with pregestational diabetes. Optimizing glycemic control before conception and during pregnancy appears to improve fetal outcome; this should include the avoidance of episodes of hypoglycemia as the toxic effects of maternal hypoglycemia on the fetus have been well-documented. In general, insulin requirements decline during the first trimester, increase during the second and third trimesters, and then decline significantly after delivery. Post-partum, maternal insulin requirements may need adjustment. Use caution when administering long-acting insulin products near term and during labor and obstetric delivery as insulin requirements may change rapidly and dietary carbohydrate intake may be unpredictable. Careful monitoring of the patient on insulin is required throughout pregnancy. During the perinatal period, careful monitoring of neonates born to mothers with diabetes is recommended. Rat and rabbit studies of insulin glargine (at 7- to 50-times and 2- to 10-times, respectively, the initial recommended dose in humans) indicate that there are no significant differences in fetal outcome when compared to regular insulin. Fetal abnormalities in animal studies of insulin have not been reported when insulin is used at doses similar to those that would be used in humans; however, high doses of insulin inducing maternal hypoglycemia have been associated with fetal toxicity such as pre- and post-implantation losses and visceral/skeletal abnormalities. Most experts, including the American College of Obstetrics and Gynecologists (ACOG) and the American Diabetes Association (ADA), recommend human insulin as the therapy of choice to maintain blood glucose as close to normal as possible during pregnancy in patients with Type 1 or 2 diabetes mellitus, and, if diet therapy alone is not successful, for those patients with gestational diabetes; insulin does not cross the placenta.

    Breast-feeding

    There are either no or only limited data on the presence of insulin glargine in human milk, the effects on the breast-fed infant, or the effects on milk production. Endogenous insulin is present in human milk. The developmental and health benefits of breast-feeding should be considered along with the mother's clinical need for insulin glargine, and any potential adverse effects on the breast-fed child from insulin glargine or from the underlying maternal condition. Women with diabetes who are lactating may require adjustments of their insulin doses. Breast-feeding may decrease insulin requirements, despite the need for increased caloric intake. Careful observation of increased maternal caloric needs and maternal blood glucose levels are needed. Insulin is degraded in the gastrointestinal tract; therefore, any insulin secreted into breast milk would not be absorbed by a breast-feeding infant. The American Diabetes Association encourages breast-feeding in women with pre-existing diabetes mellitus or gestational diabetes; accordingly, women on insulin therapy should be encouraged to breast-feed if no other contraindications exist.

    Tobacco smoking

    Monitor blood glucose concentrations for needed insulin glargine dosage adjustments in insulin-dependent diabetic patients whenever a change in either nicotine intake or tobacco smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine levels) and may increase plasma glucose. Tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose or an increase the subcutaneous absorption of insulin, respectively.

    Geriatric, visual impairment

    In controlled clinical studies comparing insulin glargine to NPH insulin, 15% of patients with type 1 and type 2 diabetes mellitus were 65 years of age or older; the only difference in safety and efficacy in the subpopulation was an expected higher incidence of cardiovascular events in both the insulin glargine and NPH insulin groups. Geriatric patients are especially at risk for hypoglycemic episodes when using insulin. Because hypoglycemic events may be difficult to recognize in some elderly patients, the initial dosing and dosing increments of any insulin product should be conservative. Severe or frequent hypoglycemia is an indication for the modification of treatment regimens, including setting higher glycemic goals. Use caution when prescribing insulin glargine to geriatric patients or other patients with compromised vision. Patients who suffer from visual impairment may rely on audible clicks to dial their dose; preparing the injection by using audible clicks may result in dosing errors. Risk factors for hypoglycemia include intensive insulin therapy, use of an excessive insulin dose, improper timing of insulin administration with regard to meals, injection of the wrong type of insulin, renal failure, severe liver disease, alcohol ingestion, defective counter-regulatory hormone release, missing meals/fasting, and gastroparesis. The federal Omnibus Budget Reconciliation Act (OBRA) regulates medication use in residents of long-term care facilities (LTCFs). According to OBRA, the use of antidiabetic medications should include monitoring (e.g., periodic blood glucose) for effectiveness based on desired goals for that individual and to identify complications of treatment such as hypoglycemia or impaired renal function.

    ADVERSE REACTIONS

    Severe

    insulin shock / Delayed / 0-1.0
    anaphylactoid reactions / Rapid / 0-1.0
    anaphylactic shock / Rapid / Incidence not known
    angioedema / Rapid / Incidence not known
    bronchospasm / Rapid / Incidence not known
    retinopathy / Delayed / Incidence not known

    Moderate

    peripheral edema / Delayed / 20.0-20.0
    hypertension / Early / 19.6-19.6
    cataracts / Delayed / 18.1-18.1
    depression / Delayed / 10.5-10.5
    hypoglycemia / Early / 10.0
    hyperinsulinemia / Early / Incidence not known
    Somogyi effect / Delayed / Incidence not known
    hypokalemia / Delayed / Incidence not known
    lipodystrophy / Delayed / Incidence not known
    cutaneous amyloidosis / Delayed / Incidence not known
    wheezing / Rapid / Incidence not known
    erythema / Early / Incidence not known
    hypotension / Rapid / Incidence not known
    antibody formation / Delayed / Incidence not known
    peripheral neuropathy / Delayed / Incidence not known

    Mild

    infection / Delayed / 5.0-29.0
    influenza / Delayed / 18.7-18.7
    sinusitis / Delayed / 18.5-18.5
    arthralgia / Delayed / 14.2-14.2
    pharyngitis / Delayed / 7.1-12.8
    back pain / Delayed / 12.8-12.8
    cough / Delayed / 12.1-12.1
    diarrhea / Early / 10.7-10.7
    headache / Early / 5.5-10.3
    rhinitis / Early / 5.0-5.2
    injection site reaction / Rapid / 2.7-2.7
    rash / Early / 0-1.0
    weight gain / Delayed / Incidence not known
    urticaria / Rapid / Incidence not known
    insulin resistance / Delayed / Incidence not known

    DRUG INTERACTIONS

    Acebutolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Acetaminophen; Aspirin, ASA; Caffeine: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Acetaminophen; Aspirin: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Acetaminophen; Aspirin; Diphenhydramine: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Acetaminophen; Chlorpheniramine; Phenylephrine : (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Acetaminophen; Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Acetaminophen; Dextromethorphan; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Acetaminophen; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Acetaminophen; Dichloralphenazone; Isometheptene: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Acetaminophen; Guaifenesin; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Acetaminophen; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Acetazolamide: (Minor) Carbonic anhydrase inhibitors may alter blood sugar. Both hyperglycemia and hypoglycemia have been described in patients treated with acetazolamide. This should be taken into consideration in patients with impaired glucose tolerance or diabetes mellitus who are receiving antidiabetic agents. Monitor blood glucose and for changes in glycemic control and be alert for evidence of an interaction.
    Acrivastine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Aliskiren; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Aliskiren; Valsartan: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Alogliptin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Alogliptin; Pioglitazone: (Moderate) Monitor blood glucose and for signs and symptoms of heart failure during concomitant pioglitazone and insulin use. Reduce the insulin dose by 10% to 25% if hypoglycemia occurs; adjust the insulin dose further based on glycemic response. Consider discontinuation of pioglitazone if heart failure occurs and manage according to current standards. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia and fluid retention which may lead to or exacerbate heart failure.
    Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Aminosalicylate sodium, Aminosalicylic acid: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Amlodipine; Benazepril: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Amlodipine; Olmesartan: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Amlodipine; Valsartan: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Amoxicillin; Clarithromycin; Omeprazole: (Moderate) The concomitant use of clarithromycin and insulin or other antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
    Amphetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Amphetamine; Dextroamphetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Androgens: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Angiotensin II receptor antagonists: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Angiotensin-converting enzyme inhibitors: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Aripiprazole: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
    Articaine; Epinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Asenapine: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
    Aspirin, ASA: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Aspirin, ASA; Butalbital; Caffeine: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Aspirin, ASA; Butalbital; Caffeine; Codeine: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Aspirin, ASA; Caffeine: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Aspirin, ASA; Caffeine; Orphenadrine: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Aspirin, ASA; Carisoprodol: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Aspirin, ASA; Carisoprodol; Codeine: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Aspirin, ASA; Citric Acid; Sodium Bicarbonate: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Aspirin, ASA; Dipyridamole: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Aspirin, ASA; Omeprazole: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Aspirin, ASA; Oxycodone: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Aspirin, ASA; Pravastatin: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Atazanavir: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
    Atazanavir; Cobicistat: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
    Atenolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Atenolol; Chlorthalidone: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Atropine; Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    atypical antipsychotic: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
    Azelastine; Fluticasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Azilsartan: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Azilsartan; Chlorthalidone: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Beclomethasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Benazepril: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Bendroflumethiazide; Nadolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Benzphetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Beta-blockers: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Betamethasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Betaxolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Bexarotene: (Moderate) Systemic bexarotene may enhance the action of insulin, resulting in hypoglycemia. Patients should be closely monitored while receiving bexarotene capsules in combination with insulin therapy; monitor for hypoglycemia and need for diabetic therapy adjustments. Hypoglycemia has not been associated with bexarotene monotherapy.
    Bismuth Subsalicylate: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Bisoprolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Bortezomib: (Moderate) During clinical trials of bortezomib, hypoglycemia and hyperglycemia were reported in diabetic patients receiving antidiabetic agents. Patients taking antidiabetic agents and receiving bortezomib treatment may require close monitoring of their blood glucose levels and dosage adjustment of their medication.
    Brexpiprazole: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
    Brimonidine; Timolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Brompheniramine; Carbetapentane; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Brompheniramine; Dextromethorphan; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Brompheniramine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Brompheniramine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Brompheniramine; Pseudoephedrine; Dextromethorphan: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Budesonide: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Budesonide; Formoterol: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Budesonide; Glycopyrrolate; Formoterol: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Bumetanide: (Minor) Monitor patients receiving insulin closely for worsening glycemic control when bumetanide, furosemide, and torsemide are instituted. Bumetanide, furosemide, and torsemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents.
    Bupivacaine; Epinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Canagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Candesartan: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Captopril: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Captopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Carbetapentane; Chlorpheniramine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Carbetapentane; Diphenhydramine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Carbetapentane; Guaifenesin; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Carbetapentane; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Carbetapentane; Phenylephrine; Pyrilamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Carbetapentane; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Carbinoxamine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Carbinoxamine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Carbinoxamine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Carbonic anhydrase inhibitors: (Minor) Carbonic anhydrase inhibitors may alter blood sugar. Both hyperglycemia and hypoglycemia have been described in patients treated with acetazolamide. This should be taken into consideration in patients with impaired glucose tolerance or diabetes mellitus who are receiving antidiabetic agents. Monitor blood glucose and for changes in glycemic control and be alert for evidence of an interaction.
    Cariprazine: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
    Carteolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Carvedilol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Cetirizine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Chlophedianol; Guaifenesin; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Chloroquine: (Major) Careful monitoring of blood glucose is recommended when chloroquine and antidiabetic agents, including insulin, are coadministered. A decreased dose of the antidiabetic agent may be necessary as severe hypoglycemia has been reported in patients treated concomitantly with chloroquine and an antidiabetic agent.
    Chlorothiazide: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Chlorpheniramine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Chlorpheniramine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Chlorpromazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Chlorthalidone: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Chlorthalidone; Clonidine: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. (Minor) Increased frequency of blood glucose monitoring may be required when clonidine is given with antidiabetic agents. Since clonidine inhibits the release of catecholamines, clonidine may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Clonidine does not appear to impair recovery from hypoglycemia, and has not been found to impair glucose tolerance in diabetic patients.
    Choline Salicylate; Magnesium Salicylate: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Chromium: (Moderate) Chromium dietary supplements may lower blood glucose. As part of the glucose tolerance factor molecule, chromium appears to facilitate the binding of insulin to insulin receptors in tissues and to aid in glucose metabolism. Because blood glucose may be lowered by the use of chromium, patients who are on antidiabetic agents may need dose adjustments. Close monitoring of blood glucose is recommended.
    Ciclesonide: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Cisapride: (Moderate) Because cisapride can enhance gastric emptying in patients with diabetes, blood glucose can be affected, which, in turn, may affect the clinical response to insulin and other antidiabetic agents. Monitor blood sugar regularly. The dosing of antidiabetic agents may require adjustment in patients who receive cisapride concomitantly.
    Clarithromycin: (Moderate) The concomitant use of clarithromycin and insulin or other antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
    Clonidine: (Minor) Increased frequency of blood glucose monitoring may be required when clonidine is given with antidiabetic agents. Since clonidine inhibits the release of catecholamines, clonidine may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Clonidine does not appear to impair recovery from hypoglycemia, and has not been found to impair glucose tolerance in diabetic patients.
    Clozapine: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
    Codeine; Guaifenesin; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Codeine; Phenylephrine; Promethazine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Codeine; Promethazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Colesevelam: (Moderate) In patients with type 2 diabetes mellitus receiving insulins, colesevelam increased serum triglyceride concentrations by 22% compared to placebo. Monitor patients for increase in triglyceride concentrations. Discontinue colesevelam if triglyceride concentrations are > 500 mg/dl or if hypertriglyceridemia-induced pancreatitis occurs.
    Conjugated Estrogens: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
    Conjugated Estrogens; Bazedoxifene: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
    Conjugated Estrogens; Medroxyprogesterone: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Corticosteroids: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Cortisone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Cyclosporine: (Moderate) Cyclosporine may cause hyperglycemia. Patients should be monitored for worsening of glycemic control if therapy with cyclosporine is initiated in patients receiving insulin.
    Daclatasvir: (Moderate) Closely monitor blood glucose levels if daclatasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as daclatasvir.
    Danazol: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Dapagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Dapagliflozin; Saxagliptin: (Moderate) A lower insulin dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with insulin, the incidence of hypoglycemia was increased compared to a placebo used in combination with insulin.
    Darunavir: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
    Darunavir; Cobicistat: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
    Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
    Dasabuvir; Ombitasvir; Paritaprevir; Ritonavir : (Moderate) Closely monitor blood glucose levels if dasabuvir; ombitasvir; paritaprevir; ritonavir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as dasabuvir; ombitasvir; paritaprevir; ritonavir.
    Dasabuvir; Ombitasvir; Paritaprevir; Ritonavir: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
    Dasiglucagon: (Minor) Caution should be exercised when glucagon is used as a diagnostic aid for radiologic examination in patients taking insulin. Insulin reacts antagonistically towards glucagon. Monitor the patient receiving glucagon for a diagnostic procedure for the desired clinical effects. There is no concern when glucagon is used to treat severe hypoglycemia. If a patient receives glucagon due to severe hypoglycemia by a family member or caregiver, they should alert their health care provider so that insulin treatment may be adjusted, if needed.
    Deflazacort: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Desloratadine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Desogestrel; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Dexamethasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Dexbrompheniramine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Dexmethylphenidate: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Dextroamphetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Dextromethorphan; Diphenhydramine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Diazoxide: (Minor) Diazoxide, when administered intravenously or orally, produces a prompt dose-related increase in blood glucose level, due primarily to an inhibition of insulin release from the pancreas, and also to an extrapancreatic effect. The hyperglycemic effect begins within an hour and generally lasts no more than 8 hours in the presence of normal renal function. The hyperglycemic effect of diazoxide is expected to be antagonized by certain antidiabetic agents (e.g., insulin or a sulfonylurea). Blood glucose should be closely monitored.
    Dienogest; Estradiol valerate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Diethylpropion: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Diethylstilbestrol, DES: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
    Diphenhydramine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Disopyramide: (Moderate) Monitor patients receiving disopyramide concomitantly with insulin for changes in glycemic control. Disopyramide may enhance the hypoglycemic effects of insulin.
    Dobutamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Dopamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Dorzolamide; Timolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Doxapram: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Drospirenone: (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Drospirenone; Estetrol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Drospirenone; Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Drospirenone; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Drospirenone; Ethinyl Estradiol; Levomefolate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Dulaglutide: (Moderate) Monitor blood glucose during concomitant insulin glargine and dulaglutide use; consider decreasing the insulin glargine dose when starting dulaglutide. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Edetate Calcium Disodium, Calcium EDTA: (Minor) Use caution in administration of calcium EDTA to patients with diabetes mellitus who are receiving insulin therapy. Calcium EDTA chelates the zinc in selected exogenous insulins, thereby increasing the amount of insulin available to the body and decreasing the duration of the insulin dose. Alterations in blood glucose control may result. Diabetic patients receiving calcium EDTA may require adjustments in their insulin dosage.
    Edetate Disodium, Disodium EDTA: (Minor) Use caution in administration of calcium EDTA to patients with diabetes mellitus who are receiving insulin therapy. Calcium EDTA chelates the zinc in selected exogenous insulins, thereby increasing the amount of insulin available to the body and decreasing the duration of the insulin dose. Alterations in blood glucose control may result. Diabetic patients receiving calcium EDTA may require adjustments in their insulin dosage.
    Elagolix; Estradiol; Norethindrone acetate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Elbasvir; Grazoprevir: (Moderate) Closely monitor blood glucose levels if elbasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as elbasvir.
    Empagliflozin; Linagliptin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Empagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Enalapril, Enalaprilat: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Enalapril; Felodipine: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Ephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Ephedrine; Guaifenesin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Epinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Eprosartan: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Ertugliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Esmolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Esterified Estrogens: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
    Esterified Estrogens; Methyltestosterone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
    Estradiol Cypionate; Medroxyprogesterone: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
    Estradiol; Levonorgestrel: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Estradiol; Norethindrone: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Estradiol; Norgestimate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Estradiol; Progesterone: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Estramustine: (Minor) Estramustine is an estrogen-containing medication and may decrease glucose tolerance. Patients receiving antidiabetic agents should monitor their blood glucose levels frequently due to this potential pharmacodynamic interaction.
    Estrogens: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
    Estropipate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
    Ethanol: (Major) Patients should be advised to avoid or limit alcohol ingestion when treated with insulin. Alcohol ingestion increases hypoglycemic risk. In some patients, hypoglycemia can be prolonged. Educate regarding the importance of glucose monitoring, as well as the signs, symptoms, and self-management of delayed hypoglycemia after drinking alcohol, especially when using insulin. Moderate alcohol intake does not have major detrimental effects on long-term blood glucose management in people with diabetes.
    Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
    Ethinyl Estradiol; Levonorgestrel; Folic Acid; Levomefolate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Ethinyl Estradiol; Norelgestromin: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Ethinyl Estradiol; Norethindrone Acetate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Ethinyl Estradiol; Norgestrel: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Ethotoin: (Minor) Ethotoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically. Monitor blood glucose for changes in glycemic control. Dosage adjustments may be necessary in some patients.
    Ethynodiol Diacetate; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Etonogestrel: (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Etonogestrel; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Exenatide: (Major) In a 30-week safety and efficacy trial, when exenatide was initiated in combination with insulin glargine, the dose of insulin glargine was decreased by 20% in patients with a hemoglobin A1C of 8% or less to minimize the risk of hypoglycemia. The manufacturer of exenatide provides an insulin glargine dose titration algorithm to aide clinicians when using exenatide with insulin glargine; consult product labels. Patients should also self-monitor blood glucose levels.
    Fenofibrate: (Moderate) Monitor blood glucose during concomitant fibric acid derivatives and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Fenofibric Acid: (Moderate) Monitor blood glucose during concomitant fibric acid derivatives and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Fexofenadine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Fibric acid derivatives: (Moderate) Monitor blood glucose during concomitant fibric acid derivatives and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Fludrocortisone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Flunisolide: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Fluoxetine: (Moderate) Monitor blood glucose during concomitant insulin and fluoxetine use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Fluoxymesterone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Fluphenazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Fluticasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Fluticasone; Salmeterol: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Fluticasone; Umeclidinium; Vilanterol: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Fluticasone; Vilanterol: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Formoterol; Mometasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Fosamprenavir: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
    Fosinopril: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Fosphenytoin: (Minor) Fosphenytoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically. Monitor blood glucose for changes in glycemic control. Dosage adjustments may be necessary in some patients.
    Furosemide: (Minor) Monitor patients receiving insulin closely for worsening glycemic control when bumetanide, furosemide, and torsemide are instituted. Bumetanide, furosemide, and torsemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents.
    Garlic, Allium sativum: (Moderate) Patients receiving antidiabetic agents should use dietary supplements of Garlic, Allium sativum with caution. Constituents in garlic might have some antidiabetic activity, and may increase serum insulin levels and increase glycogen storage in the liver. Monitor blood glucose and glycemic control. Patients with diabetes should inform their health care professionals of their intent to ingest garlic dietary supplements. Some patients may require adjustment to their hypoglycemic medications over time. One study stated that additional garlic supplementation (0.05 to 1.5 grams PO per day) contributed to improved blood glucose control in patients with type 2 diabetes mellitus within 1 to 2 weeks, and had positive effects on total cholesterol and high/low density lipoprotein regulation over time. It is unclear if hemoglobin A1C is improved or if improvements are sustained with continued treatment beyond 24 weeks. Other reviews suggest that garlic may provide modest improvements in blood lipids, but few studies demonstrate decreases in blood glucose in diabetic and non-diabetic patients. More controlled trials are needed to discern if garlic has an effect on blood glucose in patients with diabetes. When garlic is used in foods or as a seasoning, or at doses of 50 mg/day or less, it is unlikely that blood glucose levels are affected to any clinically significant degree.
    Gemfibrozil: (Moderate) Monitor blood glucose during concomitant fibric acid derivatives and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Glecaprevir; Pibrentasvir: (Moderate) Closely monitor blood glucose levels if glecaprevir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as glecaprevir. (Moderate) Closely monitor blood glucose levels if pibrentasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as pibrentasvir.
    Glimepiride; Rosiglitazone: (Major) Use of insulins with rosiglitazone is not recommended by the manufacturer due to a potential increased risk for edema or heart failure. If heart failure develops in a patient receiving insulin and a thiazoladinedione, manage the patient according to standards of care, and discontinue or consider reducing the dose of the thiazoladinedione. Since the incidence of hypoglycemia may also be higher with combined therapy, patients should also be instructed to monitor blood glucose concentrations more frequently. In five 26-week trials involving patients with type 2 diabetes, rosiglitazone added to insulin therapy (n=867) was compared with insulin therapy alone (n=663). These trials included patients with chronic diabetes and a high prevalence of coexisting medical conditions, including peripheral neuropathy, retinopathy, ischemic heart disease, vascular disease, and congestive heart failure. In these clinical studies, an increased incidence of heart failure and other cardiovascular adverse events was seen in patients receiving combination rosiglitazone and insulin therapy compared to insulin monotherapy; the incidence of new onset or exacerbated heart failure was 0.9% in patients treated with insulin alone vs. 2% in patients treated with insulin plus rosiglitazone. Some of the patients who developed cardiac failure on combination therapy during the double blind part of the studies had no known prior evidence of congestive heart failure, or pre-existing cardiac condition. Additionally, the results of a meta-analysis that included the same 5 randomized, controlled trials mentioned previously indicate that the rate of myocardial ischemia may be increased in patients taking rosiglitazone in combination with insulin; the incidence of myocardia ischemia was 1.4% in patients receiving insulin monotherapy vs. 2.8% in patients receiving rosiglitazone and insulin combination therapy (OR 2.1 95% CI 0.9-5.1). The cardiovascular events were noted at doses of both 4 mg/day and 8 mg/day of rosiglitazone. In a sixth 26-week study, patients with baseline congestive heart failure were excluded; in this study, compared to insulin monotherapy (n=158), the addition of rosiglitazone to insulin therapy (n=161) did not increase the risk of congestive heart failure. One each of myocardial ischemia and sudden death were reported in patients taking combination therapy compared to zero patients taking insulin monotherapy. When rosiglitazone was added to insulin therapy, the incidence of hypoglycemia was higher with 8 mg/day of rosiglitazone (67%) compared to 4 mg/day (53%).
    Glipizide; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Glucagon: (Minor) Caution should be exercised when glucagon is used as a diagnostic aid for radiologic examination in patients taking insulin. Insulin reacts antagonistically towards glucagon. Monitor the patient receiving glucagon for a diagnostic procedure for the desired clinical effects. There is no concern when glucagon is used to treat severe hypoglycemia. If a patient receives glucagon due to severe hypoglycemia by a family member or caregiver, they should alert their health care provider so that insulin treatment may be adjusted, if needed.
    Glyburide; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Green Tea: (Moderate) Green tea catechins have been shown to decrease serum glucose concentrations. Patients with diabetes mellitus taking antidiabetic agents should be monitored closely for hypoglycemia if consuming green tea products.
    Guaifenesin; Hydrocodone; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Guaifenesin; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Guaifenesin; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Hydralazine; Hydrochlorothiazide, HCTZ: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Hydrochlorothiazide, HCTZ: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Hydrochlorothiazide, HCTZ; Methyldopa: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Hydrocodone; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Hydrocortisone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Hydroxychloroquine: (Moderate) Monitor blood glucose during concomitant insulin and hydroxychloroquine use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Hydroxyprogesterone: (Minor) Progestins, like hydroxyprogesterone, can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
    Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Ibuprofen; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Iloperidone: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
    Indapamide: (Moderate) A potential pharmacodynamic interaction exists between indapamide and antidiabetic agents, like insulins. Indapamide can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia.
    Indinavir: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
    Insulin Degludec; Liraglutide: (Moderate) Monitor blood glucose during concomitant insulin glargine and liraglutide use; consider decreasing the insulin glargine dose when starting liraglutide. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Insulin Glargine; Lixisenatide: (Moderate) The risk of hypoglycemia is increased when lixisenatide is used in combination with insulin glargine. Although specific dose recommendations are not available, a lower dose of the insulin glargine may be required to reduce the risk of hypoglycemia in this setting. Adequate blood glucose monitoring should be continued and followed.
    Irbesartan: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Irbesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Isocarboxazid: (Moderate) Monitor blood glucose during concomitant insulin and monoamine oxidase inhibitor (MAOI) use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Isoproterenol: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Labetalol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Lanreotide: (Moderate) Monitor blood glucose levels regularly in patients with diabetes, especially when lanreotide treatment is initiated or when the dose is altered. Adjust treatment with antidiabetic agents as clinically indicated. Lanreotide inhibits the secretion of insulin and glucagon. Patients treated with lanreotide may experience either hypoglycemia or hyperglycemia.
    Lansoprazole; Amoxicillin; Clarithromycin: (Moderate) The concomitant use of clarithromycin and insulin or other antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
    Ledipasvir; Sofosbuvir: (Moderate) Closely monitor blood glucose levels if ledipasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agent(s) may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as ledipasvir. (Moderate) Closely monitor blood glucose levels if sofosbuvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as sofosbuvir.
    Leuprolide; Norethindrone: (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Levobetaxolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Levobunolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Levonorgestrel: (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Levonorgestrel; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Levonorgestrel; Ethinyl Estradiol; Ferrous Bisglycinate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Levothyroxine: (Minor) Monitor patients receiving insulin closely for changes in diabetic control whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued. Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced.
    Levothyroxine; Liothyronine (Porcine): (Minor) Monitor patients receiving insulin closely for changes in diabetic control whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued. Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced.
    Levothyroxine; Liothyronine (Synthetic): (Minor) Monitor patients receiving insulin closely for changes in diabetic control whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued. Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced.
    Lidocaine; Epinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Linagliptin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Linezolid: (Moderate) Hypoglycemia, including symptomatic episodes, has been noted in post-marketing reports with linezolid in patients with diabetes mellitus receiving therapy with antidiabetic agents, such as insulin and oral hypoglycemic agents. Diabetic patients should be monitored for potential hypoglycemic reactions while on linezolid. If hypoglycemia occurs, discontinue or decrease the dose of the antidiabetic agent or discontinue the linezolid therapy. Linezolid is a reversible, nonselective MAO inhibitor and other MAO inhibitors have been associated with hypoglycemic episodes in diabetic patients receiving insulin or oral hypoglycemic agents.
    Liothyronine: (Minor) Monitor patients receiving insulin closely for changes in diabetic control whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued. Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced.
    Liraglutide: (Moderate) Monitor blood glucose during concomitant insulin glargine and liraglutide use; consider decreasing the insulin glargine dose when starting liraglutide. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Lisdexamfetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Lisinopril: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Lisinopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Lithium: (Moderate) Monitor blood glucose during concomitant insulin and lithium use; an insulin dose adjustment may be necessary. Lithium may increase or decrease the blood glucose lowering effect of insulin.
    Lixisenatide: (Moderate) The risk of hypoglycemia is increased when lixisenatide is used in combination with insulin glargine. Although specific dose recommendations are not available, a lower dose of the insulin glargine may be required to reduce the risk of hypoglycemia in this setting. Adequate blood glucose monitoring should be continued and followed.
    Lonapegsomatropin: (Moderate) Patients with diabetes mellitus should be monitored closely during somatropin (recombinant rhGH) therapy. Antidiabetic drugs (e.g., insulin or oral agents) may require adjustment when somatropin therapy is instituted in these patients. Growth hormones, such as somatropin, may decrease insulin sensitivity, leading to glucose intolerance and loss of blood glucose control. Therefore, glucose levels should be monitored periodically in all patients treated with somatropin, especially in those with risk factors for diabetes mellitus.
    Lopinavir; Ritonavir: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
    Loratadine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Lorcaserin: (Moderate) In general, weight reduction may increase the risk of hypoglycemia in patients with type 2 diabetes mellitus treated with antidiabetic agents, such as insulin and/or insulin secretagogues (e.g., sulfonylureas). In clinical trials, lorcaserin use was associated with reports of hypoglycemia. Blood glucose monitoring is warranted in patients with type 2 diabetes prior to starting and during lorcaserin treatment. Dosage adjustments of anti-diabetic medications should be considered. If a patient develops hypoglycemia during treatment, adjust anti-diabetic drug regimen accordingly. Of note, lorcaserin has not been studied in combination with insulin.
    Losartan: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Losartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Lovastatin; Niacin: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when niacin, niacinamide is instituted or discontinued. Dosage adjustments may be necessary. Niacin interferes with glucose metabolism and can result in hyperglycemia. When used at daily doses of 750 to 2000 mg, niacin significantly lowers LDL cholesterol and triglycerides while increasing HDL cholesterol. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy.
    Lumateperone: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
    Lurasidone: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
    Macimorelin: (Major) Avoid use of macimorelin in patients receiving exogenous insulin therapy. In addition, healthcare providers are advised to discontinue insulin therapy and observe a sufficient washout period before administering macimorelin. Use of exogenous insulin may impact the accuracy of the macimorelin growth hormone test by directly affecting pituitary growth hormone secretion and by transiently elevating growth hormone concentrations.
    Mafenide: (Moderate) Monitor blood glucose during concomitant insulin and sulfonamide use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Magnesium Salicylate: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Mecasermin rinfabate: (Moderate) Use caution in combining mecasermin, recombinant, rh-IGF-1 or mecasermin rinfabate (rh-IGF-1/rh-IGFBP-3) with antidiabetic agents. Patients should be advised to eat within 20 minutes of mecasermin administration. Glucose monitoring is important when initializing or adjusting mecasermin therapies, when adjusting concomitant antidiabetic therapy, and in the event of hypoglycemic symptoms. An increased risk for hypoglycemia is possible. The hypoglycemic effect induced by IGF-1 activity may be exacerbated. The amino acid sequence of mecasermin (rh-IGF-1) is approximately 50 percent homologous to insulin and cross binding with either receptor is possible. Treatment with mecasermin has been shown to improve insulin sensitivity and to improve glycemic control in patients with either Type 1 or Type 2 diabetes mellitus when used alone or in conjunction with insulins.
    Mecasermin, Recombinant, rh-IGF-1: (Moderate) Use caution in combining mecasermin, recombinant, rh-IGF-1 or mecasermin rinfabate (rh-IGF-1/rh-IGFBP-3) with antidiabetic agents. Patients should be advised to eat within 20 minutes of mecasermin administration. Glucose monitoring is important when initializing or adjusting mecasermin therapies, when adjusting concomitant antidiabetic therapy, and in the event of hypoglycemic symptoms. An increased risk for hypoglycemia is possible. The hypoglycemic effect induced by IGF-1 activity may be exacerbated. The amino acid sequence of mecasermin (rh-IGF-1) is approximately 50 percent homologous to insulin and cross binding with either receptor is possible. Treatment with mecasermin has been shown to improve insulin sensitivity and to improve glycemic control in patients with either Type 1 or Type 2 diabetes mellitus when used alone or in conjunction with insulins.
    Medroxyprogesterone: (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Meperidine; Promethazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Mestranol; Norethindrone: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Metformin: (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Metformin; Repaglinide: (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Metformin; Rosiglitazone: (Major) Use of insulins with rosiglitazone is not recommended by the manufacturer due to a potential increased risk for edema or heart failure. If heart failure develops in a patient receiving insulin and a thiazoladinedione, manage the patient according to standards of care, and discontinue or consider reducing the dose of the thiazoladinedione. Since the incidence of hypoglycemia may also be higher with combined therapy, patients should also be instructed to monitor blood glucose concentrations more frequently. In five 26-week trials involving patients with type 2 diabetes, rosiglitazone added to insulin therapy (n=867) was compared with insulin therapy alone (n=663). These trials included patients with chronic diabetes and a high prevalence of coexisting medical conditions, including peripheral neuropathy, retinopathy, ischemic heart disease, vascular disease, and congestive heart failure. In these clinical studies, an increased incidence of heart failure and other cardiovascular adverse events was seen in patients receiving combination rosiglitazone and insulin therapy compared to insulin monotherapy; the incidence of new onset or exacerbated heart failure was 0.9% in patients treated with insulin alone vs. 2% in patients treated with insulin plus rosiglitazone. Some of the patients who developed cardiac failure on combination therapy during the double blind part of the studies had no known prior evidence of congestive heart failure, or pre-existing cardiac condition. Additionally, the results of a meta-analysis that included the same 5 randomized, controlled trials mentioned previously indicate that the rate of myocardial ischemia may be increased in patients taking rosiglitazone in combination with insulin; the incidence of myocardia ischemia was 1.4% in patients receiving insulin monotherapy vs. 2.8% in patients receiving rosiglitazone and insulin combination therapy (OR 2.1 95% CI 0.9-5.1). The cardiovascular events were noted at doses of both 4 mg/day and 8 mg/day of rosiglitazone. In a sixth 26-week study, patients with baseline congestive heart failure were excluded; in this study, compared to insulin monotherapy (n=158), the addition of rosiglitazone to insulin therapy (n=161) did not increase the risk of congestive heart failure. One each of myocardial ischemia and sudden death were reported in patients taking combination therapy compared to zero patients taking insulin monotherapy. When rosiglitazone was added to insulin therapy, the incidence of hypoglycemia was higher with 8 mg/day of rosiglitazone (67%) compared to 4 mg/day (53%). (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Metformin; Saxagliptin: (Moderate) A lower insulin dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with insulin, the incidence of hypoglycemia was increased compared to a placebo used in combination with insulin. (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Metformin; Sitagliptin: (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Methamphetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Methazolamide: (Minor) Carbonic anhydrase inhibitors may alter blood sugar. Both hyperglycemia and hypoglycemia have been described in patients treated with acetazolamide. This should be taken into consideration in patients with impaired glucose tolerance or diabetes mellitus who are receiving antidiabetic agents. Monitor blood glucose and for changes in glycemic control and be alert for evidence of an interaction.
    Methenamine; Sodium Salicylate: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Methohexital: (Minor) The risk of developing hypothermia is increased when methohexital is used with hypothermia-producing agents such as ethanol, insulins, phenothiazines, or other general anesthetics.
    Methyclothiazide: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Methylphenidate: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Methylprednisolone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Methyltestosterone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Metoclopramide: (Moderate) Increased GI motility by metoclopramide may increase delivery of food to the intestines and increase blood glucose. The dosing of insulin may require adjustment in patients who receive metoclopramide concomitantly.
    Metolazone: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Metoprolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Metreleptin: (Moderate) Use caution when administering metreleptin to patients treated with concomitant insulins or insulin secretagogue therapy (i.e., sulfonylureas, nateglinide, repaglinide). In clinical evaluation of metreleptin, hypoglycemia occurred in 13% of patients with generalized lipodystrophy. Most reported cases occurred with concomitant insulin use, with or without oral antihyperglycemic agents. Closely monitor blood glucose in patients on concomitant insulin or insulin secretagogue therapy. Dosage adjustments to their antihyperglycemic medications may be necessary.
    Metyrapone: (Moderate) In patients taking insulin or other antidiabetic agents, the signs and symptoms of acute metyrapone toxicity (e.g., symptoms of acute adrenal insufficiency) may be aggravated or modified.
    Midodrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Moexipril: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Mometasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Monoamine oxidase inhibitors: (Moderate) Monitor blood glucose during concomitant insulin and monoamine oxidase inhibitor (MAOI) use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Nadolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Nandrolone Decanoate: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Naproxen; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Nebivolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Nebivolol; Valsartan: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Nelfinavir: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
    Niacin, Niacinamide: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when niacin, niacinamide is instituted or discontinued. Dosage adjustments may be necessary. Niacin interferes with glucose metabolism and can result in hyperglycemia. When used at daily doses of 750 to 2000 mg, niacin significantly lowers LDL cholesterol and triglycerides while increasing HDL cholesterol. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy.
    Niacin; Simvastatin: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when niacin, niacinamide is instituted or discontinued. Dosage adjustments may be necessary. Niacin interferes with glucose metabolism and can result in hyperglycemia. When used at daily doses of 750 to 2000 mg, niacin significantly lowers LDL cholesterol and triglycerides while increasing HDL cholesterol. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy.
    Nicotine: (Minor) Nicotine may increase plasma glucose. Monitor blood sugar for needed insulin dosage adjustments in insulin-dependent diabetic patients whenever a change in either nicotine intake or smoking status occurs. In addition, the use of inhaled insulin is not recommended in patients who smoke. Smoking tobacco can alter the effect of inhaled insulin in several ways. First, nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine levels) and may increase plasma glucose. Second, tobacco smoking is known to aggravate insulin resistance. Finally, compared with non-smokers, insulin exposure after inhalation may be greater in patients who smoke. If inhaled insulin is used in this population, patients should be instructed to monitor blood glucose concentrations closely. If a change in smoking status or nicotine intake occur, patients should continue to monitor their blood glucose concentrations closely and clinicians should adjust the dose of insulin when indicated.
    Nirmatrelvir; Ritonavir: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
    Norepinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Norethindrone Acetate; Ethinyl Estradiol; Ferrous fumarate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Norethindrone: (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Norethindrone; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Norethindrone; Ethinyl Estradiol; Ferrous fumarate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Norgestimate; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Norgestrel: (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Octreotide: (Moderate) Monitor patients receiving octreotide concomitantly with insulin or other antidiabetic agents for changes in glycemic control and adjust doses of these medications accordingly. Octreotide alters the balance between the counter-regulatory hormones of insulin, glucagon, and growth hormone, which may result in hypoglycemia or hyperglycemia. The hypoglycemia or hyperglycemia which occurs during octreotide acetate therapy is usually mild but may result in overt diabetes mellitus or necessitate dose changes in insulin or other hypoglycemic agents. In patients with concomitant type1 diabetes mellitus, octreotide is likely to affect glucose regulation, and insulin requirements may be reduced. Symptomatic hypoglycemia, which may be severe, has been reported in type 1 diabetic patients. In Type 2 diabetes patients with partially intact insulin reserves, octreotide administration may result in decreases in plasma insulin levels and hyperglycemia.
    Olanzapine: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
    Olanzapine; Fluoxetine: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant insulin and fluoxetine use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Olanzapine; Samidorphan: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
    Olmesartan: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Olmesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Olopatadine; Mometasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Ombitasvir; Paritaprevir; Ritonavir: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
    Orlistat: (Minor) Weight-loss may affect glycemic control in patients with diabetes mellitus. In many patients, glycemic control may improve. A reduction in dose of insulins or other medicines for diabetes may be required in some patients taking orlistat. Monitor blood glucose and glycemic control and adjust therapy as clinically indicated.
    Oxandrolone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Oxymetholone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Paliperidone: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
    Pasireotide: (Moderate) Monitor blood glucose levels regularly in patients with diabetes, especially when pasireotide treatment is initiated or when the dose is altered. Adjust treatment with antidiabetic agents as clinically indicated. Pasireotide inhibits the secretion of insulin and glucagon. Patients treated with pasireotide may experience either hypoglycemia or hyperglycemia.
    Pegvisomant: (Moderate) Monitor blood glucose levels regularly in patients with diabetes, especially when pegvisomant treatment is initiated or when the dose is altered. Adjust treatment with antidiabetic agents as clinically indicated. Pegvisomant increases sensitivity to insulin by lowering the activity of growth hormone, and in some patients glucose tolerance improves with treatment. Patients with diabetes treated with pegvisomant and antidiabetic agents may be more likely to experience hypoglycemia.
    Penbutolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Pentamidine: (Moderate) Monitor patients receiving insulin closely for changes in glycemic control during the use of pentamidine; dosage adjustments of insulin may be necessary. Pentamidine can be harmful to pancreatic cells. This effect may lead to hypoglycemia acutely, followed hyperglycemia with prolonged pentamidine therapy.
    Pentoxifylline: (Moderate) Monitor patients receiving pentoxifylline concomitantly with insulin for changes in glycemic control. Pentoxifylline may enhance the hypoglycemic action of insulin.
    Perindopril: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Perindopril; Amlodipine: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Perphenazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Perphenazine; Amitriptyline: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Phendimetrazine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Phenelzine: (Moderate) Monitor blood glucose during concomitant insulin and monoamine oxidase inhibitor (MAOI) use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Phenothiazines: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Phentermine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Phentermine; Topiramate: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Phenytoin: (Minor) Phenytoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically. Monitor blood glucose for changes in glycemic control. Dosage adjustments may be necessary in some patients.
    Pindolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Pioglitazone: (Moderate) Monitor blood glucose and for signs and symptoms of heart failure during concomitant pioglitazone and insulin use. Reduce the insulin dose by 10% to 25% if hypoglycemia occurs; adjust the insulin dose further based on glycemic response. Consider discontinuation of pioglitazone if heart failure occurs and manage according to current standards. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia and fluid retention which may lead to or exacerbate heart failure.
    Pioglitazone; Glimepiride: (Moderate) Monitor blood glucose and for signs and symptoms of heart failure during concomitant pioglitazone and insulin use. Reduce the insulin dose by 10% to 25% if hypoglycemia occurs; adjust the insulin dose further based on glycemic response. Consider discontinuation of pioglitazone if heart failure occurs and manage according to current standards. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia and fluid retention which may lead to or exacerbate heart failure.
    Pioglitazone; Metformin: (Moderate) Monitor blood glucose and for signs and symptoms of heart failure during concomitant pioglitazone and insulin use. Reduce the insulin dose by 10% to 25% if hypoglycemia occurs; adjust the insulin dose further based on glycemic response. Consider discontinuation of pioglitazone if heart failure occurs and manage according to current standards. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia and fluid retention which may lead to or exacerbate heart failure. (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Pramlintide: (Major) Reduce mealtime insulin doses, including premixed insulins, by 50% when starting pramlintide to reduce the risk of hypoglycemia; further reductions in insulin dose are dependent on individual patient response. Monitor blood glucose frequently, including pre- and post-meals and at bedtime. Always administer pramlintide and insulin as separate injections; do not mix pramlintide with any insulin.
    Prasterone, Dehydroepiandrosterone, DHEA (Dietary Supplements): (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Prasterone, Dehydroepiandrosterone, DHEA (FDA-approved): (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Prednisolone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Prednisone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Prilocaine; Epinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Prochlorperazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Progesterone: (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Progestins: (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Promethazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Promethazine; Dextromethorphan: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Promethazine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Propranolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Propranolol; Hydrochlorothiazide, HCTZ: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Protease inhibitors: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
    Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Pseudoephedrine; Triprolidine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Pyrimethamine; Sulfadoxine: (Moderate) Monitor blood glucose during concomitant insulin and sulfonamide use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Quetiapine: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
    Quinapril: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Quinapril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Quinolones: (Moderate) Monitor blood glucose during concomitant insulin and quinolone use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Racepinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Ramipril: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Relugolix; Estradiol; Norethindrone acetate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Reserpine: (Moderate) Monitor patients receiving insulin closely for changes in glycemic control during the use of reserpine. Reserpine may mask the signs and symptoms of hypoglycemia.
    Risperidone: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
    Ritonavir: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
    Rosiglitazone: (Major) Use of insulins with rosiglitazone is not recommended by the manufacturer due to a potential increased risk for edema or heart failure. If heart failure develops in a patient receiving insulin and a thiazoladinedione, manage the patient according to standards of care, and discontinue or consider reducing the dose of the thiazoladinedione. Since the incidence of hypoglycemia may also be higher with combined therapy, patients should also be instructed to monitor blood glucose concentrations more frequently. In five 26-week trials involving patients with type 2 diabetes, rosiglitazone added to insulin therapy (n=867) was compared with insulin therapy alone (n=663). These trials included patients with chronic diabetes and a high prevalence of coexisting medical conditions, including peripheral neuropathy, retinopathy, ischemic heart disease, vascular disease, and congestive heart failure. In these clinical studies, an increased incidence of heart failure and other cardiovascular adverse events was seen in patients receiving combination rosiglitazone and insulin therapy compared to insulin monotherapy; the incidence of new onset or exacerbated heart failure was 0.9% in patients treated with insulin alone vs. 2% in patients treated with insulin plus rosiglitazone. Some of the patients who developed cardiac failure on combination therapy during the double blind part of the studies had no known prior evidence of congestive heart failure, or pre-existing cardiac condition. Additionally, the results of a meta-analysis that included the same 5 randomized, controlled trials mentioned previously indicate that the rate of myocardial ischemia may be increased in patients taking rosiglitazone in combination with insulin; the incidence of myocardia ischemia was 1.4% in patients receiving insulin monotherapy vs. 2.8% in patients receiving rosiglitazone and insulin combination therapy (OR 2.1 95% CI 0.9-5.1). The cardiovascular events were noted at doses of both 4 mg/day and 8 mg/day of rosiglitazone. In a sixth 26-week study, patients with baseline congestive heart failure were excluded; in this study, compared to insulin monotherapy (n=158), the addition of rosiglitazone to insulin therapy (n=161) did not increase the risk of congestive heart failure. One each of myocardial ischemia and sudden death were reported in patients taking combination therapy compared to zero patients taking insulin monotherapy. When rosiglitazone was added to insulin therapy, the incidence of hypoglycemia was higher with 8 mg/day of rosiglitazone (67%) compared to 4 mg/day (53%).
    Sacubitril; Valsartan: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Salicylates: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Salsalate: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Saquinavir: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
    Saxagliptin: (Moderate) A lower insulin dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with insulin, the incidence of hypoglycemia was increased compared to a placebo used in combination with insulin.
    Segesterone Acetate; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Semaglutide: (Moderate) Monitor blood glucose during concomitant insulin glargine and semaglutide use; consider decreasing the insulin glargine dose when starting semaglutide. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Serdexmethylphenidate; Dexmethylphenidate: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Sodium Polystyrene Sulfonate: (Moderate) Sodium polystyrene sulfonate should be used cautiously with other agents that can induce hypokalemia such as loop diuretics, insulins, or intravenous sodium bicarbonate. Because of differences in onset of action, sodium polystyrene sulfonate is often used with these agents. With appropriate monitoring, hypokalemia can be avoided.
    Sofosbuvir: (Moderate) Closely monitor blood glucose levels if sofosbuvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as sofosbuvir.
    Sofosbuvir; Velpatasvir: (Moderate) Closely monitor blood glucose levels if sofosbuvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as sofosbuvir. (Moderate) Closely monitor blood glucose levels if velpatasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as velpatasvir.
    Sofosbuvir; Velpatasvir; Voxilaprevir: (Moderate) Closely monitor blood glucose levels if sofosbuvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as sofosbuvir. (Moderate) Closely monitor blood glucose levels if velpatasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as velpatasvir. (Moderate) Closely monitor blood glucose levels if voxilaprevir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as voxilaprevir.
    Somatropin, rh-GH: (Moderate) Patients with diabetes mellitus should be monitored closely during somatropin (recombinant rhGH) therapy. Antidiabetic drugs (e.g., insulin or oral agents) may require adjustment when somatropin therapy is instituted in these patients. Growth hormones, such as somatropin, may decrease insulin sensitivity, leading to glucose intolerance and loss of blood glucose control. Therefore, glucose levels should be monitored periodically in all patients treated with somatropin, especially in those with risk factors for diabetes mellitus.
    Sotalol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Spironolactone; Hydrochlorothiazide, HCTZ: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Sulfadiazine: (Moderate) Monitor blood glucose during concomitant insulin and sulfonamide use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Sulfamethoxazole; Trimethoprim, SMX-TMP, Cotrimoxazole: (Moderate) Monitor blood glucose during concomitant insulin and sulfonamide use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Sulfasalazine: (Moderate) Monitor blood glucose during concomitant insulin and sulfonamide use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Sulfinpyrazone: (Moderate) A case report describes an episode of brief hypoglycemia in a diabetic patient receiving both insulins and sulfinpyrazone. The patient responded spontaneously, and an association with sulfinpyrazone was not clearly established. In another report, no changes in insulin requirements were required when sulfinpyrazone therapy was added.
    Sulfonamides: (Moderate) Monitor blood glucose during concomitant insulin and sulfonamide use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Sympathomimetics: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Tacrolimus: (Moderate) Tacrolimus has been reported to cause hyperglycemia. Patients should be monitored for worsening of glycemic control if therapy with tacrolimus is initiated in patients receiving antidiabetic agents.
    Tegaserod: (Moderate) Because tegaserod can enhance gastric emptying in patients with diabetes, blood glucose can be affected, which, in turn, may affect the clinical response to antidiabetic agents.
    Telmisartan: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Telmisartan; Amlodipine: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Telmisartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Testosterone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Thiazide diuretics: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Thiethylperazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Thioridazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Thyroid hormones: (Minor) Monitor patients receiving insulin closely for changes in diabetic control whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued. Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced.
    Timolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Tipranavir: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
    Tirzepatide: (Moderate) When tirzepatide is used with insulin, consider lowering the dose of the insulin to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with insulin may have an increased risk of hypoglycemia, including severe hypoglycemia.
    Tobacco: (Major) Advise patients to avoid smoking tobacco while taking insulin. Tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments in antidiabetic agents may be needed.
    Torsemide: (Minor) Monitor patients receiving insulin closely for worsening glycemic control when bumetanide, furosemide, and torsemide are instituted. Bumetanide, furosemide, and torsemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents.
    Trandolapril: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Trandolapril; Verapamil: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Tranylcypromine: (Moderate) Monitor blood glucose during concomitant insulin and monoamine oxidase inhibitor (MAOI) use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Triamcinolone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Triamterene: (Minor) Triamterene can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. Patients receiving insulin should be closely monitored for signs indicating loss of diabetic control when therapy with triamterene is instituted. In addition, patients receiving insulin should be closely monitored for signs of hypoglycemia when therapy with any of these other agents is discontinued.
    Triamterene; Hydrochlorothiazide, HCTZ: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. (Minor) Triamterene can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. Patients receiving insulin should be closely monitored for signs indicating loss of diabetic control when therapy with triamterene is instituted. In addition, patients receiving insulin should be closely monitored for signs of hypoglycemia when therapy with any of these other agents is discontinued.
    Trifluoperazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Valsartan: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
    Vonoprazan; Amoxicillin; Clarithromycin: (Moderate) The concomitant use of clarithromycin and insulin or other antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
    Ziprasidone: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.

    PREGNANCY AND LACTATION

    Pregnancy

    Published studies with use of insulin glargine during pregnancy have not reported a clear association with insulin glargine and adverse developmental outcomes; however, these studies cannot definitely establish the absence of any risk because of methodological limitations including small sample size and some lacking comparator groups. Hypoglycemia and hyperglycemia occur more frequently during pregnancy in patients with pregestational diabetes. Optimizing glycemic control before conception and during pregnancy appears to improve fetal outcome; this should include the avoidance of episodes of hypoglycemia as the toxic effects of maternal hypoglycemia on the fetus have been well-documented. In general, insulin requirements decline during the first trimester, increase during the second and third trimesters, and then decline significantly after delivery. Post-partum, maternal insulin requirements may need adjustment. Use caution when administering long-acting insulin products near term and during labor and obstetric delivery as insulin requirements may change rapidly and dietary carbohydrate intake may be unpredictable. Careful monitoring of the patient on insulin is required throughout pregnancy. During the perinatal period, careful monitoring of neonates born to mothers with diabetes is recommended. Rat and rabbit studies of insulin glargine (at 7- to 50-times and 2- to 10-times, respectively, the initial recommended dose in humans) indicate that there are no significant differences in fetal outcome when compared to regular insulin. Fetal abnormalities in animal studies of insulin have not been reported when insulin is used at doses similar to those that would be used in humans; however, high doses of insulin inducing maternal hypoglycemia have been associated with fetal toxicity such as pre- and post-implantation losses and visceral/skeletal abnormalities. Most experts, including the American College of Obstetrics and Gynecologists (ACOG) and the American Diabetes Association (ADA), recommend human insulin as the therapy of choice to maintain blood glucose as close to normal as possible during pregnancy in patients with Type 1 or 2 diabetes mellitus, and, if diet therapy alone is not successful, for those patients with gestational diabetes; insulin does not cross the placenta.

    MECHANISM OF ACTION

    Endogenous insulin regulates carbohydrate, fat, and protein metabolism by several mechanisms; in general, insulin promotes the storage and inhibits the breakdown of glucose, fat, and amino acids. Insulin lowers glucose concentrations by facilitating the uptake of glucose in muscle and adipose tissue and by inhibiting hepatic glucose production (glycogenolysis and gluconeogenesis). Insulin also regulates fat metabolism by enhancing the storage of fat (lipogenesis) and inhibiting the mobilization of fat for energy in adipose tissues (lipolysis and free fatty acid oxidation). Finally, insulin is involved in the regulation of protein metabolism by increasing protein synthesis and inhibiting proteolysis in muscle tissue.[44086] [58899] [60453]
     
    Diabetes mellitus type 1 is caused by insulin deficiency while diabetes mellitus type 2 is caused by a combination of insulin deficiency and resistance. Biosynthetic insulin is used as replacement therapy in patients with diabetes mellitus to temporarily restore their ability to use fats, carbohydrates, and proteins, and to convert glycogen to fat. Insulin administration also enables these patients to replete their liver glycogen stores.[44086] [58899] [60453]
     
    Proper insulin therapy, when needed, has beneficial effects besides glycemic control in patients with diabetes mellitus (DM).
    In the Diabetes Control and Complications Trial (DCCT) patients, 13 to 39 years of age with type 1 DM were studied. Those receiving 'intensive' therapy (3 or more injections per day or use of an insulin pump) had approximately a 60% reduction in the incidence of retinopathy, nephropathy, and neuropathy compared to 'conventional' (2 injections/day) dosing but had a greater risk of serious hypoglycemia.
    In the United Kingdom prospective diabetes study (UKPDS) patients 48 to 60 years of age with type 2 DM were studied. Those receiving 'intensive therapy' with either sulfonylureas or insulin experienced an approximate 25% reduction in the incidence of microvascular complications when compared to 'conventional therapy.' The fasting blood glucose goal in the intensive therapy groups was less than 6 mmol/L (less than 109 mg/dL); in the conventional therapy group, the fasting blood glucose goal was the best achievable with diet alone; drug therapy was added if fasting blood glucose was more than 15 mmol/L (273 mg/dL) or the patient experienced symptoms of hyperglycemia. Similar to DCCT, patients in the intensive therapy group had a greater incidence of hypoglycemia.

    PHARMACOKINETICS

    Insulin glargine is administered via the subcutaneous route only. Endogenous insulin distributes widely throughout the body. A small portion is inactivated by peripheral tissues, but the majority is metabolized by the liver and kidneys. After subcutaneous injection of insulin glargine in diabetic patients, insulin glargine is metabolized at the carboxyl terminus of the Beta chain with formation of 2 active metabolites M1 (21A-Gly-insulin) and M2 (21A-Gly-des-30B-Thr-insulin). The in vitro activity of M1 and M2 were similar to that of insulin. Insulin is filtered and reabsorbed by the kidneys; the plasma half-life of human endogenous insulin is approximately 5 to 6 minutes.
     
    Affected cytochrome P450 (CYP450) enzymes and drug transporters: None

    Subcutaneous Route

    Insulin glargine 100 units/mL (Lantus)
    The onset of glucose lowering activity is 1.5 hours; insulin glargine has a constant concentration/time profile over 24 hours with no pronounced peak effect. The median duration of action of insulin glargine is 24 hours. Insulin glargine should be administered once daily, at the same time everyday. After subcutaneous injection of 0.3 units/kg in patients with type 1 diabetes, the duration of action after abdominal, deltoid, or thigh subcutaneous administration was similar.
     
    Insulin glargine 100 units/mL (Semglee)
    After subcutaneous injection of a single 0.5 U/kg dose of insulin glargine, the M1 active metabolite plasma concentration profile indicated a prolonged absorption and a relatively constant concentration/time profile over 24 hours.
     
    Insulin glargine 100 units/mL (Basaglar)
    The median time to maximum serum insulin concentration was 12 hours after injection; serum insulin concentrations declined to baseline by approximately 24 hours.
     
    Insulin glargine 300 units/mL (Toujeo)
    On average, the onset of glucose lowering activity after single doses of 0.4, 0.6, 0.9 units/kg developed over 6 hours and mean serum insulin concentrations declined to the lower limit of quantitation by 16, 28, and greater than 36 hours, respectively. Steady state insulin concentrations are reached by at least day 5 of once daily subcutaneous administration of 0.4 to 0.6 units/kg. At steady state, the 24 hour glucose lowering effect of Toujeo was approximately 27% lower and had a different distribution profile than an equivalent dose of Lantus. The glucose lowering effect increased with each daily administration of Toujeo.