ODEFSEY

Browse PDR's full list of drug information

ODEFSEY

Classes

Non-Nucleoside Reverse Transcriptase Inhibitor (NNRTI) and Nucleoside and Nucleotide Reverse Transcriptase Inhibitors (NRTI) Combinations

Administration

 
NOTE: Emtricitabine; rilpivirine; tenofovir alafenamide is a complete HIV treatment regimen. Do not administer with other antiretroviral medications.

Oral Administration

Administer with a meal.

Adverse Reactions
Severe

depression / Delayed / 1.0-5.6
rash / Early / 1.0-1.0
suicidal ideation / Delayed / 0.6-0.6
lactic acidosis / Delayed / Incidence not known
hepatitis B exacerbation / Delayed / Incidence not known
hepatic decompensation / Delayed / Incidence not known
hepatic failure / Delayed / Incidence not known
renal failure / Delayed / Incidence not known
Fanconi syndrome / Delayed / Incidence not known
nephrotoxicity / Delayed / Incidence not known
renal tubular necrosis / Delayed / Incidence not known
nephrotic syndrome / Delayed / Incidence not known
Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) / Delayed / Incidence not known

Moderate

dysphoria / Early / 9.0-9.0
steatosis / Delayed / Incidence not known
hepatomegaly / Delayed / Incidence not known
osteopenia / Delayed / Incidence not known
osteoporosis / Delayed / Incidence not known
hypertriglyceridemia / Delayed / Incidence not known
hypercholesterolemia / Delayed / Incidence not known

Mild

headache / Early / 0-19.0
fatigue / Early / 1.0-14.0
nausea / Early / 1.0-11.0
dizziness / Early / 8.0-8.0
abdominal pain / Early / 8.0-8.0
vomiting / Early / 6.0-6.0
insomnia / Early / 0-2.0
diarrhea / Early / 1.0-1.0
weight gain / Delayed / Incidence not known

Boxed Warning
Hepatitis, hepatitis B and HIV coinfection, hepatitis B exacerbation

Emtricitabine; rilpivirine; tenofovir alafenamide is not indicated for the treatment of hepatitis infections. Individuals with HIV and hepatitis coinfection may be at increased risk for treatment-associated hepatotoxicities. Patients who present with HIV infection should be screened for hepatitis B virus (HBV) coinfection to assure appropriate treatment. Patients with hepatitis B and HIV coinfection should be started on a fully suppressive antiretroviral (ARV) regimen with activity against both viruses (regardless of CD4 counts and HBV DNA concentrations). HIV treatment guidelines recommend these patients receive an ARV regimen that contains a dual NRTI backbone of tenofovir alafenamide or tenofovir disoproxil fumarate with either emtricitabine or lamivudine. If tenofovir cannot be used, entecavir should be used in combination with a fully suppressive ARV regimen (note: entecavir should not be considered part of the ARV regimen). Avoid using single-drug therapy to treat HBV (i.e., lamivudine, emtricitabine, tenofovir, or entecavir as the only active agent) as this may result in HIV resistant strains. Further, HBV treatment regimens that include adefovir or telbivudine should also be avoided, as these regimens are associated with a higher incidence of toxicities and increased rates of HBV treatment failure. Most patients with coinfection should continue treatment indefinitely with the goal of maximal HIV suppression and prevention of HBV relapse. Patients with coexisting HBV and HIV infections who discontinue emtricitabine or tenofovir may experience severe acute hepatitis B exacerbation with some cases resulting in hepatic decompensation and hepatic failure. Therefore, patients HBV and HIV coinfection who discontinue emtricitabine; rilpivirine; tenofovir should have transaminase concentrations monitored every 6 weeks for the first 3 months, and every 3 to 6 months thereafter. If appropriate, resumption of anti-hepatitis B treatment may be required. For patients who refuse a fully suppressive ARV regimen, but still requires treatment for HBV, consider 48 weeks of peginterferon alfa; do not administer HIV-active medications in the absence of a fully suppressive ARV regimen. Instruct patients with coinfection to avoid consuming alcohol, and offer vaccinations against hepatitis A and hepatitis B as appropriate. [60614] [46638] [34362]

Common Brand Names

ODEFSEY

Dea Class

Rx

Description

Combination of 2 NRTIs and 1 NNRTI
Indicated as a complete regimen for treatment of HIV-1 infections in antiretroviral-naive patients (weighing at least 35 kg) with baseline HIV RNA of 100,000 copies/mL or less, and certain virologically-stable (HIV RNA less than 50 copies/mL) patients without history of treatment failure or resistance
Administered as a single tablet once daily with a meal

Dosage And Indications
For the treatment of human immunodeficiency virus (HIV) infection in antiretroviral treatment-naive patients with HIV-1 RNA concentrations 100,000 copies/mL or less at treatment initiation and certain virologically-stable (HIV-1 RNA less than 50 copies/mL) treatment-experienced patients.
NOTE: Prior to initiating therapy, health care providers are advised to consider the following findings from rilpivirine clinical trials: virologic failures occurred more frequently in patients with baseline HIV-1 RNA concentrations more than 100,000 copies/mL than in patients with concentrations 100,000 copies/mL or less; patients with CD4 counts less than 200 cells/mm3 experienced more virologic failures than those with counts 200 cells/mm3 or more (regardless of HIV-1 RNA concentrations); virologic failures associated with resistance and cross-resistance to the NNRTI class occurred more frequently in rilpivirine-treated patients than efavirenz-treated patients; a higher rate of tenofovir and lamivudine/emtricitabine resistance developed in rilpivirine-treated patients than in efavirenz-treated patients.
NOTE: Treatment-experienced patients must meet the following criteria: have displayed consistent viral suppression (HIV-1 RNA less than 50 copies/mL) for at least 6 months prior to switching; no history of virologic failure; no current or past history of resistance to emtricitabine, rilpivirine, or tenofovir. To assess potential virologic failure or rebound, additional HIV-1 RNA monitoring is recommended for these patients.
NOTE: Not indicated for the treatment of chronic hepatitis B virus (HBV) infection; safety and efficacy have not been established in patients with HBV and HIV coinfection.
Oral dosage Adults weighing 35 kg or more

1 tablet (200 mg emtricitabine; 25 mg rilpivirine; 25 mg tenofovir alafenamide) PO once daily. Not to be administered with other antiretroviral medications, as drug constitutes a complete treatment regimen.

Children and Adolescents 12 to 17 years weighing 35 kg or more

1 tablet (200 mg emtricitabine; 25 mg rilpivirine; 25 mg tenofovir alafenamide) PO once daily. Not to be administered with other antiretroviral medications, as drug constitutes a complete treatment regimen.[60614]

Dosing Considerations
Hepatic Impairment

Dosage adjustments are not required for mild to moderate hepatic impairment (Child-Pugh Class A and B); safety and efficacy of this fixed-dose combination treatment have not been established in patients with severe hepatic impairment (Child-Pugh Class C).[60614]

Renal Impairment

CrCl 30 mL/minute or more: No dosage adjustment needed.
CrCl 15 to 29 mL/minute: Use is not recommended.
CrCl less than 15 mL/minute not receiving chronic hemodialysis: Use is not recommended.
 
Intermittent hemodialysis
CrCl less than 15 mL/minute receiving chronic hemodialysis: No dosage adjustment needed. Use with caution; increased monitoring is recommended for rilpivirine-related adverse effects, as rilpivirine concentrations may be increased due to alteration of drug absorption, distribution, and metabolism secondary to renal dysfunction.
Administer emtricitabine; rilpivirine; tenofovir alafenamide after completion of the hemodialysis treatment on dialysis days.

Drug Interactions

Abacavir; Dolutegravir; Lamivudine: (Major) Do not coadminister lamivudine, 3TC-containing products and emtricitabine-containing products due to similarities between emtricitabine and lamivudine.
Abacavir; Lamivudine, 3TC: (Major) Do not coadminister lamivudine, 3TC-containing products and emtricitabine-containing products due to similarities between emtricitabine and lamivudine.
Abacavir; Lamivudine, 3TC; Zidovudine, ZDV: (Major) Do not coadminister lamivudine, 3TC-containing products and emtricitabine-containing products due to similarities between emtricitabine and lamivudine.
Abarelix: (Major) Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation; caution is advised when administering rilpivirine with other drugs that may prolong the QT or PR interval, such as abarelix. In addition to avoiding drug interactions, the potential for Torsade de pointes (TdP) can be reduced by avoiding the use of QT prolonging drugs in patients at substantial risk for TdP.
Abrocitinib: (Moderate) Coadministration of tenofovir alafenamide with abrocitinib may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a P-gp substrate and abrocitinib is a P-gp inhibitor.
Acalabrutinib: (Moderate) Coadministration of acalabrutinib and tenofovir alafenamide may increase the absorption and plasma concentration of tenofovir alafenamide. Acalabrutinib is an inhibitor of the breast cancer resistance protein (BCRP) transporter in vitro; it may inhibit intestinal BCRP. Tenofovir alafenamide is a BCRP substrate.
Acetaminophen; Aspirin, ASA; Caffeine: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as salicylates. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
Acetaminophen; Aspirin: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as salicylates. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
Acetaminophen; Aspirin; Diphenhydramine: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as salicylates. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
Acetaminophen; Ibuprofen: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Acyclovir: (Moderate) Monitor for acyclovir or emtricitabine-related adverse events during concomitant use. Concomitant use may increase acyclovir or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as acyclovir and emtricitabine, may increase the risk of adverse reactions. (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with a nephrotoxic agent, such as acyclovir. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
Adagrasib: (Major) Avoid concomitant use of adagrasib and rilpivirine due to the potential for increased rilpivirine exposure and additive risk for QT/QTc prolongation and torsade de pointes (TdP). If use is necessary, monitor for rilpivirine-related adverse effects and consider taking additional steps to minimize the risk for QT prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring. Rilpivirine is a CYP3A substrate and adagrasib is a strong CYP3A inhibitor. Both medications have been associated with QT interval prolongation, however, the degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose. (Moderate) Coadministration of tenofovir alafenamide with adagrasib may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a P-gp substrate and adagrasib is a P-gp inhibitor.
Adefovir: (Major) Patients who are concurrently taking adefovir (a nucleotide analog) with antiretrovirals (i.e., anti-retroviral non-nucleoside reverse transcriptase inhibitors (NNRTIs)) are at risk of developing lactic acidosis and severe hepatomegaly with steatosis. Lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported with the use of nucleoside analogs alone or in combination with antiretrovirals. A majority of these cases have been in women; obesity and prolonged nucleoside exposure may also be risk factors. Particular caution should be exercised when administering nucleoside analogs to any patient with known risk factors for hepatic disease; however, cases have also been reported in patients with no known risk factors. Suspend adefovir in any patient who develops clinical or laboratory findings suggestive of lactic acidosis or pronounced hepatotoxicity (which may include hepatomegaly and steatosis even in the absence of marked transaminase elevations). (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with a nephrotoxic agent, such as adefovir. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions. (Moderate) Patients who are concurrently taking adefovir with emtricitabine are at risk of developing lactic acidosis and severe hepatomegaly with steatosis. Lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported with the use of nucleoside analogs alone or in combination with antiretrovirals. A majority of these cases have been in women; obesity and prolonged nucleoside exposure may also be risk factors. Particular caution should be exercised when administering nucleoside analogs to any patient with known risk factors for hepatic disease; however, cases have also been reported in patients with no known risk factors. Suspend adefovir in any patient who develops clinical or laboratory findings suggestive of lactic acidosis or pronounced hepatotoxicity (which may include hepatomegaly and steatosis even in the absence of marked transaminase elevations).
Aldesleukin, IL-2: (Moderate) Close clinical monitoring is advised when administering aldesleukin, IL-2 with rilpivirine due to an increased potential for rilpivirine-related adverse events. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Aldesleukin is an inhibitor of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in increased rilpivirine plasma concentrations.
Alfuzosin: (Moderate) Caution is advised when administering rilpivirine with alfuzosin. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation and alfuzosin may also prolong the QT interval in a dose-dependent manner.
Amikacin: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as aminoglycosides. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions. (Moderate) Monitor for changes in serum creatinine and adverse reactions, such as lactic acidosis or hepatotoxicity if emtricitabine is administered in combination with nephrotoxic agents, such as aminoglycosides. Consider the potential for drug interaction prior to and during concurrent use of these medications. Both emtricitabine and aminoglycosides are excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. While no drug interactions due to competition for renal excretion have been observed, coadministration of these medications may increase concentrations of both drugs.
Aminoglycosides: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as aminoglycosides. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions. (Moderate) Monitor for changes in serum creatinine and adverse reactions, such as lactic acidosis or hepatotoxicity if emtricitabine is administered in combination with nephrotoxic agents, such as aminoglycosides. Consider the potential for drug interaction prior to and during concurrent use of these medications. Both emtricitabine and aminoglycosides are excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. While no drug interactions due to competition for renal excretion have been observed, coadministration of these medications may increase concentrations of both drugs.
Aminosalicylate sodium, Aminosalicylic acid: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as salicylates. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
Amiodarone: (Major) Concomitant use of rilpivirine and amiodarone increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. Due to the extremely long half-life of amiodarone, a drug interaction is possible for days to weeks after drug discontinuation. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose. (Moderate) Coadministration of tenofovir alafenamide with amiodarone may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a P-gp substrate and amiodarone is a P-gp inhibitor.
Amisulpride: (Major) Monitor ECGs for QT prolongation when amisulpride is administered with rilpivirine. Amisulpride causes dose- and concentration- dependent QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation; caution is advised when administering rilpivirine with other drugs that may prolong the QT or PR interval.
Amlodipine; Celecoxib: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Amobarbital: (Moderate) Close clinical monitoring is advised when administering barbiturates with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Barbiturates are inducers of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response.
Amoxicillin; Clarithromycin; Omeprazole: (Contraindicated) Concurrent use of proton pump inhibitors and rilpivirine is contraindicated; when these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Proton pump inhibitors inhibit secretion of gastric acid by proton pumps thereby increasing the gastric pH; for optimal absorption, rilpivirine requires an acidic environment. Coadministration of a proton pump inhibitor and rilpivirine may result in decreased rilpivirine absorption/serum concentrations, which could cause impaired virologic response to rilpivirine. (Major) Close clinical monitoring is advised when administering clarithromycin with rilpivirine due to an increased potential for rilpivirine-related adverse events. When possible, alternative antibiotics should be considered. Predictions about the interaction can be made based on metabolic pathways. Clarithromycin is an inhibitor of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in increased rilpivirine plasma concentrations. Also, supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation; caution is advised when administering rilpivirine with other drugs that may prolong the QT or PR interval, such as clarithromycin. (Moderate) Coadministration of clarithromycin and tenofovir alafenamide may result in elevated tenofovir concentrations. Clarithromycin is an inhibitor of the drug transporter P-glycoprotein (P-gp). Tenofovir alafenamide is a P-gp substrate. However, when tenofovir alafenamide is administered as part of a cobicistat-containing product, its availability is increased by cobicistat and a further increase of tenofovir alafenamide concentrations is not expected upon coadministration of an additional P-gp inhibitor.
Amphotericin B lipid complex (ABLC): (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with a nephrotoxic agent, such as amphotericin B. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions.
Amphotericin B liposomal (LAmB): (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with a nephrotoxic agent, such as amphotericin B. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions.
Amphotericin B: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with a nephrotoxic agent, such as amphotericin B. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions.
Anagrelide: (Major) Torsades de pointes (TdP) and ventricular tachycardia have been reported during post-marketing use of anagrelide. A cardiovascular examination, including an ECG, should be obtained in all patients prior to initiating anagrelide therapy. Monitor patients during anagrelide therapy for cardiovascular effects and evaluate as necessary. Drugs with a possible risk for QT prolongation and TdP that should be used cautiously and with close monitoring with anagrelide include rilpivirine.
Antacids: (Moderate) Concurrent administration of rilpivirine and antacids may significantly decrease rilpivirine plasma concentrations, potentially resulting in treatment failure. To decrease the risk of virologic failure, avoid use of antacids for at least 2 hours before and at least 4 hours after administering rilpivirine.
Apalutamide: (Contraindicated) Concurrent use of apalutamide and rilpivirine is contraindicated; when these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Apalutamide is a strong inducer of CYP3A4, which is primarily responsible for the metabolism of rilpivirine. Coadministration may result in decreased rilpivirine serum concentrations, which could cause impaired virologic response to rilpivirine.
Apomorphine: (Moderate) Exercise caution when administering apomorphine concomitantly with rilpivirine since concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Dose-related QTc prolongation is associated with therapeutic apomorphine exposure.
Aprepitant, Fosaprepitant: (Moderate) Use caution if rilpivirine and aprepitant, fosaprepitant are used concurrently and monitor for an increase in rilpivirine-related adverse effects for several days after administration of a multi-day aprepitant regimen. Rilpivirine is a CYP3A4 substrate. Aprepitant, when administered as a 3-day oral regimen (125 mg/80 mg/80 mg), is a moderate CYP3A4 inhibitor and inducer and may increase plasma concentrations of rilpivirine. For example, a 5-day oral aprepitant regimen increased the AUC of another CYP3A4 substrate, midazolam (single dose), by 2.3-fold on day 1 and by 3.3-fold on day 5. After a 3-day oral aprepitant regimen, the AUC of midazolam (given on days 1, 4, 8, and 15) increased by 25% on day 4, and then decreased by 19% and 4% on days 8 and 15, respectively. As a single 125 mg or 40 mg oral dose, the inhibitory effect of aprepitant on CYP3A4 is weak, with the AUC of midazolam increased by 1.5-fold and 1.2-fold, respectively. After administration, fosaprepitant is rapidly converted to aprepitant and shares many of the same drug interactions. However, as a single 150 mg intravenous dose, fosaprepitant only weakly inhibits CYP3A4 for a duration of 2 days; there is no evidence of CYP3A4 induction. Fosaprepitant 150 mg IV as a single dose increased the AUC of midazolam (given on days 1 and 4) by approximately 1.8-fold on day 1; there was no effect on day 4. Less than a 2-fold increase in the midazolam AUC is not considered clinically important.
Aripiprazole: (Moderate) Concomitant use of aripiprazole and rilpivirine may increase the risk of QT/QTc prolongation and torsade de pointes (TdP) in some patients. Consider taking steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, especially in patients with additional risk factors for TdP. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Armodafinil: (Moderate) Close clinical monitoring is advised when administering armodafinil with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions about the interaction can be made based on the metabolic pathways of these drugs. Armodafinil is an inducer of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response.
Arsenic Trioxide: (Major) Concurrent use of arsenic trioxide and rilpivirine should be avoided due to an increased risk for QT prolongation and torsade de pointes (TdP). If possible, rilpivirine should be discontinued prior to initiating arsenic trioxide therapy. QT prolongation should be expected with the administration of arsenic trioxide. TdP and complete atrioventricular block have been reported. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have also caused QT prolongation.
Artemether; Lumefantrine: (Major) Concurrent use of rilpivirine and artemether; lumefantrine should be avoided due to an increased risk for QT prolongation and torsade de pointes (TdP). Consider ECG monitoring if rilpivirine must be used with or after artemether; lumefantrine treatment. Administration of artemether; lumefantrine is associated with prolongation of the QT interval. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have also caused QT prolongation. (Major) Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation; caution is advised when administering rilpivirine with other drugs that may prolong the QT or PR interval, such as artemether. In addition to avoiding drug interactions, the potential for torsade de pointes (TdP) can be reduced by avoiding the use of QT prolonging drugs in patients at substantial risk for TdP. Consider ECG monitoring if rilpivirine must be used with or after artemether; lumefantrine treatment.
Asenapine: (Major) Asenapine has been associated with QT prolongation. According to the manufacturer of asenapine, the drug should be avoided in combination with other agents also known to have this effect. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation; caution is advised when administering rilpivirine with other drugs that may prolong the QT or PR interval, such as asenapine.
Aspirin, ASA: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as salicylates. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
Aspirin, ASA; Butalbital; Caffeine: (Moderate) Close clinical monitoring is advised when administering barbiturates with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Barbiturates are inducers of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response. (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as salicylates. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
Aspirin, ASA; Caffeine: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as salicylates. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
Aspirin, ASA; Caffeine; Orphenadrine: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as salicylates. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
Aspirin, ASA; Carisoprodol: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as salicylates. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
Aspirin, ASA; Carisoprodol; Codeine: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as salicylates. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
Aspirin, ASA; Citric Acid; Sodium Bicarbonate: (Moderate) Concurrent administration of rilpivirine and antacids may significantly decrease rilpivirine plasma concentrations, potentially resulting in treatment failure. To decrease the risk of virologic failure, avoid use of antacids for at least 2 hours before and at least 4 hours after administering rilpivirine. (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as salicylates. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
Aspirin, ASA; Dipyridamole: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as salicylates. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
Aspirin, ASA; Omeprazole: (Contraindicated) Concurrent use of proton pump inhibitors and rilpivirine is contraindicated; when these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Proton pump inhibitors inhibit secretion of gastric acid by proton pumps thereby increasing the gastric pH; for optimal absorption, rilpivirine requires an acidic environment. Coadministration of a proton pump inhibitor and rilpivirine may result in decreased rilpivirine absorption/serum concentrations, which could cause impaired virologic response to rilpivirine. (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as salicylates. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
Aspirin, ASA; Oxycodone: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as salicylates. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
Atazanavir: (Moderate) Close clinical monitoring is advised when administering atazanavir with rilpivirine due to an increased potential for rilpivirine-related adverse events. Predictions about the interaction can be made based on metabolic pathways. Atazanavir is an inhibitor of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in increased rilpivirine plasma concentrations. (Moderate) Concurrent use of atazanavir with tenofovir alafenamide may result in elevated tenofovir serum concentrations. Tenofovir alafenamide is a substrate for the drug transporter organic anion transporting polypeptide (OATP1B1/1B3); atazanavir is an OATP1B1 inhibitor. Monitor for increased toxicities if these drugs are given together.
Atazanavir; Cobicistat: (Moderate) Close clinical monitoring is advised when administering atazanavir with rilpivirine due to an increased potential for rilpivirine-related adverse events. Predictions about the interaction can be made based on metabolic pathways. Atazanavir is an inhibitor of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in increased rilpivirine plasma concentrations. (Moderate) Concurrent use of atazanavir with tenofovir alafenamide may result in elevated tenofovir serum concentrations. Tenofovir alafenamide is a substrate for the drug transporter organic anion transporting polypeptide (OATP1B1/1B3); atazanavir is an OATP1B1 inhibitor. Monitor for increased toxicities if these drugs are given together. (Moderate) The plasma concentrations of rilpivirine may be elevated when administered concurrently with cobicistat. Clinical monitoring for adverse effects is recommended during coadministration. Rilpivirine is a CYP3A4 substrate and cobicistat is a strong inhibitor of CYP3A4. (Moderate) The plasma concentrations of tenofovir may be elevated when administered concurrently with cobicistat. Clinical monitoring for adverse effects is recommended during coadministration. Cobicistat is an inhibitor of the drug transporters P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and organic anion transport protein (OATP1B1/1B3). Tenofovir alafenamide is a substrate for all three transporters.
Atomoxetine: (Moderate) Concomitant use of atomoxetine and rilpivirine may increase the risk of QT/QTc prolongation and torsade de pointes (TdP) in some patients. Consider taking steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, especially in patients with additional risk factors for TdP. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Azithromycin: (Major) Concomitant use of rilpivirine and azithromycin increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Bacitracin: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with a nephrotoxic agent, such as bacitracin. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions.
Barium Sulfate: (Moderate) Tenofovir-containing products should be avoided with concurrent or recent use of a nephrotoxic agent, such as radiopaque contrast agents. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with drugs that are eliminated by active tubular secretion may increase concentrations of tenofovir and/or the co-administered drug. Drugs that decrease renal function may also increase concentrations of tenofovir. Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Monitor patients receiving concomitant nephrotoxic agents for changes in serum creatinine and phosphorus, and urine glucose and protein.
Bedaquiline: (Major) Due to the potential for QT prolongation and torsade de pointes (TdP), caution is advised when administering bedaquiline with rilpivirine. Bedaquiline has been reported to prolong the QT interval. Prior to initiating bedaquiline, obtain serum electrolyte concentrations and a baseline ECG. An ECG should also be performed at least 2, 12, and 24 weeks after starting bedaquiline therapy. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have also caused QT prolongation.
Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as salicylates. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
Berotralstat: (Moderate) Coadministration of rilpivirine with berotralstat may result in increased plasma concentrations of rilpivirine, leading to an increase in rilpivirine-related adverse effects. Rilpivirine is a CYP3A4 substrate and berotralstat is a moderate CYP3A4 inhibitor. (Moderate) Coadministration of tenofovir alafenamide with berotralstat may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a P-glycoprotein (P-gp) substrate and berotralstat is a P-gp inhibitor.
Bexarotene: (Moderate) Close clinical monitoring is advised when administering bexarotene with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Bexarotene is an inducer of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response.
Bismuth Subcitrate Potassium; Metronidazole; Tetracycline: (Moderate) Concomitant use of metronidazole and rilpivirine may increase the risk of QT/QTc prolongation and torsade de pointes (TdP) in some patients. Consider taking steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, especially in patients with additional risk factors for TdP. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at three times the maximum recommended dose.
Bismuth Subsalicylate: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as salicylates. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) Concomitant use of metronidazole and rilpivirine may increase the risk of QT/QTc prolongation and torsade de pointes (TdP) in some patients. Consider taking steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, especially in patients with additional risk factors for TdP. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at three times the maximum recommended dose. (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as salicylates. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
Bosentan: (Moderate) Close clinical monitoring is advised when administering bosentan with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Bosentan is an inducer of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response.
Brigatinib: (Moderate) Monitor for an increase in tenofovir-related adverse reactions if coadministration with brigatinib is necessary. Tenofovir alafenamide is a substrate of P-glycoprotein (P-gp) and BCRP. Brigatinib inhibits both P-gp and BCRP in vitro and may have the potential to increase concentrations of substrates of these transporters.
Bupivacaine; Meloxicam: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Buprenorphine: (Major) Concomitant use of rilpivirine and buprenorphine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Buprenorphine; Naloxone: (Major) Concomitant use of rilpivirine and buprenorphine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Butabarbital: (Moderate) Close clinical monitoring is advised when administering barbiturates with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Barbiturates are inducers of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response.
Butalbital; Acetaminophen: (Moderate) Close clinical monitoring is advised when administering barbiturates with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Barbiturates are inducers of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response.
Butalbital; Acetaminophen; Caffeine: (Moderate) Close clinical monitoring is advised when administering barbiturates with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Barbiturates are inducers of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response.
Butalbital; Acetaminophen; Caffeine; Codeine: (Moderate) Close clinical monitoring is advised when administering barbiturates with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Barbiturates are inducers of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response.
Butalbital; Aspirin; Caffeine; Codeine: (Moderate) Close clinical monitoring is advised when administering barbiturates with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Barbiturates are inducers of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response. (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as salicylates. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
Cabozantinib: (Minor) Monitor for an increase in both cabozantinib- and tenofovir-related adverse reactions if coadministration is necessary. Cabozantinib is a Multidrug Resistance Protein 2 (MRP2) substrate and tenofovir is an MRP2 inhibitor. MRP2 inhibitors have the potential to increase plasma concentrations of cabozantinib. Cabozantinib is also P-gp inhibitor and has the potential to increase plasma concentrations of P-gp substrates such as tenofovir. The clinical relevance of either of these interactions is unknown.
Calcium Carbonate: (Moderate) Concurrent administration of rilpivirine and antacids may significantly decrease rilpivirine plasma concentrations, potentially resulting in treatment failure. To decrease the risk of virologic failure, avoid use of antacids for at least 2 hours before and at least 4 hours after administering rilpivirine.
Calcium Carbonate; Famotidine; Magnesium Hydroxide: (Moderate) Coadministration with famotidine may significantly decrease rilpivirine plasma concentrations, potentially resulting in treatment failure. To decrease the risk of virologic failure, avoid use of famotidine for at least 12 hours before and at least 4 hours after administering rilpivirine. (Moderate) Concurrent administration of rilpivirine and antacids may significantly decrease rilpivirine plasma concentrations, potentially resulting in treatment failure. To decrease the risk of virologic failure, avoid use of antacids for at least 2 hours before and at least 4 hours after administering rilpivirine.
Calcium Carbonate; Magnesium Hydroxide: (Moderate) Concurrent administration of rilpivirine and antacids may significantly decrease rilpivirine plasma concentrations, potentially resulting in treatment failure. To decrease the risk of virologic failure, avoid use of antacids for at least 2 hours before and at least 4 hours after administering rilpivirine.
Calcium Carbonate; Magnesium Hydroxide; Simethicone: (Moderate) Concurrent administration of rilpivirine and antacids may significantly decrease rilpivirine plasma concentrations, potentially resulting in treatment failure. To decrease the risk of virologic failure, avoid use of antacids for at least 2 hours before and at least 4 hours after administering rilpivirine.
Calcium Carbonate; Simethicone: (Moderate) Concurrent administration of rilpivirine and antacids may significantly decrease rilpivirine plasma concentrations, potentially resulting in treatment failure. To decrease the risk of virologic failure, avoid use of antacids for at least 2 hours before and at least 4 hours after administering rilpivirine.
Calcium; Vitamin D: (Moderate) Concurrent administration of rilpivirine and antacids may significantly decrease rilpivirine plasma concentrations, potentially resulting in treatment failure. To decrease the risk of virologic failure, avoid use of antacids for at least 2 hours before and at least 4 hours after administering rilpivirine.
Cannabidiol: (Moderate) Coadministration of tenofovir alafenamide with cannabidiol may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a P-gp substrate and cannabidiol is a P-gp inhibitor.
Capmatinib: (Moderate) Coadministration of tenofovir alafenamide with capmatinib may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a P-glycoprotein (P-gp) and BCRP substrate and capmatinib is a P-gp and BCRP inhibitor.
Carbamazepine: (Contraindicated) Coadministration of carbamazepine and rilpivirine is contraindicated due to the potential for loss of virologic response and possible resistance to rilpivirine or the class of non-nucleoside reverse transcriptase inhibitors (NNRTIs). Rilpivirine is a CYP3A4 substrate and carbamazepine is a strong CYP3A4 inducer. (Major) Administering tenofovir alafenamide with carbamazepine is not recommended. Consider use of an alternative anticonvulsant. Taking these drugs together is expected to decrease tenofovir plasma concentrations, which may increase the potential for resistance and HIV treatment failure.
Carboplatin: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with a nephrotoxic agent, such as carboplatin. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions.
Carvedilol: (Minor) Caution is advised when administering tenofovir alafenamide concurrently with carvedilol, as coadministration may result in elevated tenofovir alafenamide plasma concentrations. Inhibitors of the drug transporter P-glycoprotein (P-gp), such as carvedilol, may increase absorption of tenofovir alafenamide, a P-gp substrate. If these medications are administered together, monitor for tenofovir-associated adverse reactions. Of note, when tenofovir alafenamide is administered as part of a cobicistat-containing product, its availability is increased by cobicistat and a further increase of tenofovir alafenamide concentrations is not expected upon coadministration of an additional P-gp inhibitor.
Celecoxib: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Celecoxib; Tramadol: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Cenobamate: (Moderate) Close clinical monitoring is advised when administering cenobamate with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Cenobamate is a moderate CYP3A4 inducer and rilpivirine is a CYP3A4 substrate. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response.
Ceritinib: (Major) Avoid coadministration of ceritinib with rilpivirine if possible due to the risk of QT prolongation; plasma concentrations of rilpivirine may also increase. If concomitant use is unavoidable, periodically monitor ECGs and electrolytes; an interruption of ceritinib therapy, dose reduction, or discontinuation of therapy may be necessary if QT prolongation occurs. Rilpivirine is a CYP3A4 substrate that has been associated with QT prolongation at supratherapeutic doses (75 to 300 mg per day). Ceritinib is a strong CYP3A4 inhibitor that has also been associated with concentration-dependent QT prolongation. Coadministration with another strong CYP3A4 inhibitor increased the AUC of rilpivirine by 1.49-fold.
Chloramphenicol: (Moderate) Close clinical monitoring is advised when administering chloramphenicol with rilpivirine due to an increased potential for rilpivirine-related adverse events. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Chloramphenicol is an inhibitor of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in increased rilpivirine plasma concentrations.
Chloroquine: (Major) Avoid coadministration of chloroquine with rilpivirine due to the increased risk of QT prolongation. If use together is necessary, obtain an ECG at baseline to assess initial QT interval and determine frequency of subsequent ECG monitoring, avoid any non-essential QT prolonging drugs, and correct electrolyte imbalances. Chloroquine is associated with an increased risk of QT prolongation and torsade de pointes (TdP); the risk of QT prolongation is increased with higher chloroquine doses. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Chlorpromazine: (Major) Concurrent use of chlorpromazine and rilpivirine should be avoided due to an increased risk for QT prolongation and torsade de pointes (TdP). Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Phenothiazines have also been associated with QT prolongation and/or TdP. This risk is generally higher at elevated drugs concentrations of phenothiazines. Chlorpromazine is specifically associated with an established risk of QT prolongation and TdP; case reports have included patients receiving therapeutic doses of chlorpromazine.
Choline Salicylate; Magnesium Salicylate: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as salicylates. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
Cidofovir: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with a nephrotoxic agent, such as cidofovir. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions. (Moderate) Monitor for changes in serum creatinine and adverse reactions, such as lactic acidosis or hepatotoxicity if emtricitabine is administered in combination with nephrotoxic agents, such as cidofovir. Consider the potential for drug interaction prior to and during concurrent use of these medications. Both emtricitabine and cidofovir are excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. While no drug interactions due to competition for renal excretion have been observed, coadministration of these medications may increase concentrations of both drugs.
Cimetidine: (Moderate) Coadministration with cimetidine may significantly decrease rilpivirine plasma concentrations, potentially resulting in treatment failure. To decrease the risk of virologic failure, avoid use of H2 receptor antagonist for at least 12 hours before and at least 4 hours after administering rilpivirine.
Ciprofloxacin: (Moderate) Concomitant use of ciprofloxacin and rilpivirine may increase the risk of QT/QTc prolongation and torsade de pointes (TdP) in some patients. Consider taking steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, especially in patients with additional risk factors for TdP. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Cisapride: (Contraindicated) Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Because of the potential for torsades de pointes, use of cisapride with rilpivirine is contraindicated.
Cisplatin: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with a nephrotoxic agent, such as cisplatin. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions.
Citalopram: (Major) Concomitant use of rilpivirine and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Clarithromycin: (Major) C

lose clinical monitoring is advised when administering clarithromycin with rilpivirine due to an increased potential for rilpivirine-related adverse events. When possible, alternative antibiotics should be considered. Predictions about the interaction can be made based on metabolic pathways. Clarithromycin is an inhibitor of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in increased rilpivirine plasma concentrations. Also, supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation; caution is advised when administering rilpivirine with other drugs that may prolong the QT or PR interval, such as clarithromycin. (Moderate) Coadministration of clarithromycin and tenofovir alafenamide may result in elevated tenofovir concentrations. Clarithromycin is an inhibitor of the drug transporter P-glycoprotein (P-gp). Tenofovir alafenamide is a P-gp substrate. However, when tenofovir alafenamide is administered as part of a cobicistat-containing product, its availability is increased by cobicistat and a further increase of tenofovir alafenamide concentrations is not expected upon coadministration of an additional P-gp inhibitor.
Class IA Antiarrhythmics: (Major) Rilpivirine should be used cautiously with Class IA antiarrhythmics (disopyramide, procainamide, quinidine). Class IA antiarrhythmics are associated with QT prolongation and torsades de pointes (TdP). Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation; caution is advised when administering rilpivirine with other drugs that may prolong the QT or PR interval.
Clindamycin: (Moderate) Concomitant use of tenofovir alafenamide and clindamycin may result in additive nephrotoxicity. Monitor for renal toxicity if concomitant use is required.
Clofazimine: (Moderate) Concomitant use of clofazimine and rilpivirine may increase the risk of QT/QTc prolongation and torsade de pointes (TdP) in some patients. Consider taking steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, especially in patients with additional risk factors for TdP. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Clozapine: (Moderate) Caution is advised when administering rilpivirine with clozapine as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Treatment with clozapine has been associated with QT prolongation, torsade de pointes (TdP), cardiac arrest, and sudden death.
Cobicistat: (Moderate) The plasma concentrations of rilpivirine may be elevated when administered concurrently with cobicistat. Clinical monitoring for adverse effects is recommended during coadministration. Rilpivirine is a CYP3A4 substrate and cobicistat is a strong inhibitor of CYP3A4. (Moderate) The plasma concentrations of tenofovir may be elevated when administered concurrently with cobicistat. Clinical monitoring for adverse effects is recommended during coadministration. Cobicistat is an inhibitor of the drug transporters P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and organic anion transport protein (OATP1B1/1B3). Tenofovir alafenamide is a substrate for all three transporters.
Codeine; Phenylephrine; Promethazine: (Moderate) Concomitant use of promethazine and rilpivirine may increase the risk of QT/QTc prolongation and torsade de pointes (TdP) in some patients. Consider taking steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, especially in patients with additional risk factors for TdP. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Codeine; Promethazine: (Moderate) Concomitant use of promethazine and rilpivirine may increase the risk of QT/QTc prolongation and torsade de pointes (TdP) in some patients. Consider taking steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, especially in patients with additional risk factors for TdP. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Colistin: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with a nephrotoxic agent, such as colistimethate sodium. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions.
Conivaptan: (Moderate) Coadministration of conivaptan and tenofovir alafenamide may result in elevated tenofovir concentrations. Conivaptan is an inhibitor of the drug transporter P-glycoprotein (P-gp). Tenofovir alafenamide is a substrate for P-gp. Of note, when tenofovir alafenamide is administered as part of a cobicistat-containing product, its availability is increased by cobicistat and a further increase of tenofovir alafenamide concentrations is not expected upon coadministration of an additional P-gp inhibitor. (Moderate) Coadministration of rilpivirine with conivaptan may result in increased plasma concentrations of rilpivirine, leading to an increase in rilpivirine-related adverse effects. Rilpivirine is a CYP3A substrate and conivaptan is a moderate CYP3A inhibitor.
Crizotinib: (Major) Avoid coadministration of crizotinib with rilpivirine due to the risk of QT prolongation; exposure to rilpivirine may also increase. If concomitant use is unavoidable, monitor ECGs for QT prolongation and monitor electrolytes. An interruption of therapy, dose reduction, or discontinuation of therapy may be necessary for crizotinib if QT prolongation occurs. Crizotinib is a moderate CYP3A inhibitor that has been associated with concentration-dependent QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have also caused QT prolongation; rilpivirine is also a CYP3A4 substrate.
Cyclosporine: (Moderate) Cyclosporine therapeutic drug monitoring is recommended when administered concurrently with tenofovir alafenamide. Additionally, monitoring for changes in renal function is advised if tenofovir alafenamide is administered in combination with a nephrotoxic agent, such as cyclosporine. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions. Also, tenofovir alafenamide is a substrate of the drug transporters P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and the organic anion transport protein (OATP1B1 and 1B3); cyclosporine is an inhibitor of all three transporters. Inhibition of P-gp, BCRP, and OATP by cyclosporine may further increase tenofovir plasma concentrations. When tenofovir alafenamide is administered as part of a cobicistat-containing product, its availability is increased by cobicistat and a further increase of tenofovir alafenamide concentrations is not expected upon coadministration of an additional P-gp inhibitor.
Dabrafenib: (Major) The concomitant use of dabrafenib and rilpivirine may lead to decreased rilpivirine concentrations and loss of virologic response. Consider use of an alternative agent. If concomitant use of these agents is unavoidable, monitor patients for loss of rilpivirine efficacy. Dabrafenib is a moderate CYP3A4 inducer and rilpivirine is a moderately sensitive CYP3A4 substrate.
Daclatasvir: (Minor) Caution is advised when administering tenofovir alafenamide concurrently with daclatasvir. Coadministration may result in increased tenofovir alafenamide plasma concentrations. Tenofovir alafenamide is a substrate of the drug transporters P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and the organic anion transport protein (OATP1B1 and 1B3); daclatasvir is an inhibitor all three transporters. If these drugs are administered together, closely monitor for tenofovir-associated adverse reactions. Of note, when tenofovir alafenamide is administered as part of a cobicistat-containing product, its availability is increased by cobicistat and a further increase of tenofovir alafenamide concentrations is not expected upon coadministration of an additional P-gp inhibitor.
Danazol: (Moderate) Close clinical monitoring is advised when administering danazol with rilpivirine due to an increased potential for rilpivirine-related adverse events. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Danazol is an inhibitor of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in increased rilpivirine plasma concentrations.
Darolutamide: (Moderate) Caution is advised with the coadministration of darolutamide and tenofovir alafenamide due to the potential for increased plasma concentrations of tenofovir alafenamide increasing the risk of adverse effects. Tenofovir alafenamide is a substrate of breast cancer resistance protein (BCRP) and darolutamide is a BCRP inhibitor.
Darunavir: (Moderate) Close clinical monitoring is advised when administering the combination of darunavir and ritonavir with rilpivirine due to an increased potential for rilpivirine-related adverse events. Dosage adjustments are not recommended. Predictions about the interaction can be made based on metabolic pathways. Darunavir and ritonavir are inhibitors of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in increased rilpivirine plasma concentrations.
Darunavir; Cobicistat: (Moderate) Close clinical monitoring is advised when administering the combination of darunavir and ritonavir with rilpivirine due to an increased potential for rilpivirine-related adverse events. Dosage adjustments are not recommended. Predictions about the interaction can be made based on metabolic pathways. Darunavir and ritonavir are inhibitors of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in increased rilpivirine plasma concentrations. (Moderate) The plasma concentrations of rilpivirine may be elevated when administered concurrently with cobicistat. Clinical monitoring for adverse effects is recommended during coadministration. Rilpivirine is a CYP3A4 substrate and cobicistat is a strong inhibitor of CYP3A4. (Moderate) The plasma concentrations of tenofovir may be elevated when administered concurrently with cobicistat. Clinical monitoring for adverse effects is recommended during coadministration. Cobicistat is an inhibitor of the drug transporters P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and organic anion transport protein (OATP1B1/1B3). Tenofovir alafenamide is a substrate for all three transporters.
Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Moderate) Close clinical monitoring is advised when administering the combination of darunavir and ritonavir with rilpivirine due to an increased potential for rilpivirine-related adverse events. Dosage adjustments are not recommended. Predictions about the interaction can be made based on metabolic pathways. Darunavir and ritonavir are inhibitors of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in increased rilpivirine plasma concentrations. (Moderate) The plasma concentrations of rilpivirine may be elevated when administered concurrently with cobicistat. Clinical monitoring for adverse effects is recommended during coadministration. Rilpivirine is a CYP3A4 substrate and cobicistat is a strong inhibitor of CYP3A4. (Moderate) The plasma concentrations of tenofovir may be elevated when administered concurrently with cobicistat. Clinical monitoring for adverse effects is recommended during coadministration. Cobicistat is an inhibitor of the drug transporters P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and organic anion transport protein (OATP1B1/1B3). Tenofovir alafenamide is a substrate for all three transporters.
Dasatinib: (Moderate) Caution is advised when administering rilpivirine with dasatinib as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. In vitro studies have shown that dasatinib has the potential to prolong the QT interval.
Degarelix: (Moderate) Consider whether the benefits of androgen deprivation therapy outweigh the potential risks in patients receiving rilpivirine as concurrent use may increase the risk of QT prolongation. Androgen deprivation therapy (i.e., degarelix) may prolong the QT/QTc interval. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Delavirdine: (Major) Coadministration of delavirdine and rilpivirine is not recommended. If they are coadministered, close clinical monitoring is advised due to the increased potential for rilpivirine-related adverse events. Predictions about the interaction can be made based on metabolic pathways. Delavirdine is an inhibitor of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in increased rilpivirine plasma concentrations.
Desflurane: (Major) Halogenated anesthetics should be used cautiously and with close monitoring with rilpivirine. Halogenated anesthetics can prolong the QT interval. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation; caution is advised when administering rilpivirine with other drugs that may prolong the QT or PR interval.
Deutetrabenazine: (Moderate) Caution is advised when administering rilpivirine with deutetrabenazine. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Deutetrabenazine may prolong the QT interval, but the degree of QT prolongation is not clinically significant when deutetrabenazine is administered within the recommended dosage range.
Dexamethasone: (Contraindicated) Concurrent use of dexamethasone (more than 1 dose) and rilpivirine is contraindicated. Concomitant use may decrease the exposure and efficacy of rilpivirine leading to potential development of viral resistance. Rilpivirine is a CYP3A substrate and dexamethasone is an inducer of CYP3A4.
Dexlansoprazole: (Contraindicated) Concurrent use of proton pump inhibitors and rilpivirine is contraindicated; when these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Proton pump inhibitors inhibit secretion of gastric acid by proton pumps thereby increasing the gastric pH; for optimal absorption, rilpivirine requires an acidic environment. Coadministration of a proton pump inhibitor and rilpivirine may result in decreased rilpivirine absorption/serum concentrations, which could cause impaired virologic response to rilpivirine.
Dexmedetomidine: (Moderate) Concomitant use of dexmedetomidine and rilpivirine may increase the risk of QT/QTc prolongation and torsade de pointes (TdP) in some patients. Consider taking steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, especially in patients with additional risk factors for TdP. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Dextromethorphan; Quinidine: (Major) Rilpivirine should be used cautiously with Class IA antiarrhythmics (disopyramide, procainamide, quinidine). Class IA antiarrhythmics are associated with QT prolongation and torsades de pointes (TdP). Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation; caution is advised when administering rilpivirine with other drugs that may prolong the QT or PR interval.
Dichlorphenamide: (Major) Use of dichlorphenamide and tenofovir alafenamide is not recommended because of increased tenofovir exposure and a risk of tenofovir-related adverse effects. Monitor closely for signs of drug toxicity if coadministration cannot be avoided. For example, it is important to monitor renal and hepatic function for all patients during treatment with tenofovir, as the drug may cause hepatotoxicity or nephrotoxicity. Increased tenofovir exposure is possible. Tenofovir is a sensitive OAT1 substrate. Dichlorphenamide inhibits OAT1.
Diclofenac: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Diclofenac; Misoprostol: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Didanosine, ddI: (Moderate) While no dosage adjustments are required, because didanosine, ddI is administered on an empty stomach and rilpivirine is given with food, do not give didanosine within at least two hours before or at least four hours after rilpivirine.
Diflunisal: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Diltiazem: (Moderate) Close clinical monitoring is advised when administering diltiazem with rilpivirine due to an increased potential for rilpivirine-related adverse events. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Diltiazem is an inhibitor of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in increased rilpivirine plasma concentrations.
Diphenhydramine; Ibuprofen: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Diphenhydramine; Naproxen: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Disopyramide: (Major) Rilpivirine should be used cautiously with Class IA antiarrhythmics (disopyramide, procainamide, quinidine). Class IA antiarrhythmics are associated with QT prolongation and torsades de pointes (TdP). Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation; caution is advised when administering rilpivirine with other drugs that may prolong the QT or PR interval.
Dofetilide: (Major) Coadministration of dofetilide and rilpivirine is not recommended as concurrent use may increase the risk of QT prolongation. Dofetilide, a Class III antiarrhythmic agent, is associated with a well-established risk of QT prolongation and torsade de pointes (TdP). Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. (Major) Dofetilide should be co-administered with tenofovir alafenamide with caution since both drugs are actively secreted via cationic secretion and could compete for common renal tubular transport systems. This results in a possible increase in plasma concentrations of either drug. Increased concentrations of dofetilide may increase the risk for side effects including proarrhythmia. Careful patient monitoring and dose adjustment of dofetilide is recommended. (Moderate) Use caution when administering dofetilide concurrently with emtricitabine as both drugs are actively secreted via cationic secretion and could compete for common renal tubular transport systems. This results in a possible increase in plasma concentrations of either drug. Increased concentrations of dofetilide may increase the risk for side effects including proarrhythmia.
Dolasetron: (Moderate) Administer dolasetron with caution in combination with rilpivirine. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Dolasetron has been associated with a dose-dependent prolongation in the QT, PR, and QRS intervals on an electrocardiogram.
Dolutegravir; Lamivudine: (Major) Do not coadminister lamivudine, 3TC-containing products and emtricitabine-containing products due to similarities between emtricitabine and lamivudine.
Donepezil: (Moderate) Use donepezil with caution in combination with rilpivirine as concurrent use may increase the risk of QT prolongation. Case reports indicate that QT prolongation and torsade de pointes (TdP) can occur during donepezil therapy. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Donepezil; Memantine: (Moderate) Use donepezil with caution in combination with rilpivirine as concurrent use may increase the risk of QT prolongation. Case reports indicate that QT prolongation and torsade de pointes (TdP) can occur during donepezil therapy. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Doravirine; Lamivudine; Tenofovir disoproxil fumarate: (Major) Do not coadminister lamivudine, 3TC-containing products and emtricitabine-containing products due to similarities between emtricitabine and lamivudine.
Dronedarone: (Contraindicated) Concurrent use of dronedarone and rilpivirine is contraindicated. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Dronedarone administration is associated with a dose-related increase in the QTc interval. The increase in QTc is approximately 10 milliseconds at doses of 400 mg twice daily (the FDA-approved dose) and up to 25 milliseconds at doses of 1600 mg twice daily. Although there are no studies examining the effects of dronedarone in patients receiving other QT prolonging drugs, coadministration of such drugs may result in additive QT prolongation.
Droperidol: (Major) Droperidol should be administered with extreme caution to patients receiving other agents that may prolong the QT interval. Droperidol administration is associated with an established risk for QT prolongation and torsades de pointes (TdP). Any drug known to have potential to prolong the QT interval should not be coadministered with droperidol. Drugs with a possible risk for QT prolongation and TdP that should be used cautiously with droperidol include rilpivirine. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Echinacea: (Moderate) Use Echinacea sp. with caution in patients taking medications for human immunodeficiency virus (HIV) infection. Some experts have suggested that Echinacea's effects on the immune system might cause problems for patients with HIV infection, particularly with long-term use. There may be less risk with short-term use (less than 2 weeks). A few pharmacokinetic studies have shown reductions in blood levels of some antiretroviral medications when Echinacea was given, presumably due to CYP induction. However, more study is needed for various HIV treatment regimens. Of the agents studied, the interactions do not appear to be significant or to require dose adjustments at the time of use. Although no dose adjustments are required, monitoring drug concentrations may give reassurance during co-administration. Monitor viral load and other parameters carefully during therapy.
Efavirenz: (Major) Coadministration of efavirenz and rilpivirine is not recommended as the combined use of two NNRTIs has not been shown to be beneficial. If they are coadministered, close clinical monitoring is advised due to the potential for rilpivirine treatment failure. Predictions about the interaction can be made based on metabolic pathways. Efavirenz is an inducer of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response. In addition, both drugs have been associated with prolongation of the QT interval. Use of these drugs together may increase the risk for QT prolongation and torsade de pointes (TdP).
Efavirenz; Emtricitabine; Tenofovir Disoproxil Fumarate: (Major) Coadministration of efavirenz and rilpivirine is not recommended as the combined use of two NNRTIs has not been shown to be beneficial. If they are coadministered, close clinical monitoring is advised due to the potential for rilpivirine treatment failure. Predictions about the interaction can be made based on metabolic pathways. Efavirenz is an inducer of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response. In addition, both drugs have been associated with prolongation of the QT interval. Use of these drugs together may increase the risk for QT prolongation and torsade de pointes (TdP).
Efavirenz; Lamivudine; Tenofovir Disoproxil Fumarate: (Major) Coadministration of efavirenz and rilpivirine is not recommended as the combined use of two NNRTIs has not been shown to be beneficial. If they are coadministered, close clinical monitoring is advised due to the potential for rilpivirine treatment failure. Predictions about the interaction can be made based on metabolic pathways. Efavirenz is an inducer of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response. In addition, both drugs have been associated with prolongation of the QT interval. Use of these drugs together may increase the risk for QT prolongation and torsade de pointes (TdP). (Major) Do not coadminister lamivudine, 3TC-containing products and emtricitabine-containing products due to similarities between emtricitabine and lamivudine.
Elacestrant: (Moderate) Coadministration of tenofovir alafenamide with elacestrant may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a substrate of BCRP and P-gp; elacestrant is an inhibitor of BCRP and P-gp.
Elagolix: (Major) The concomitant use of elagolix and rilpivirine may lead to decreased rilpivirine concentrations and loss of virologic response. Consider use of an alternative agent. If concomitant use of these agents is unavoidable, monitor patients for loss of rilpivirine efficacy. Elagolix is a weak to moderate CYP3A4 inducer and rilpivirine is a moderately sensitive CYP3A4 substrate.
Elagolix; Estradiol; Norethindrone acetate: (Major) The concomitant use of elagolix and rilpivirine may lead to decreased rilpivirine concentrations and loss of virologic response. Consider use of an alternative agent. If concomitant use of these agents is unavoidable, monitor patients for loss of rilpivirine efficacy. Elagolix is a weak to moderate CYP3A4 inducer and rilpivirine is a moderately sensitive CYP3A4 substrate.
Elexacaftor; tezacaftor; ivacaftor: (Moderate) Monitor for tenofovir alafenamide-related adverse reactions during coadministration of elexacaftor; tezacaftor; ivacaftor as concurrent use may increase exposure of tenofovir alafenamide. Tenofovir alafenamide is a substrate for the transporters OATP1B1 and OATP1B3; elexacaftor; tezacaftor; ivacaftor may inhibit uptake of OATP1B1 and OATP1B3. (Minor) Use caution when administering ivacaftor and tenofovir alafenamide concurrently. Ivacaftor is an inhibitor of the drug transporter P-glycoprotein (P-gp). Tenofovir alafenamide is a substrate for P-gp. Concurrent use can increase tenofovir exposure leading to adverse events. Of note, when tenofovir alafenamide is administered as part of a cobicistat-containing product, its availability is increased by cobicistat and a further increase of tenofovir alafenamide concentrations is not expected upon coadministration of an additional P-gp inhibitor.
Eliglustat: (Major) Coadministration of tenofovir alafenamide and eliglustat may result in increased concentrations of tenofovir. Monitor patients closely for tenofovir-related adverse effects including nausea, diarrhea, headache, asthenia, and nephrotoxicity. Tenofovir is a P-glycoprotein (P-gp) substrate; eliglustat is a P-gp inhibitor. For coadministration with P-gp substrates, eliglustat's product labeling recommends monitoring therapeutic drug concentrations of the P-gp substrate, if possible, or consideration of a dosage reduction and titrating to clinical effect. Of note, when tenofovir alafenamide is administered as part of a cobicistat-containing product, its availability is increased by cobicistat and a further increase of tenofovir alafenamide concentrations is not expected upon coadministration of an additional P-gp inhibitor. (Moderate) Caution is advised when administering rilpivirine with eliglustat as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Eliglustat is predicted to cause PR, QRS, and/or QT prolongation at significantly elevated plasma concentrations.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Alafenamide: (Moderate) The plasma concentrations of rilpivirine may be elevated when administered concurrently with cobicistat. Clinical monitoring for adverse effects is recommended during coadministration. Rilpivirine is a CYP3A4 substrate and cobicistat is a strong inhibitor of CYP3A4. (Moderate) The plasma concentrations of tenofovir may be elevated when administered concurrently with cobicistat. Clinical monitoring for adverse effects is recommended during coadministration. Cobicistat is an inhibitor of the drug transporters P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and organic anion transport protein (OATP1B1/1B3). Tenofovir alafenamide is a substrate for all three transporters.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Moderate) The plasma concentrations of rilpivirine may be elevated when administered concurrently with cobicistat. Clinical monitoring for adverse effects is recommended during coadministration. Rilpivirine is a CYP3A4 substrate and cobicistat is a strong inhibitor of CYP3A4. (Moderate) The plasma concentrations of tenofovir may be elevated when administered concurrently with cobicistat. Clinical monitoring for adverse effects is recommended during coadministration. Cobicistat is an inhibitor of the drug transporters P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and organic anion transport protein (OATP1B1/1B3). Tenofovir alafenamide is a substrate for all three transporters.
Enasidenib: (Moderate) Coadministration of tenofovir alafenamide with enasidenib may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a P-gp and BCRP substrate and enasidenib is a P-gp and BCRP inhibitor.
Encorafenib: (Major) Avoid coadministration of encorafenib and rilpivirine due to the potential for additive QT prolongation. If concurrent use cannot be avoided, monitor ECGs for QT prolongation and monitor electrolytes; correct hypokalemia and hypomagnesemia prior to treatment. Encorafenib is associated with dose-dependent prolongation of the QT interval. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. (Moderate) Coadministration of tenofovir alafenamide with encorafenib may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a P-gp and BCRP substrate and encorafenib is a BCRP inhibitor.
Entrectinib: (Major) Avoid coadministration of entrectinib with rilpivirine due to the risk of QT prolongation. Entrectinib has been associated with QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Enzalutamide: (Contraindicated) Concurrent use of enzalutamide and rilpivirine is contraindicated; when these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Enzalutamide is a potent inducer of CYP3A4, which is primarily responsible for the metabolism of rilpivirine. Coadministration may result in decreased rilpivirine serum concentrations, which could cause impaired virologic response to rilpivirine.
Eribulin: (Major) Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation; caution is advised when administering rilpivirine with other drugs that may prolong the QT or PR interval, such as eribulin. ECG monitoring is recommended; closely monitor the patient for QT interval prolongation.
Erythromycin: (Major) Close clinical monitoring is advised when administering erythromycin with rilpivirine due to an increased potential for rilpivirine-related adverse events, including QT prolongation. When possible, alternative antibiotics should be considered. Predictions about the interaction can be made based on metabolic pathways. Erythromycin is an inhibitor of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in increased rilpivirine plasma concentrations. Also, supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation; caution is advised when administering rilpivirine with other drugs that may prolong the QT or PR interval, such as erythromycin. (Moderate) Coadministration of tenofovir alafenamide with erythromycin may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a P-gp substrate and erythromycin is a P-gp inhibitor.
Escitalopram: (Moderate) Concomitant use of escitalopram and rilpivirine may increase the risk of QT/QTc prolongation and torsade de pointes (TdP) in some patients. Consider taking steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, especially in patients with additional risk factors for TdP. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Eslicarbazepine: (Contraindicated) In vivo studies suggest eslicarbazepine is an inducer of CYP3A4. CYP3A4 is primarily responsible for the metabolism of rilpivirine. The related anticonvulsants, carbamazepine and oxcarbazepine are contraindicated in combination with rilpivirine. Coadministration may result in decreased rilpivirine serum concentrations, which could cause impaired virologic response to rilpivirine. Although not specifically mentioned by the manufacturer of rilpivirine, it may be prudent to avoid coadministration of eslicarbazepine and rilpivirine given the potential for an interaction based on the pharmacokinetic parameters of the drugs.
Esomeprazole: (Contraindicated) Concurrent use of proton pump inhibitors and rilpivirine is contraindicated; when these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Proton pump inhibitors inhibit secretion of gastric acid by proton pumps thereby increasing the gastric pH; for optimal absorption, rilpivirine requires an acidic environment. Coadministration of a proton pump inhibitor and rilpivirine may result in decreased rilpivirine absorption/serum concentrations, which could cause impaired virologic response to rilpivirine.
Estradiol; Norgestimate: (Moderate) Monitor for norgestimate-related adverse events, such as insulin resistance, dyslipidemia, acne, and venous thrombosis, and consider risks and benefits of coadministration of tenofovir alafenamide in persons who have risk factors for these events. Concomitant use may increase norgestimate concentrations.
Etodolac: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Etravirine: (Major) Coadministration of etravirine and rilpivirine is not recommended as the combined use of two NNRTIs has not been shown to be beneficial. If they are coadministered, close clinical monitoring is advised due to the potential for rilpivirine treatment failure. Predictions about the interaction can be made based on metabolic pathways. Etravirine is an inducer of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response.
Famotidine: (Moderate) Coadministration with famotidine may significantly decrease rilpivirine plasma concentrations, potentially resulting in treatment failure. To decrease the risk of virologic failure, avoid use of famotidine for at least 12 hours before and at least 4 hours after administering rilpivirine.
Fedratinib: (Moderate) Monitor for increased rilpivirine adverse effects if administered with fedratinib. Coadministration may increase rilpivirine exposure. Rilpivirine is a CYP3A4 substrate; fedratinib is a moderate CYP3A4 inhibitor.
Felodipine: (Minor) Caution is advised when administering tenofovir alafenamide concurrently with felodipine, as coadministration may result in elevated tenofovir alafenamide plasma concentrations. Inhibitors of the drug transporter P-glycoprotein (P-gp), such as felodipine, may increase absorption of tenofovir alafenamide, a P-gp substrate. If these medications are administered together, monitor for tenofovir-associated adverse reactions. Of note, when tenofovir alafenamide is administered as part of a cobicistat-containing product, its availability is increased by cobicistat and a further increase of tenofovir alafenamide concentrations is not expected upon coadministration of an additional P-gp inhibitor.
Fenoprofen: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Fingolimod: (Moderate) Exercise caution when administering fingolimod concomitantly with rilpivirine as concurrent use may increase the risk of QT prolongation. Fingolimod initiation results in decreased heart rate and may prolong the QT interval. Fingolimod has not been studied in patients treated with drugs that prolong the QT interval, but drugs that prolong the QT interval have been associated with cases of TdP in patients with bradycardia. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Flecainide: (Major) Concomitant use of rilpivirine and flecainide increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Flibanserin: (Minor) Caution is advised when administering tenofovir alafenamide concurrently with flibanserin, as coadministration may result in elevated tenofovir alafenamide plasma concentrations. Inhibitors of the drug transporter P-glycoprotein (P-gp), such as flibanserin, may increase absorption of tenofovir alafenamide, a P-gp substrate. If these medications are administered together, monitor for tenofovir-associated adverse reactions. Of note, when tenofovir alafenamide is administered as part of a cobicistat-containing product, its availability is increased by cobicistat and a further increase of tenofovir alafenamide concentrations is not expected upon coadministration of an additional P-gp inhibitor.
Fluconazole: (Contraindicated) Concurrent use of fluconazole and rilpivirine is contraindicated due to the risk of life threatening arrhythmias such as torsade de pointes (TdP). Fluconazole is an inhibitor of CYP3A4, an isoenzyme responsible for the metabolism of rilpivirine. These drugs used in combination may result in elevated rilpivirine plasma concentrations, causing an increased risk for adverse events, such as QT prolongation. Additionally, fluconazole has been associated with prolongation of the QT interval; do not use with other drugs that may prolong the QT interval and are metabolized through CYP3A4, such as rilpivirine.
Fluoxetine: (Moderate) Concomitant use of fluoxetine and rilpivirine may increase the risk of QT/QTc prolongation and torsade de pointes (TdP) in some patients. Consider taking steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, especially in patients with additional risk factors for TdP. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Fluphenazine: (Minor) Caution is advised when administering rilpivirine with fluphenazine as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Fluphenazine is associated with a possible risk for QT prolongation. Theoretically, fluphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Flurbiprofen: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Flutamide: (Moderate) Close clinical monitoring is advised when administering flutamide with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Flutamide is an inducer of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response.
Fluvoxamine: (Major) There may be an increased risk for QT prolongation and torsade de pointes (TdP) during concurrent use of fluvoxamine and rilpivirine. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Cases of QT prolongation and TdP have been reported during postmarketing use of fluvoxamine. In addition, fluvoxamine is a moderate inhibitor of CYP3A4 and rilpivirine is a CYP3A4 substrate. Coadministration may result in increased rilpivirine plasma concentrations.
Fosamprenavir: (Moderate) Coadministration of rilpivirine with fosamprenavir may result in increased plasma concentrations of rilpivirine, leading to an increase in rilpivirine-related adverse effects. Rilpivirine is a CYP3A substrate and fosamprenavir is a moderate CYP3A inhibitor.
Foscarnet: (Major) When possible, avoid concurrent use of foscarnet with other drugs known to prolong the QT interval, such as rilpivirine. Foscarnet has been associated with postmarketing reports of both QT prolongation and torsade de pointes (TdP). Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. If these drugs are administered together, obtain an electrocardiogram and electrolyte concentrations before and periodically during treatment. (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with a nephrotoxic agent, such as foscarnet. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions. (Moderate) Monitor for changes in serum creatinine and adverse reactions, such as lactic acidosis or hepatotoxicity if emtricitabine is administered in combination with nephrotoxic agents, such as foscarnet. Consider the potential for drug interaction prior to and during concurrent use of these medications. Both emtricitabine and foscarnet are excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. While no drug interactions due to competition for renal excretion have been observed, coadministration of these medications may increase concentrations of both drugs.
Fosphenytoin: (Contraindicated) Concurrent use of phenytoin or fosphenytoin and rilpivirine is contraindicated. When these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Phenytoin is a potent inducer of CYP3A4, which is primarily responsible for the metabolism of rilpivirine. Coadministration may result in decreased rilpivirine serum concentrations, which could cause impaired virologic response to rilpivirine. (Major) Administering tenofovir alafenamide with fosphenytoin is not recommended. Consider use of an alternative anticonvulsant. Taking these drugs together is expected to decrease tenofovir plasma concentrations, which may increase the potential for resistance and HIV treatment failure.
Fostamatinib: (Moderate) Monitor for tenofovir toxicities that may require tenofovir alafenamide dose reduction if given concurrently with fostamatinib. Concomitant use of fostamatinib with a BCRP or P-gp substrate may increase the concentration of the BCRP or P-gp substrate. Fostamatinib is a P-gp inhibitor, and the active metabolite of fostamatinib, R406, is a BCRP inhibitor; tenofovir alafenamide is a substrate for BCRP and P-gp. Coadministration of fostamatinib with another BCRP substrate increased the substrate AUC by 95% and Cmax by 88%. Coadministration of fostamatinib with another P-gp substrate increased the substrate AUC by 37% and Cmax by 70%.
Fostemsavir: (Moderate) Caution is advised when administering rilpivirine with fostemsavir due to the potential for QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Supratherapeutic doses of fostemsavir (2,400 mg twice daily, four times the recommended daily dose) have been shown to cause QT prolongation. Fostemsavir causes dose-dependent QT prolongation. (Moderate) Concomitant use of tenofovir alafenamide with fostemsavir may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a BCRP substrate and fostemsavir is a BCRP inhibitor.
Futibatinib: (Moderate) Coadministration of tenofovir alafenamide with futibatinib may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a P-gp and BCRP substrate and futibatinib is a P-gp and BCRP inhibitor.
Gadobutrol: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as radiopaque contrast agents. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions.
Gadoversetamide: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as radiopaque contrast agents. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions.
Ganciclovir: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with a nephrotoxic agent, such as ganciclovir. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions. (Moderate) Monitor for changes in serum creatinine and adverse reactions, such as lactic acidosis or hepatotoxicity if emtricitabine is administered in combination with nephrotoxic agents, such as ganciclovir. Consider the potential for drug interaction prior to and during concurrent use of these medications. Both emtricitabine and ganciclovir are excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. While no drug interactions due to competition for renal excretion have been observed, coadministration of these medications may increase concentrations of both drugs.
Gemifloxacin: (Moderate) Caution is advised when administering rilpivirine with gemifloxacin as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Gemifloxacin may prolong the QT interval in some patients. The maximal change in the QTc interval occurs approximately 5 to 10 hours following oral administration of gemifloxacin. The likelihood of QTc prolongation may increase with increasing dose of the drug; therefore, the recommended dose should not be exceeded especially in patients with renal or hepatic impairment where the Cmax and AUC are slightly higher.
Gemtuzumab Ozogamicin: (Moderate) Use gemtuzumab ozogamicin and rilpivirine together with caution due to the potential for additive QT interval prolongation and risk of torsade de pointes (TdP). If these agents are used together, obtain an ECG and serum electrolytes prior to the start of gemtuzumab and as needed during treatment. Although QT interval prolongation has not been reported with gemtuzumab, it has been reported with other drugs that contain calicheamicin. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Gentamicin: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as aminoglycosides. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions. (Moderate) Monitor for changes in serum creatinine and adverse reactions, such as lactic acidosis or hepatotoxicity if emtricitabine is administered in combination with nephrotoxic agents, such as aminoglycosides. Consider the potential for drug interaction prior to and during concurrent use of these medications. Both emtricitabine and aminoglycosides are excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. While no drug interactions due to competition for renal excretion have been observed, coadministration of these medications may increase concentrations of both drugs.
Gilteritinib: (Moderate) Coadministration of tenofovir alafenamide with gilteritinib may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a substrate of P-gp and BCRP and gilteritinib is a P-gp and BCRP inhibitor. (Moderate) Use caution and monitor for additive QT prolongation if concurrent use of gilteritinib and rilpivirine is necessary. Gilteritinib has been associated with QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Glasdegib: (Major) Avoid coadministration of glasdegib with rilpivirine due to the potential for additive QT prolongation. If coadministration cannot be avoided, monitor patients for increased risk of QT prolongation with increased frequency of ECG monitoring. Glasdegib therapy may result in QT prolongation and ventricular arrhythmias including ventricular fibrillation and ventricular tachycardia. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Goserelin: (Moderate) Consider whether the benefits of androgen deprivation therapy (i.e., goserelin) outweigh the potential risks of QT prolongation in patients receiving rilpivirine as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Androgen deprivation therapy may also prolong the QT/QTc interval.
Granisetron: (Moderate) Use granisetron with caution in combination with rilpivirine due to the risk of QT prolongation. Granisetron has been associated with QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Grapefruit juice: (Moderate) Caution is advised when administering tenofovir, PMPA, a P-glycoprotein (P-gp) substrate, concurrently with inhibitors of P-gp, such as grapefruit juice. Coadministration may result in increased absorption of tenofovir. Monitor for tenofovir-associated adverse reactions. (Moderate) Close clinical monitoring is advised when administering grapefruit juice with rilpivirine due to an increased potential for rilpivirine-related adverse events. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Grapefruit juice is an inhibitor of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in increased rilpivirine plasma concentrations.
Halogenated Anesthetics: (Major) Halogenated anesthetics should be used cautiously and with close monitoring with rilpivirine. Halogenated anesthetics can prolong the QT interval. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation; caution is advised when administering rilpivirine with other drugs that may prolong the QT or PR interval.
Haloperidol: (Moderate) Caution is advised when administering rilpivirine with haloperidol as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. QT prolongation and torsade de pointes (TdP) have been observed during haloperidol treatment. Excessive doses (particularly in the overdose setting) or IV administration of haloperidol may be associated with a higher risk of QT prolongation.
Histrelin: (Moderate) Consider whether the benefits of androgen deprivation therapy (i.e., histrelin) outweigh the potential risks of QT prolongation in patients receiving rilpivirine as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Androgen deprivation therapy may also prolong the QT/QTc interval.
Hydrocodone; Ibuprofen: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Hydroxychloroquine: (Major) Concomitant use of rilpivirine and hydroxychloroquine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Hydroxyzine: (Moderate) Concomitant use of hydroxyzine and rilpivirine may increase the risk of QT/QTc prolongation and torsade de pointes (TdP) in some patients. Consider taking steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, especially in patients with additional risk factors for TdP. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as salicylates. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
Ibuprofen: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Ibuprofen; Famotidine: (Moderate) Coadministration with famotidine may significantly decrease rilpivirine plasma concentrations, potentially resulting in treatment failure. To decrease the risk of virologic failure, avoid use of famotidine for at least 12 hours before and at least 4 hours after administering rilpivirine. (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Ibuprofen; Oxycodone: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Ibuprofen; Pseudoephedrine: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Ibutilide: (Major) Ibutilide administration can cause QT prolongation and torsades de pointes (TdP); proarrhythmic events should be anticipated. The potential for proarrhythmic events with ibutilide increases with the coadministration of other drugs that prolong the QT interval, such as rilpivirine. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation; caution is advised when administering rilpivirine with other drugs that may prolong the QT or PR interval.
Idelalisib: (Contraindicated) Avoid concomitant use of idelalisib, a strong CYP3A inhibitor, with rilpivirine, a CYP3A substrate, as rilpivirine toxicities may be significantly increased. The AUC of a sensitive CYP3A substrate was increased 5.4-fold when coadministered with idelalisib.
Iloperidone: (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as rilpivirine. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Imatinib: (Moderate) Close clinical monitoring is advised when administering imatinib, STI-571 with rilpivirine due to an increased potential for rilpivirine-related adverse events. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Imatinib is an inhibitor of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in increased rilpivirine plasma concentrations.
Indinavir: (Moderate) Close clinical monitoring is advised when administering indinavir with rilpivirine due to an increased potential for rilpivirine-related adverse events. Predictions about the interaction can be made based on metabolic pathways. Indinavir is an inhibitor of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in increased rilpivirine plasma concentrations.
Indomethacin: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Inotuzumab Ozogamicin: (Major) Avoid coadministration of inotuzumab ozogamicin with rilpivirine due to the potential for additive QT prolongation and risk of torsade de pointes (TdP). If coadministration is unavoidable, obtain an ECG and serum electrolytes prior to the start of treatment, after treatment initiation, and periodically during treatment. Inotuzumab has been associated with QT interval prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Interferon Alfa-2b: (Moderate) Use together with caution and monitor for hepatic decompensation. Interferons and rilpivirine can both cause hepatotoxicity. Patients with chronic, cirrhotic HCV co-infected with HIV receiving antiretroviral agents and alpha interferons appear to be at increased risk for hepatic decompensation (e.g., Childs-Pugh score 6 or more) compared to patients not receiving HAART.
Interferon Alfa-n3: (Moderate) Use together with caution and monitor for hepatic decompensation. Interferons and rilpivirine can both cause hepatotoxicity. Patients with chronic, cirrhotic HCV co-infected with HIV receiving antiretroviral agents and alpha interferons appear to be at increased risk for hepatic decompensation (e.g., Childs-Pugh score 6 or more) compared to patients not receiving HAART.
Interferon Beta-1a: (Moderate) Use together with caution and monitor for hepatic decompensation. Interferons and rilpivirine can both cause hepatotoxicity. Patients with chronic, cirrhotic HCV co-infected with HIV receiving antiretroviral agents and alpha interferons appear to be at increased risk for hepatic decompensation (e.g., Childs-Pugh score 6 or more) compared to patients not receiving HAART.
Interferon Beta-1b: (Moderate) Use together with caution and monitor for hepatic decompensation. Interferons and rilpivirine can both cause hepatotoxicity. Patients with chronic, cirrhotic HCV co-infected with HIV receiving antiretroviral agents and alpha interferons appear to be at increased risk for hepatic decompensation (e.g., Childs-Pugh score 6 or more) compared to patients not receiving HAART.
Interferon Gamma-1b: (Moderate) Use together with caution and monitor for hepatic decompensation. Interferons and rilpivirine can both cause hepatotoxicity. Patients with chronic, cirrhotic HCV co-infected with HIV receiving antiretroviral agents and alpha interferons appear to be at increased risk for hepatic decompensation (e.g., Childs-Pugh score 6 or more) compared to patients not receiving HAART.
Interferons: (Moderate) Use together with caution and monitor for hepatic decompensation. Interferons and anti-retroviral nucleoside reverse transcriptase inhibitors (NRTIs) can both cause hepatotoxicity. Patients with chronic, cirrhotic HCV co-infected with HIV receiving NRTIs and alpha interferons appear to be at increased risk for hepatic decompensation (e.g., Childs-Pugh score 6 or more) compared to patients not receiving HAART. (Moderate) Use together with caution and monitor for hepatic decompensation. Interferons and rilpivirine can both cause hepatotoxicity. Patients with chronic, cirrhotic HCV co-infected with HIV receiving antiretroviral agents and alpha interferons appear to be at increased risk for hepatic decompensation (e.g., Childs-Pugh score 6 or more) compared to patients not receiving HAART.
Isavuconazonium: (Moderate) Concomitant use of isavuconazonium with rilpivirine may result in increased serum concentrations of rilpivirine. Rilpivirine is a substrate of the hepatic isoenzyme CYP3A4; isavuconazole, the active moiety of isavuconazonium, is a moderate inhibitor of this enzyme. Caution and close monitoring are advised if these drugs are used together. (Minor) Close clinical monitoring for adverse events is advised when administering tenofovir alafenamide with isavuconazonium. Use of these drugs together may result in elevated tenofovir plasma concentrations. Isavuconazonium is an inhibitor of the drug transporter P-glycoprotein (P-gp). Tenofovir alafenamide is a substrate for P-gp. Of note, when tenofovir alafenamide is administered as part of a cobicistat-containing product, its availability is increased by cobicistat and a further increase of tenofovir alafenamide concentrations is not expected upon coadministration of an additional P-gp inhibitor.
Isoflurane: (Major) Halogenated anesthetics should be used cautiously and with close monitoring with rilpivirine. Halogenated anesthetics can prolong the QT interval. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation; caution is advised when administering rilpivirine with other drugs that may prolong the QT or PR interval.
Isoniazid, INH; Pyrazinamide, PZA; Rifampin: (Contraindicated) Concurrent use of rifampin and rilpivirine is contraindicated; when these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Rifampin is a potent inducer of CYP3A4, which is primarily responsible for the metabolism of rilpivirine. Coadministration may result in decreased rilpivirine serum concentrations, which could cause impaired virologic response to rilpivirine. (Major) Administering tenofovir alafenamide with rifampin is not recommended. Taking these drugs together is expected to decrease tenofovir plasma concentrations, which may increase the potential for resistance and HIV treatment failure.
Isoniazid, INH; Rifampin: (Contraindicated) Concurrent use of rifampin and rilpivirine is contraindicated; when these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Rifampin is a potent inducer of CYP3A4, which is primarily responsible for the metabolism of rilpivirine. Coadministration may result in decreased rilpivirine serum concentrations, which could cause impaired virologic response to rilpivirine. (Major) Administering tenofovir alafenamide with rifampin is not recommended. Taking these drugs together is expected to decrease tenofovir plasma concentrations, which may increase the potential for resistance and HIV treatment failure.
Itraconazole: (Moderate) Caution is advised when administering itraconazole with rilpivirine due to the potential for additive effects on the QT interval, increased exposure to rilpivirine, and decreased exposure to itraconazole. Monitor for breakthrough fungal infections in patients receiving rilpivirine with an azole antifungal. Rilpivirine, a CYP3A4 substrate, and itraconazole, a strong CYP3A4 inhibitor, are both associated with QT prolongation; rilpivirine dosage adjustments are not recommended. In addition, concurrent use of rilpivirine decreased exposure to another azole antifungal. A similar interaction may occur with itraconazole.
Ivacaftor: (Minor) Use caution when administering ivacaftor and tenofovir alafenamide concurrently. Ivacaftor is an inhibitor of the drug transporter P-glycoprotein (P-gp). Tenofovir alafenamide is a substrate for P-gp. Concurrent use can increase tenofovir exposure leading to adverse events. Of note, when tenofovir alafenamide is administered as part of a cobicistat-containing product, its availability is increased by cobicistat and a further increase of tenofovir alafenamide concentrations is not expected upon coadministration of an additional P-gp inhibitor.
Ivosidenib: (Major) Avoid coadministration of ivosidenib with rilpivirine due to an increased risk of QT prolongation. If concomitant use is unavoidable, monitor ECGs for QTc prolongation and monitor electrolytes; correct any electrolyte abnormalities as clinically appropriate. An interruption of therapy and dose reduction of ivosidenib may be necessary if QT prolongation occurs. Prolongation of the QTc interval and ventricular arrhythmias have been reported in patients treated with ivosidenib. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Ketoconazole: (Contraindicated) Avoid concomitant use of ketoconazole and rilpivirine due to an increased risk for torsade de pointes (TdP) and QT/QTc prolongation. Concomitant use may also increase the exposure of rilpivirine, further increasing the risk for adverse effects. Rilpivirine is a CYP3A substrate and ketoconazole is a strong CYP3A inhibitor. (Minor) According to the manufacturer, interactions are not expected during coadministration of ketoconazole and tenofovir alafenamide; however based on the metabolic pathways of these medications, monitoring for tenofovir-associated adverse reactions should be considered if these drugs are given together. Ketoconazole is an inhibitor of the drug transporter P-glycoprotein (P-gp). Tenofovir alafenamide is a substrate for P-gp. Of note, when tenofovir alafenamide is administered as part of a cobicistat-containing product, its availability is increased by cobicistat and a further increase of tenofovir alafenamide concentrations is not expected upon coadministration of an additional P-gp inhibitor.
Ketoprofen: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Ketorolac: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Lamivudine, 3TC: (Major) Do not coadminister lamivudine, 3TC-containing products and emtricitabine-containing products due to similarities between emtricitabine and lamivudine.
Lamivudine, 3TC; Zidovudine, ZDV: (Major) Do not coadminister lamivudine, 3TC-containing products and emtricitabine-containing products due to similarities between emtricitabine and lamivudine.
Lamivudine; Tenofovir Disoproxil Fumarate: (Major) Do not coadminister lamivudine, 3TC-containing products and emtricitabine-containing products due to similarities between emtricitabine and lamivudine.
Lansoprazole: (Contraindicated) Concurrent use of proton pump inhibitors and rilpivirine is contraindicated; when these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Proton pump inhibitors inhibit secretion of gastric acid by proton pumps thereby increasing the gastric pH; for optimal absorption, rilpivirine requires an acidic environment. Coadministration of a proton pump inhibitor and rilpivirine may result in decreased rilpivirine absorption/serum concentrations, which could cause impaired virologic response to rilpivirine.
Lansoprazole; Amoxicillin; Clarithromycin: (Contraindicated) Concurrent use of proton pump inhibitors and rilpivirine is contraindicated; when these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Proton pump inhibitors inhibit secretion of gastric acid by proton pumps thereby increasing the gastric pH; for optimal absorption, rilpivirine requires an acidic environment. Coadministration of a proton pump inhibitor and rilpivirine may result in decreased rilpivirine absorption/serum concentrations, which could cause impaired virologic response to rilpivirine. (Major) Close clinical monitoring is advised when administering clarithromycin with rilpivirine due to an increased potential for rilpivirine-related adverse events. When possible, alternative antibiotics should be considered. Predictions about the interaction can be made based on metabolic pathways. Clarithromycin is an inhibitor of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in increased rilpivirine plasma concentrations. Also, supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation; caution is advised when administering rilpivirine with other drugs that may prolong the QT or PR interval, such as clarithromycin. (Moderate) Coadministration of clarithromycin and tenofovir alafenamide may result in elevated tenofovir concentrations. Clarithromycin is an inhibitor of the drug transporter P-glycoprotein (P-gp). Tenofovir alafenamide is a P-gp substrate. However, when tenofovir alafenamide is administered as part of a cobicistat-containing product, its availability is increased by cobicistat and a further increase of tenofovir alafenamide concentrations is not expected upon coadministration of an additional P-gp inhibitor.
Lapatinib: (Moderate) Monitor for evidence of QT prolongation if lapatinib is administered with rilpivirine. Lapatinib has been associated with concentration-dependent QT prolongation; ventricular arrhythmias and torsade de pointes (TdP) have been reported in postmarketing experience with lapatinib. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Lasmiditan: (Moderate) Coadministration of tenofovir alafenamide with lasmiditan may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a P-gp substrate and lasmiditan is a P-gp inhibitor.
Ledipasvir; Sofosbuvir: (Minor) According to the manufacturer, interactions are not expected during coadministration of ledipasvir; sofosbuvir and tenofovir alafenamide; however based on the metabolic pathways of these medications, monitoring for tenofovir-associated adverse reactions should be considered if these drugs are given together. Tenofovir is a substrate of the drug transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP); ledipasvir is an inhibitor of both P-gp and BCRP. Use of these drugs together may increase tenofovir plasma concentrations. Of note, when tenofovir alafenamide is administered as part of a cobicistat-containing product, its availability is increased by cobicistat and a further increase of tenofovir alafenamide concentrations is not expected upon coadministration of an additional P-gp inhibitor.
Lefamulin: (Major) Avoid coadministration of lefamulin with rilpivirine as concurrent use may increase the risk of QT prolongation. If coadministration cannot be avoided, monitor ECG during treatment. Lefamulin has a concentration dependent QTc prolongation effect. The pharmacodynamic interaction potential to prolong the QT interval of the electrocardiogram between lefamulin and other drugs that effect cardiac conduction is unknown. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Lenacapavir: (Moderate) Coadministration of rilpivirine with lenacapavir may result in increased plasma concentrations of rilpivirine, leading to an increase in rilpivirine-related adverse effects. Rilpivirine is a CYP3A substrate and lenacapavir is a moderate CYP3A inhibitor.
Leniolisib: (Moderate) Coadministration of tenofovir alafenamide with leniolisib may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a BCRP substrate and leniolisib is a BCRP inhibitor.
Lenvatinib: (Major) Avoid coadministration of lenvatinib with rilpivirine due to the risk of QT prolongation. Prolongation of the QT interval has been reported with lenvatinib therapy. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have also caused QT prolongation.
Lesinurad: (Moderate) Lesinurad may decrease the systemic exposure and therapeutic efficacy of rilpivirine; monitor for potential reduction in efficacy. Rilpivirine is a CYP3A substrate, and lesinurad is a weak CYP3A inducer.
Lesinurad; Allopurinol: (Moderate) Lesinurad may decrease the systemic exposure and therapeutic efficacy of rilpivirine; monitor for potential reduction in efficacy. Rilpivirine is a CYP3A substrate, and lesinurad is a weak CYP3A inducer.
Letermovir: (Moderate) A clinically relevant increase in the plasma concentration of rilpivirine may occur if given with letermovir. In patients who are also receiving treatment with cyclosporine, the magnitude of this interaction may be amplified. Rilpivirine is primarily metabolized by CYP3A4. Letermovir is a moderate CYP3A4 inhibitor; however, when given with cyclosporine, the combined effect on CYP3A4 substrates may be similar to a strong CYP3A4 inhibitor.
Leuprolide: (Moderate) Consider whether the benefits of androgen deprivation therapy (i.e., leuprolide) outweigh the potential risks of QT prolongation in patients receiving rilpivirine as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Androgen deprivation therapy may also prolong the QT/QTc interval.
Leuprolide; Norethindrone: (Moderate) Consider whether the benefits of androgen deprivation therapy (i.e., leuprolide) outweigh the potential risks of QT prolongation in patients receiving rilpivirine as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Androgen deprivation therapy may also prolong the QT/QTc interval.
Levofloxacin: (Moderate) Concomitant use of levofloxacin and rilpivirine may increase the risk of QT/QTc prolongation and torsade de pointes (TdP) in some patients. Consider taking steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, especially in patients with additional risk factors for TdP. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Levoketoconazole: (Contraindicated) Avoid concomitant use of ketoconazole and rilpivirine due to an increased risk for torsade de pointes (TdP) and QT/QTc prolongation. Concomitant use may also increase the exposure of rilpivirine, further increasing the risk for adverse effects. Rilpivirine is a CYP3A substrate and ketoconazole is a strong CYP3A inhibitor. (Minor) According to the manufacturer, interactions are not expected during coadministration of ketoconazole and tenofovir alafenamide; however based on the metabolic pathways of these medications, monitoring for tenofovir-associated adverse reactions should be considered if these drugs are given together. Ketoconazole is an inhibitor of the drug transporter P-glycoprotein (P-gp). Tenofovir alafenamide is a substrate for P-gp. Of note, when tenofovir alafenamide is administered as part of a cobicistat-containing product, its availability is increased by cobicistat and a further increase of tenofovir alafenamide concentrations is not expected upon coadministration of an additional P-gp inhibitor.
Lithium: (Moderate) Concomitant use of lithium and rilpivirine may increase the risk of QT/QTc prolongation and torsade de pointes (TdP) in some patients. Consider taking steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, especially in patients with additional risk factors for TdP. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Lofexidine: (Major) Monitor ECG if lofexidine is coadministered with rilpivirine due to the potential for additive QT prolongation. Lofexidine prolongs the QT interval. In addition, there are postmarketing reports of torsade de pointes. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation; caution is advised when administering rilpivirine with other drugs that may prolong the QT or PR interval.
Lonafarnib: (Moderate) Coadministration of rilpivirine with lonafarnib may result in increased plasma concentrations of rilpivirine, leading to an increase in rilpivirine-related adverse effects. Rilpivirine is a CYP3A4 substrate and lonafarnib is a strong CYP3A4 inhibitor. (Moderate) Coadministration of tenofovir alafenamide with lonafarnib may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a P-gp substrate and lonafarnib is a P-gp inhibitor.
Loperamide: (Moderate) Caution is advised when administering rilpivirine with loperamide as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. At high doses, loperamide has been associated with serious cardiac toxicities, including syncope, ventricular tachycardia, QT prolongation, torsade de pointes (TdP), and cardiac arrest.
Loperamide; Simethicone: (Moderate) Caution is advised when administering rilpivirine with loperamide as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. At high doses, loperamide has been associated with serious cardiac toxicities, including syncope, ventricular tachycardia, QT prolongation, torsade de pointes (TdP), and cardiac arrest.
Lopinavir; Ritonavir: (Major) Avoid coadministration of lopinavir with rilpivirine due to the potential for additive QT prolongation. If use together is necessary, obtain a baseline ECG to assess initial QT interval and determine frequency of subsequent ECG monitoring, avoid any non-essential QT prolonging drugs, and correct electrolyte imbalances. Lopinavir is associated with QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. (Moderate) Concurrent use of lopinavir with tenofovir alafenamide may result in elevated tenofovir serum concentrations. Tenofovir alafenamide is a substrate for the drug transporter organic anion transporting polypeptide (OATP1B1/1B3); lopinavir is an OATP1B1 inhibitor. When 10 mg of tenofovir alafenamide was administered daily with lopinavir; ritonavir (800 mg/200 mg PO daily), the tenofovir Cmax and AUC increased by 2.19-fold and 1.47-fold, respectively. Monitor for increased toxicities if these drugs are given together.
Lorlatinib: (Moderate) Close clinical monitoring is advised when administering lorlatinib with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Lorlatinib is a moderate CYP3A4 inducer and rilpivirine is a CYP3A4 substrate. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response.
Lumacaftor; Ivacaftor: (Contraindicated) Concomitant use of lumacaftor; ivacaftor and rilpivirine is contraindicated, as significant decreases in rilpivirine plasma concentrations may occur. This may result in loss of virologic response and possible resistance to rilpivirine or to the class of NNRTIs. Rilpivirine is primarily metabolize by CYP3A, and lumacaftor is a strong CYP3A inducer. (Moderate) Concomitant use of lumacaftor; ivacaftor and tenofovir alafenamide could potentially alter the systemic exposure of tenofovir. Tenofovir alafenamide is a substrate of the drug transporter P-glycoprotein (P-gp). In vitro data suggest that lumacaftor; ivacaftor has the potential to both induce and inhibit P-gp. Of note, when tenofovir alafenamide is administered as part of a cobicistat-containing product, its availability is increased by cobicistat and a further increase of tenofovir alafenamide concentrations is not expected upon coadministration of an additional P-gp inhibitor. (Minor) Use caution when administering ivacaftor and tenofovir alafenamide concurrently. Ivacaftor is an inhibitor of the drug transporter P-glycoprotein (P-gp). Tenofovir alafenamide is a substrate for P-gp. Concurrent use can increase tenofovir exposure leading to adverse events. Of note, when tenofovir alafenamide is administered as part of a cobicistat-containing product, its availability is increased by cobicistat and a further increase of tenofovir alafenamide concentrations is not expected upon coadministration of an additional P-gp inhibitor.
Lumacaftor; Ivacaftor: (Contraindicated) Concomitant use of lumacaftor; ivacaftor and rilpivirine is contraindicated, as significant decreases in rilpivirine plasma concentrations may occur. This may result in loss of virologic response and possible resistance to rilpivirine or to the class of NNRTIs. Rilpivirine is primarily metabolize by CYP3A, and lumacaftor is a strong CYP3A inducer. (Moderate) Concomitant use of lumacaftor; ivacaftor and tenofovir alafenamide could potentially alter the systemic exposure of tenofovir. Tenofovir alafenamide is a substrate of the drug transporter P-glycoprotein (P-gp). In vitro data suggest that lumacaftor; ivacaftor has the potential to both induce and inhibit P-gp. Of note, when tenofovir alafenamide is administered as part of a cobicistat-containing product, its availability is increased by cobicistat and a further increase of tenofovir alafenamide concentrations is not expected upon coadministration of an additional P-gp inhibitor.
Macimorelin: (Major) Avoid concurrent administration of macimorelin with drugs that prolong the QT interval, such as rilpivirine. Use of these drugs together may increase the risk of developing torsade de pointes-type ventricular tachycardia. Sufficient washout time of drugs that are known to prolong the QT interval prior to administration of macimorelin is recommended. Treatment with macimorelin has been associated with an increase in the corrected QT (QTc) interval. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Magnesium Salicylate: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as salicylates. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
Maprotiline: (Moderate) Caution is advised when administering rilpivirine with maprotiline as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Maprotiline has also been reported to prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations). Cases of long QT syndrome and torsade de pointes (TdP) tachycardia have been described with maprotiline use, but rarely occur when the drug is used alone in normal prescribed doses and in the absence of other known risk factors for QT prolongation. Limited data are available regarding the safety of maprotiline in combination with other QT-prolonging drugs.
Maribavir: (Moderate) Coadministration of tenofovir alafenamide with maribavir may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a P-gp and BCRP substrate and maribavir is a P-gp and BCRP inhibitor.
Mavacamten: (Moderate) Coadministration of rilpivirine with mavacamten may result in decreased plasma concentrations of rilpivirine, leading to a reduction of antiretroviral efficacy and the potential development of viral resistance. Rilpivirine is a CYP3A substrate and mavacamten is a moderate CYP3A inducer.
Meclofenamate Sodium: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Mefenamic Acid: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Mefloquine: (Moderate) Mefloquine should be used with caution in patients receiving rilpivirine as concurrent use may increase the risk of QT prolongation. There is evidence that the use of halofantrine after mefloquine causes a significant lengthening of the QTc interval. Mefloquine alone has not been reported to cause QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Meloxicam: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Methadone: (Major) Close clinical monitoring is advised with coadministration. Use of these drugs together may cause the plasma concentration of methadone to decrease, thereby resulting in decreased methadone efficacy. No dose adjustments are required when initiating concurrent treatment; however, the maintenance dose of methadone may need to be adjusted in some patients. In addition, due to the potential for QT prolongation and torsade de pointes (TdP), caution is advised when administering rilpivirine with methadone. A careful assessment of treatment risks versus benefits should be conducted prior to coadministration. When initiating concurrent treatment no dose adjustments are required; however, the dose of methadone may need to be adjusted during maintenance therapy. Methadone is considered to be associated with an increased risk for QT prolongation and TdP, especially at higher doses (> 200 mg/day but averaging approximately 400 mg/day in adult patients). Laboratory studies, both in vivo and in vitro, have demonstrated that methadone inhibits cardiac potassium channels and prolongs the QT interval. Most cases involve patients being treated for pain with large, multiple daily doses of methadone, although cases have been reported in patients receiving doses commonly used for maintenance treatment of opioid addiction. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have also been associated with prolongation of the QT interval.
Methenamine; Sodium Salicylate: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as salicylates. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
Methohexital: (Moderate) Close clinical monitoring is advised when administering barbiturates with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Barbiturates are inducers of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response.
Methotrexate: (Major) Avoid concomitant use of methotrexate with tenofovir alafenamide due to the risk of additive nephrotoxicity as well as an increased risk of severe methotrexate-related adverse reactions. If concomitant use is unavoidable, closely monitor for adverse reactions. Tenofovir alafenamide and methotrexate are both nephrotoxic drugs; methotrexate is also renally eliminated. Coadministration of methotrexate with tenofovir alafenamide may result in decreased renal function as well as increased methotrexate plasma concentrations.
Metronidazole: (Moderate) Concomitant use of metronidazole and rilpivirine may increase the risk of QT/QTc prolongation and torsade de pointes (TdP) in some patients. Consider taking steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, especially in patients with additional risk factors for TdP. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at three times the maximum recommended dose.
Midostaurin: (Major) The concomitant use of midostaurin and rilpivirine may lead to additive QT interval prolongation. If these drugs are used together, consider electrocardiogram monitoring. In clinical trials, QT prolongation has been reported in patients who received midostaurin as single-agent therapy or in combination with cytarabine and daunorubicin. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. (Moderate) Coadministration of tenofovir alafenamide with midostaurin may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a BCRP substrate and midostaurin is a BCRP inhibitor.
Mifepristone: (Major) Avoid use together if possible due to the risk of elevated rilpivirine exposure and a combined risk for QT prolongation. Consider alternatives to rilpivirine when coadministered with a drug with a known risk of QT prolongation and torsade de pointes (TdP), such as mifepristone when it is used for chronic hormonal conditions, such as Cushing's syndrome. Mifepristone is an inhibitor of CYP3A4; rilpivirine is a CYP3A4 substrate. Coadministration is likely to increase rilpivirine plasma concentrations. Monitor for rilpivirine-related side effects, including rash, mood changes or depression, fast, irregular heart rate, and hepatotoxicity. To minimize the risk of QT prolongation, the lowest effect dose of mifepristone should always be used.
Mirtazapine: (Moderate) Concomitant use of mirtazapine and rilpivirine may increase the risk of QT/QTc prolongation and torsade de pointes (TdP) in some patients. Consider taking steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, especially in patients with additional risk factors for TdP. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Mitapivat: (Moderate) Coadministration of tenofovir alafenamide with mitapivat may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a P-gp substrate and mitapivat is a P-gp inhibitor.
Mitotane: (Major) Concomitant use of mitotane with rilpivirine should be undertaken with caution due to potential decreased rilpivirine concentrations, leading to a reduction of antiretroviral efficacy and the potential development of viral resistance. The use of rilpivirine is contraindicated with other specific strong CYP3A inducers, including carbamazepine, oxcarbazepine, phenobarbital, phenytoin, rifampin, rifapentine, and St John's wort. Mitotane is a strong CYP3A4 inducer and rilpivirine is a CYP3A4 substrate. Coadministration may result in decreased rilpivirine serum concentrations, which could cause impaired virologic response to rilpivirine.
Mobocertinib: (Major) Concomitant use of mobocertinib and rilpivirine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Modafinil: (Moderate) Close clinical monitoring is advised when administering modafinil with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Modafinil is an inducer of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response.
Moxifloxacin: (Major) Concurrent use of rilpivirine and moxifloxacin should be avoided due to an increased risk for QT prolongation and torsade de pointes (TdP). Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Moxifloxacin has also been associated with prolongation of the QT interval. Additionally, post-marketing surveillance has identified very rare cases of ventricular arrhythmias including TdP, usually in patients with severe underlying proarrhythmic conditions. The likelihood of QT prolongation may increase with increasing concentrations of moxifloxacin, therefore the recommended dose or infusion rate should not be exceeded.
Nabumetone: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Nafcillin: (Moderate) Close clinical monitoring is advised when administering nafcillin with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Nafcillin is an inducer of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response.
Naproxen: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Naproxen; Esomeprazole: (Contraindicated) Concurrent use of proton pump inhibitors and rilpivirine is contraindicated; when these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Proton pump inhibitors inhibit secretion of gastric acid by proton pumps thereby increasing the gastric pH; for optimal absorption, rilpivirine requires an acidic environment. Coadministration of a proton pump inhibitor and rilpivirine may result in decreased rilpivirine absorption/serum concentrations, which could cause impaired virologic response to rilpivirine. (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Naproxen; Pseudoephedrine: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Nefazodone: (Moderate) Close clinical monitoring is advised when administering nefazodone with rilpivirine due to an increased potential for rilpivirine-related adverse events. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Nefazodone is an inhibitor of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in increased rilpivirine plasma concentrations.
Nelfinavir: (Moderate) Close clinical monitoring is advised when administering nelfinavir with rilpivirine due to an increased potential for rilpivirine-related adverse events. Predictions about the interaction can be made based on metabolic pathways. Nelfinavir is an inhibitor of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in increased rilpivirine plasma concentrations.
Neratinib: (Moderate) Coadministration of tenofovir alafenamide with neratinib may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a P-glycoprotein (P-gp) substrate and neratinib is a P-gp inhibitor.
Nevirapine: (Major) Coadministration of nevirapine and rilpivirine is not recommended as the combined use of two NNRTIs has not been shown to be beneficial. Concomitant use may also cause a significant decrease in rilpivirine plasma concentrations and, thus, a loss of therapeutic effect. Rilpivirine is a CYP3A substrate and nevirapine is a weak CYP3A inducer.
Nicardipine: (Moderate) Close clinical monitoring is advised when administering nicardipine with rilpivirine due to an increased potential for rilpivirine-related adverse events. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Nicardipine is an inhibitor of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in increased rilpivirine plasma concentrations.
Nilotinib: (Major) Avoid the concomitant use of nilotinib with other agents that prolong the QT interval, such as rilpivirine. Nilotinib is a moderate inhibitor of CYP3A4 and rilpivirine is a substrate of CYP3A4; administering these drugs together may result in increased rilpivirine levels. If the use of rilpivirine is necessary, hold nilotinib therapy. If these drugs are used together, consider a rilpivirine dose reduction and monitor patients for toxicity (e.g., QT interval prolongation).
Nitisinone: (Moderate) Monitor for increased tenofovir-related adverse effects if coadministered with nitisinone. Increased tenofovir exposure is possible. Nitisinone inhibits OAT1. Tenofovir is an OAT1 substrate.
Nizatidine: (Moderate) Coadministration with nizatidine may significantly decrease rilpivirine plasma concentrations, potentially resulting in treatment failure. To decrease the risk of virologic failure, avoid use of nizatidine for at least 12 hours before and at least 4 hours after administering rilpivirine.
Non-Ionic Contrast Media: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as radiopaque contrast agents. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions.
Nonsteroidal antiinflammatory drugs: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Norgestimate; Ethinyl Estradiol: (Moderate) Monitor for norgestimate-related adverse events, such as insulin resistance, dyslipidemia, acne, and venous thrombosis, and consider risks and benefits of coadministration of tenofovir alafenamide in persons who have risk factors for these events. Concomitant use may increase norgestimate concentrations.
Ofloxacin: (Moderate) Concomitant use of ofloxacin and rilpivirine may increase the risk of QT/QTc prolongation and torsade de pointes (TdP) in some patients. Consider taking steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, especially in patients with additional risk factors for TdP. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Olanzapine: (Moderate) Caution is advised when administering rilpivirine with olanzapine as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Limited data, including some case reports, suggest that olanzapine may also be associated with a significant prolongation of the QTc interval.
Olanzapine; Fluoxetine: (Moderate) Caution is advised when administering rilpivirine with olanzapine as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Limited data, including some case reports, suggest that olanzapine may also be associated with a significant prolongation of the QTc interval. (Moderate) Concomitant use of fluoxetine and rilpivirine may increase the risk of QT/QTc prolongation and torsade de pointes (TdP) in some patients. Consider taking steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, especially in patients with additional risk factors for TdP. The deg ree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Olanzapine; Samidorphan: (Moderate) Caution is advised when administering rilpivirine with olanzapine as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Limited data, including some case reports, suggest that olanzapine may also be associated with a significant prolongation of the QTc interval.
Omeprazole: (Contraindicated) Concurrent use of proton pump inhibitors and rilpivirine is contraindicated; when these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Proton pump inhibitors inhibit secretion of gastric acid by proton pumps thereby increasing the gastric pH; for optimal absorption, rilpivirine requires an acidic environment. Coadministration of a proton pump inhibitor and rilpivirine may result in decreased rilpivirine absorption/serum concentrations, which could cause impaired virologic response to rilpivirine.
Omeprazole; Amoxicillin; Rifabutin: (Contraindicated) Concurrent use of proton pump inhibitors and rilpivirine is contraindicated; when these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Proton pump inhibitors inhibit secretion of gastric acid by proton pumps thereby increasing the gastric pH; for optimal absorption, rilpivirine requires an acidic environment. Coadministration of a proton pump inhibitor and rilpivirine may result in decreased rilpivirine absorption/serum concentrations, which could cause impaired virologic response to rilpivirine. (Major) Coadministration is not recommended. Concurrent use may result in significant decreases in the plasma concentrations of tenofovir alafenamide, leading to a reduction of antiretroviral efficacy and the potential development of viral resistance. (Major) Increase the dose of rilpivirine to 50 mg PO once daily when coadministered with rifabutin. When rifabutin coadministration is stopped, decrease the rilpivirine dose to 25 mg PO once daily. Coadministration of rilpivirine with rifabutin may result in decreased plasma concentrations of rilpivirine, leading to a reduction of antiretroviral efficacy and the potential development of viral resistance. Rilpivirine is a CYP3A4 substrate and rifabutin is a moderate CYP3A4 inducer.
Omeprazole; Sodium Bicarbonate: (Contraindicated) Concurrent use of proton pump inhibitors and rilpivirine is contraindicated; when these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Proton pump inhibitors inhibit secretion of gastric acid by proton pumps thereby increasing the gastric pH; for optimal absorption, rilpivirine requires an acidic environment. Coadministration of a proton pump inhibitor and rilpivirine may result in decreased rilpivirine absorption/serum concentrations, which could cause impaired virologic response to rilpivirine. (Moderate) Concurrent administration of rilpivirine and antacids may significantly decrease rilpivirine plasma concentrations, potentially resulting in treatment failure. To decrease the risk of virologic failure, avoid use of antacids for at least 2 hours before and at least 4 hours after administering rilpivirine.
Ondansetron: (Major) Concomitant use of rilpivirine and ondansetron increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. Do not exceed 16 mg of IV ondansetron in a single dose; the degree of QT prolongation associated with ondansetron significantly increases above this dose. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Oritavancin: (Major) Rilpivirine is metabolized by CYP3A4; oritavancin is a weak CYP3A4 inducer. Plasma concentrations and efficacy of rilpivirine may be reduced if these drugs are administered concurrently.
Orlistat: (Major) According to the manufacturer of orlistat, HIV RNA levels should be frequently monitored in patients receiving orlistat while being treated for HIV infection with tenofovir, PMPA. Loss of virological control has been reported in HIV-infected patients taking orlistat with tenofovir disoproxil fumarate and emtricitabine; efavirenz; tenofovir disoproxil fumarate. The exact mechanism for this interaction is not known, but may involve inhibition of systemic absorption of the anti-retroviral agent. If an increased HIV viral load is confirmed, orlistat should be discontinued. (Moderate) According to the manufacturer of orlistat, HIV RNA levels should be frequently monitored in patients receiving orlistat while being treated for HIV infection with anti-retroviral nucleoside reverse transcriptase inhibitors (NRTIs). Loss of virological control has been reported in HIV-infected patients taking orlistat with atazanavir, ritonavir, tenofovir disoproxil fumarate, emtricitabine, lopinavir; ritonavir, and emtricitabine; efavirenz; tenofovir disoproxil fumarate. The exact mechanism for this interaction is not known, but may involve inhibition of systemic absorption of the anti-retroviral agent. If an increased HIV viral load is confirmed, orlistat should be discontinued.
Osilodrostat: (Moderate) Monitor ECGs in patients receiving osilodrostat with rilpivirine as concurrent use may increase the risk of QT prolongation. Osilodrostat is associated with dose-dependent QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Osimertinib: (Major) Avoid coadministration of rilpivirine with osimertinib if possible due to the risk of QT prolongation and torsade de pointes (TdP). If concomitant use is unavoidable, periodically monitor ECGs for QT prolongation and monitor electrolytes; an interruption of osimertinib therapy with dose reduction or discontinuation of therapy may be necessary if QT prolongation occurs. Concentration-dependent QTc prolongation occurred during clinical trials of osimertinib. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have also caused QT prolongation. (Moderate) Monitor for an increase in tenofovir-related adverse reactions if coadministration with osimertinib is necessary. Concomitant use may result in increased tenofovir absorption. Tenofovir alafenamide is a BCRP and P-glycoprotein (P-gp) substrate. Osimertinib is a BCRP and P-gp inhibitor.
Oteseconazole: (Moderate) Coadministration of tenofovir alafenamide with oteseconazole may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a BCRP substrate and oteseconazole is a BCRP inhibitor.
Oxaliplatin: (Major) Avoid coadministration of oxaliplatin with tenofovir alafenamide due to the risk of increased oxaliplatin-related adverse reactions. Tenofovir alafenamide is known to be potentially nephrotoxic; because platinum-containing drugs like oxaliplatin are eliminated primarily through the kidney, oxaliplatin clearance may be decreased by coadministration with nephrotoxic agents. (Major) Monitor electrolytes and ECGs for QT prolongation if coadministration of rilpivirine with oxaliplatin is necessary; correct electrolyte abnormalities prior to administration of oxaliplatin. Supratherapeutic doses of rilpivirine (75 to 300 mg per day) have caused QT prolongation. QT prolongation and ventricular arrhythmias including fatal torsade de pointes have also been reported with oxaliplatin use in postmarketing experience.
Oxaprozin: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Oxcarbazepine: (Contraindicated) Concurrent use of oxcarbazepine and rilpivirine is contraindicated. When these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Oxcarbazepine is a potent inducer of CYP3A4, which is primarily responsible for the metabolism of rilpivirine. Coadministration may result in decreased rilpivirine serum concentrations, which could cause impaired virologic response to rilpivirine. (Major) Administering tenofovir alafenamide with oxcarbazepine is not recommended. Consider use of an alternative anticonvulsant. Taking these drugs together is expected to decrease tenofovir plasma concentrations, which may increase the potential for resistance and HIV treatment failure.
Ozanimod: (Major) In general, do not initiate ozanimod in patients taking rilpivirine due to the risk of additive bradycardia, QT prolongation, and torsade de pointes (TdP). If treatment initiation is considered, seek advice from a cardiologist. Ozanimod initiation may result in a transient decrease in heart rate and atrioventricular conduction delays. Ozanimod has not been studied in patients taking concurrent QT prolonging drugs; however, QT prolonging drugs have been associated with TdP in patients with bradycardia. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Pacritinib: (Major) Concomitant use of pacritinib and rilpivirine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose. (Moderate) Concomitant use of tenofovir alafenamide with pacritinib may result in increased plasma concentrations of tenofovir, leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a P-gp and BCRP substrate; pacritinib is a P-gp and BCRP inhibitor.
Paliperidone: (Major) Paliperidone has been associated with QT prolongation; torsade de pointes (TdP) and ventricular fibrillation have been reported in the setting of overdose. According to the manufacturer, since paliperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as rilpivirine. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. If coadministration is necessary and the patient has known risk factors for cardiac disease or arrhythmias, close monitoring is essential.
Pamidronate: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with a nephrotoxic agent, such as pamidronate. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions.
Panobinostat: (Major) The co-administration of panobinostat with rilpivirine or emtricitabine; rilpivirine; tenofovir is not recommended; QT prolongation has been reported with panobinostat and rilpivirine. Obtain an electrocardiogram at baseline and periodically during treatment. Hold panobinostat if the QTcF increases to >= 480 milliseconds during therapy; permanently discontinue if QT prolongation does not resolve.
Pantoprazole: (Contraindicated) Concurrent use of proton pump inhibitors and rilpivirine is contraindicated; when these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Proton pump inhibitors inhibit secretion of gastric acid by proton pumps thereby increasing the gastric pH; for optimal absorption, rilpivirine requires an acidic environment. Coadministration of a proton pump inhibitor and rilpivirine may result in decreased rilpivirine absorption/serum concentrations, which could cause impaired virologic response to rilpivirine.
Paromomycin: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as aminoglycosides. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions. (Moderate) Monitor for changes in serum creatinine and adverse reactions, such as lactic acidosis or hepatotoxicity if emtricitabine is administered in combination with nephrotoxic agents, such as aminoglycosides. Consider the potential for drug interaction prior to and during concurrent use of these medications. Both emtricitabine and aminoglycosides are excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. While no drug interactions due to competition for renal excretion have been observed, coadministration of these medications may increase concentrations of both drugs.
Pasireotide: (Moderate) Use caution when using pasireotide in combination with rilpivirine as concurrent use may increase the risk of QT prolongation. QT prolongation has occurred with pasireotide at therapeutic and supra-therapeutic doses. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Pazopanib: (Major) Concurrent use of pazopanib and rilpivirine should be avoided due to an increased risk for QT prolongation and torsade de pointes (TdP). If these drugs must be continued, closely monitor the patient for QT interval prolongation. Pazopanib has been reported to prolong the QT interval. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have also caused QT prolongation. In addition, pazopanib is a weak inhibitor of CYP3A4. Coadministration of pazopanib and rilpivirine, a CYP3A4 substrate, may cause an increase in systemic concentrations of rilpivirine.
Peginterferon Alfa-2a: (Moderate) Use together with caution and monitor for hepatic decompensation. Interferons and rilpivirine can both cause hepatotoxicity. Patients with chronic, cirrhotic HCV co-infected with HIV receiving antiretroviral agents and alpha interferons appear to be at increased risk for hepatic decompensation (e.g., Childs-Pugh score 6 or more) compared to patients not receiving HAART.
Peginterferon Alfa-2b: (Moderate) Use together with caution and monitor for hepatic decompensation. Interferons and rilpivirine can both cause hepatotoxicity. Patients with chronic, cirrhotic HCV co-infected with HIV receiving antiretroviral agents and alpha interferons appear to be at increased risk for hepatic decompensation (e.g., Childs-Pugh score 6 or more) compared to patients not receiving HAART.
Peginterferon beta-1a: (Moderate) Use together with caution and monitor for hepatic decompensation. Interferons and rilpivirine can both cause hepatotoxicity. Patients with chronic, cirrhotic HCV co-infected with HIV receiving antiretroviral agents and alpha interferons appear to be at increased risk for hepatic decompensation (e.g., Childs-Pugh score 6 or more) compared to patients not receiving HAART.
Pentamidine: (Major) Due to the potential for QT prolongation and torsade de pointes (TdP), caution is advised when administering rilpivirine with pentamidine. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Pentamidine has also been associated with QT prolongation.
Pentobarbital: (Moderate) Close clinical monitoring is advised when administering barbiturates with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Barbiturates are inducers of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response.
Perphenazine: (Minor) Caution is advised when administering rilpivirine with perphenazine as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Perphenazine is also associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Perphenazine; Amitriptyline: (Minor) Caution is advised when administering rilpivirine with perphenazine as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Perphenazine is also associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Pexidartinib: (Moderate) Coadministration of rilpivirine with pexidartinib may result in decreased plasma concentrations of rilpivirine, leading to a reduction of antiretroviral efficacy and the potential development of viral resistance. Rilpivirine is a CYP3A4 substrate and pexidartinib is a moderate CYP3A4 inducer.
Phenobarbital: (Contraindicated) Concurrent use of phenobarbital and rilpivirine is contraindicated. When these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Phenobarbital is a potent inducer of CYP3A4, which is primarily responsible for the metabolism of rilpivirine. Coadministration may result in decreased rilpivirine serum concentrations, which could cause impaired virologic response to rilpivirine. (Major) Administering tenofovir alafenamide with phenobarbital is not recommended. Consider use of an alternative anticonvulsant. Taking these drugs together is expected to decrease tenofovir plasma concentrations, which may increase the potential for resistance and HIV treatment failure.
Phenobarbital; Hyoscyamine; Atropine; Scopolamine: (Contraindicated) Concurrent use of phenobarbital and rilpivirine is contraindicated. When these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Phenobarbital is a potent inducer of CYP3A4, which is primarily responsible for the metabolism of rilpivirine. Coadministration may result in decreased rilpivirine serum concentrations, which could cause impaired virologic response to rilpivirine. (Major) Administering tenofovir alafenamide with phenobarbital is not recommended. Consider use of an alternative anticonvulsant. Taking these drugs together is expected to decrease tenofovir plasma concentrations, which may increase the potential for resistance and HIV treatment failure.
Phentermine; Topiramate: (Moderate) Close clinical monitoring is advised when administering topiramate with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Topiramate is an inducer of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response.
Phenytoin: (Contraindicated) Concurrent use of phenytoin or fosphenytoin and rilpivirine is contraindicated. When these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Phenytoin is a potent inducer of CYP3A4, which is primarily responsible for the metabolism of rilpivirine. Coadministration may result in decreased rilpivirine serum concentrations, which could cause impaired virologic response to rilpivirine. (Major) Administering tenofovir alafenamide with phenytoin is not recommended. Consider use of an alternative anticonvulsant. Taking these drugs together is expected to decrease tenofovir plasma concentrations, which may increase the potential for resistance and HIV treatment failure.
Pimavanserin: (Major) Pimavanserin may cause QT prolongation and should generally be avoided in patients receiving other medications known to prolong the QT interval, such as rilpivirine. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Coadministration may increase the risk for QT prolongation.
Pimozide: (Contraindicated) Pimozide is associated with a well-established risk of QT prolongation and torsade de pointes (TdP) and coadministration with other drugs associated with a possible risk for QT prolongation and TdP, such as rilpivirine, should be avoided.
Pirfenidone: (Moderate) Close clinical monitoring for adverse events is advised when administering tenofovir alafenamide with pirfenidone. Use of these drugs together may result in elevated tenofovir plasma concentrations. Pirfenidone is an inhibitor of the drug transporter P-glycoprotein (P-gp). Tenofovir alafenamide is a substrate for P-gp. Of note, when tenofovir alafenamide is administered as part of a cobicistat-containing product, its availability is increased by cobicistat and a further increase of tenofovir alafenamide concentrations is not expected upon coadministration of an additional P-gp inhibitor.
Piroxicam: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Pirtobrutinib: (Moderate) Coadministration of tenofovir alafenamide with pirtobrutinib may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a P-gp and BCRP substrate and pirtobrutinib is a P-gp and BCRP inhibitor.
Pitolisant: (Major) Avoid coadministration of pitolisant with rilpivirine as concurrent use may increase the risk of QT prolongation. Pitolisant prolongs the QT interval. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Plazomicin: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as aminoglycosides. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions. (Moderate) Monitor for changes in serum creatinine and adverse reactions, such as lactic acidosis or hepatotoxicity if emtricitabine is administered in combination with nephrotoxic agents, such as aminoglycosides. Consider the potential for drug interaction prior to and during concurrent use of these medications. Both emtricitabine and aminoglycosides are excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. While no drug interactions due to competition for renal excretion have been observed, coadministration of these medications may increase concentrations of both drugs.
Polymyxin B: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with a nephrotoxic agent, such as polymyxin B. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
Ponesimod: (Major) In general, do not initiate ponesimod in patients taking rilpivirine due to the risk of additive bradycardia, QT prolongation, and torsade de pointes (TdP). If treatment initiation is considered, seek advice from a cardiologist. Ponesimod initiation may result in a transient decrease in heart rate and atrioventricular conduction delays. Ponesimod has not been studied in patients taking concurrent QT prolonging drugs; however, QT prolonging drugs have been associated with TdP in patients with bradycardia. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Posaconazole: (Contraindicated) Concurrent use of posaconazole and rilpivirine is contraindicated due to the risk of life threatening arrhythmias such as torsade de pointes (TdP). Posaconazole is a potent inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of ripivirine. These drugs used in combination may result in elevated rilpivirine plasma concentrations, causing an increased risk for rilpivirine-related adverse events, such as QT prolongation. Additionally, posaconazole has been associated with prolongation of the QT interval as well as rare cases of TdP; avoid use with other drugs that may prolong the QT interval and are metabolized through CYP3A4, such as rilpivirine. (Moderate) Close clinical monitoring adverse events are advised when administering tenofovir alafenamide with posaconazole. Use of these drugs together may result in elevated tenofovir alafenamide plasma concentrations. Posaconazole is an inhibitor of the drug transporter P-glycoprotein (P-gp). Tenofovir alafenamide is a substrate for P-gp. Of note, when tenofovir alafenamide is administered as part of a cobicistat-containing product, its availability is increased by cobicistat and a further increase of tenofovir alafenamide concentrations is not expected upon coadministration of an additional P-gp inhibitor.
Pretomanid: (Moderate) Coadministration of tenofovir alafenamide with pretomanid may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a P-gp and BCRP substrate and pretomanid is a P-gp and BCRP inhibitor.
Primaquine: (Moderate) Exercise caution when administering primaquine in combination with rilpivirine as concurrent use may increase the risk of QT prolongation. Primaquine is associated with QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Primidone: (Moderate) Close clinical monitoring is advised when administering barbiturates with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Barbiturates are inducers of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response. (Moderate) Close clinical monitoring is advised when administering primidone with tenofovir alafenamide due to the potential for treatment failure. Although this interaction has not been studied, predictions about the interaction can be made based on the metabolic pathways of these drugs. Primidone is an inducer of the drug transporter P-glycoprotein (P-gp). Tenofovir alafenamide is a substrate for P-gp. Coadministration may result in decreased tenofovir serum concentrations and impaired virologic response.
Probenecid: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with a nephrotoxic agent, such as probenecid. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions.
Probenecid; Colchicine: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with a nephrotoxic agent, such as probenecid. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions.
Procainamide: (Major) Rilpivirine should be used cautiously with Class IA antiarrhythmics (disopyramide, procainamide, quinidine). Class IA antiarrhythmics are associated with QT prolongation and torsades de pointes (TdP). Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation; caution is advised when administering rilpivirine with other drugs that may prolong the QT or PR interval.
Prochlorperazine: (Minor) Caution is advised when administering rilpivirine with prochlorperazine as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Prochlorperazine is also associated with a possible risk for QT prolongation. Theoretically, prochlorperazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Promethazine: (Moderate) Concomitant use of promethazine and rilpivirine may increase the risk of QT/QTc prolongation and torsade de pointes (TdP) in some patients. Consider taking steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, especially in patients with additional risk factors for TdP. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Promethazine; Dextromethorphan: (Moderate) Concomitant use of promethazine and rilpivirine may increase the risk of QT/QTc prolongation and torsade de pointes (TdP) in some patients. Consider taking steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, especially in patients with additional risk factors for TdP. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Promethazine; Phenylephrine: (Moderate) Concomitant use of promethazine and rilpivirine may increase the risk of QT/QTc prolongation and torsade de pointes (TdP) in some patients. Consider taking steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, especially in patients with additional risk factors for TdP. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Propafenone: (Major) Concomitant use of rilpivirine and propafenone increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose. (Moderate) Coadministration of tenofovir alafenamide with propafenone may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a P-gp substrate and propafenone is a P-gp inhibitor.
Proton pump inhibitors: (Contraindicated) Concurrent use of proton pump inhibitors and rilpivirine is contraindicated; when these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Proton pump inhibitors inhibit secretion of gastric acid by proton pumps thereby increasing the gastric pH; for optimal absorption, rilpivirine requires an acidic environment. Coadministration of a proton pump inhibitor and rilpivirine may result in decreased rilpivirine absorption/serum concentrations, which could cause impaired virologic response to rilpivirine.
Quetiapine: (Major) Concomitant use of rilpivirine and quetiapine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Quinidine: (Major) Rilpivirine should be used cautiously with Class IA antiarrhythmics (disopyramide, procainamide, quinidine). Class IA antiarrhythmics are associated with QT prolongation and torsades de pointes (TdP). Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation; caution is advised when administering rilpivirine with other drugs that may prolong the QT or PR interval.
Quinine: (Major) Concurrent use of quinine and rilpivirine should be avoided due to an increased risk for QT prolongation and torsade de pointes (TdP). Quinine has been associated with prolongation of the QT interval and rare cases of TdP. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have also caused QT prolongation. In addition, concentrations of rilpivirine may be increased with concomitant use of quinine. Rilpivirine is a CYP3A4 substrate and quinine is a CYP3A4 inhibitor.
Quizartinib: (Major) Concomitant use of quizartinib and rilpivirine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Rabeprazole: (Contraindicated) Concurrent use of proton pump inhibitors and rilpivirine is contraindicated; when these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Proton pump inhibitors inhibit secretion of gastric acid by proton pumps thereby increasing the gastric pH; for optimal absorption, rilpivirine requires an acidic environment. Coadministration of a proton pump inhibitor and rilpivirine may result in decreased rilpivirine absorption/serum concentrations, which could cause impaired virologic response to rilpivirine.
Ranitidine: (Moderate) Coadministration with ranitidine may significantly decrease rilpivirine plasma concentrations, potentially resulting in treatment failure. To decrease the risk of virologic failure, avoid use of ranitidine for at least 12 hours before and at least 4 hours after administering rilpivirine.
Ranolazine: (Moderate) Caution is advised when administering rilpivirine with ranolazine as concurrent use may increase the risk of QT prolongation; rilpivirine exposure may also increase. Rilpivirine is a CYP3A4 substrate; supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Ranolazine is a moderate CYP3A4 inhibitor that is associated with dose- and plasma concentration-related increases in the QTc interval. Although there are no studies examining the effects of ranolazine in patients receiving other QT prolonging drugs concurrent use may result in additive QT prolongation. (Minor) Close clinical monitoring is advised when administering ranolazine with tenofovir alafenamide due to an increased potential for adverse events. Although this interaction has not been studied, predictions about the interaction can be made based on the metabolic pathways of these drugs. Ranolazine is an inhibitor of the drug transporter P-glycoprotein (P-gp). Tenofovir alafenamide is a substrate for P-gp. Coadministration may result in increased tenofovir plasma concentrations. Of note, when tenofovir alafenamide is administered as part of a cobicistat-containing product, its availability is increased by cobicistat and a further increase of tenofovir alafenamide concentrations is not expected upon coadministration of an additional P-gp inhibitor.
Regorafenib: (Moderate) Use caution if coadministration of regorafenib with tenofovir alafenamide is necessary, and monitor for an increase in tenofovir alafenamide-related adverse reactions. Tenofovir alafenamide is a BCRP substrate and regorafenib is a BCRP inhibitor. Regorafenib-mediated BCRP inhibition may increase exposure to tenofovir alafenamide. However, when tenofovir alafenamide is administered in combination with cobicistat, other inhibitors of BCRP are not expected to further increase tenofovir alafenamide concentrations.
Relugolix: (Moderate) Caution is advised when administering rilpivirine with relugolix. Androgen deprivation therapy (i.e., relugolix) may prolong the QT/QTc interval. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have also caused QT prolongation.
Relugolix; Estradiol; Norethindrone acetate: (Moderate) Caution is advised when administering rilpivirine with relugolix. Androgen deprivation therapy (i.e., relugolix) may prolong the QT/QTc interval. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have also caused QT prolongation.
Ribavirin: (Major) The concomitant use of ribavirin and anti-retroviral non-nucleoside reverse transcriptase inhibitors (NNRTIs) should be done with caution as both can cause hepatic damage. NNRTIs may cause liver damage in the context of hypersensitivity reactions or by direct toxic effects. Many studies demonstrate that nevirapine is more hepatotoxic than efavirenz. Underlying chronic HCV infection enhances the risk of developing liver enzyme elevations in patients receiving nevirapine. Overall, the HCV-HIV International Panel recommends the management of hepatotoxicity should be based on the knowledge of the mechanisms involved for each drug. Furthermore, they state that there are lower rates of liver-related mortality in coinfected patients taking HAART, even in those with end-stage liver disease, compared with patients not receiving HAART. Closely monitor patients for treatment-associated toxicities, especially hepatic decompensation. (Moderate) Use emtricitabine with ribavirin and interferon with caution and closely monitor for hepatic decompensation and anemia. Dose reduction or discontinuation of interferon, ribavirin, or both should be considered if worsening clinical toxicities are observed, including hepatic decompensation (e.g., Child-Pugh greater than 6). Hepatic decompensation (some fatal) has occurred in HCV/HIV coinfected patients who received both ribavirin/interferon and anti-retroviral nucleoside reverse transcriptase inhibitors (NRTIs) therapies.
Ribociclib: (Major) Avoid coadministration of ribociclib with rilpivirine due to an increased risk for QT prolongation. Systemic exposure of rilpivirine may also be increased resulting in increase in treatment-related adverse reactions. Ribociclib is a strong CYP3A4 inhibitor that has been shown to prolong the QT interval in a concentration-dependent manner. Supratherapeutic doses of rilpivirine (75 to 300 mg per day), a CYP3A4 substrate, have also caused QT prolongation. Concomitant use may increase the risk for QT prolongation.
Ribociclib; Letrozole: (Major) Avoid coadministration of ribociclib with rilpivirine due to an increased risk for QT prolongation. Systemic exposure of rilpivirine may also be increased resulting in increase in treatment-related adverse reactions. Ribociclib is a strong CYP3A4 inhibitor that has been shown to prolong the QT interval in a concentration-dependent manner. Supratherapeutic doses of rilpivirine (75 to 300 mg per day), a CYP3A4 substrate, have also caused QT prolongation. Concomitant use may increase the risk for QT prolongation.
Rifabutin: (Major) Coadministration is not recommended. Concurrent use may result in significant decreases in the plasma concentrations of tenofovir alafenamide, leading to a reduction of antiretroviral efficacy and the potential development of viral resistance. (Major) Increase the dose of rilpivirine to 50 mg PO once daily when coadministered with rifabutin. When rifabutin coadministration is stopped, decrease the rilpivirine dose to 25 mg PO once daily. Coadministration of rilpivirine with rifabutin may result in decreased plasma concentrations of rilpivirine, leading to a reduction of antiretroviral efficacy and the potential development of viral resistance. Rilpivirine is a CYP3A4 substrate and rifabutin is a moderate CYP3A4 inducer.
Rifampin: (Contraindicated) Concurrent use of rifampin and rilpivirine is contraindicated; when these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Rifampin is a potent inducer of CYP3A4, which is primarily responsible for the metabolism of rilpivirine. Coadministration may result in decreased rilpivirine serum concentrations, which could cause impaired virologic response to rilpivirine. (Major) Administering tenofovir alafenamide with rifampin is not recommended. Taking these drugs together is expected to decrease tenofovir plasma concentrations, which may increase the potential for resistance and HIV treatment failure.
Rifapentine: (Contraindicated) Concurrent use of rifapentine and rilpivirine is contraindicated; when these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Rifapentine is a strong CYP3A4 inducer, which is primarily responsible for the metabolism of rilpivirine. Coadministration may result in decreased rilpivirine serum concentrations, which could cause impaired virologic response to rilpivirine. (Major) Avoid coadministration of tenofovir alafenamide and rifapentine as concurrent use may decrease tenofovir alafenamide exposure leading to a reduction of antiretroviral efficacy and the potential development of viral resistance. Additionally, HIV patients treated with rifapentine have a higher rate of TB relapse than those treated with other rifamycin-based regimens; an alternative agent is recommended.
Risperidone: (Moderate) Use risperidone and rilpivirine together with caution due to the potential for additive QT prolongation and risk of torsade de pointes (TdP). Risperidone has been associated with a possible risk for QT prolongation and/or TdP, primarily in the overdose setting. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Ritlecitinib: (Moderate) Coadministration of rilpivirine with ritlecitinib may result in increased plasma concentrations of rilpivirine, leading to an increase in rilpivirine-related adverse effects. Rilpivirine is a CYP3A substrate and ritlecitinib is a moderate CYP3A inhibitor.
Rivaroxaban: (Minor) Caution is advised when administering tenofovir alafenamide concurrently with rivaroxaban, as coadministration may result in elevated tenofovir alafenamide plasma concentrations. Inhibitors of the drug transporter P-glycoprotein (P-gp), such as rivaroxaban, may increase absorption of tenofovir alafenamide, a P-gp substrate. If these medications are administered together, monitor for tenofovir-associated adverse reactions. Of note, when tenofovir alafenamide is administered as part of a cobicistat-containing product, its availability is increased by cobicistat and a further increase of tenofovir alafenamide concentrations is not expected upon coadministration of an additional P-gp inhibitor.
Rolapitant: (Moderate) Coadministration of rolapitant and tenofovir alafenamide may result in elevated tenofovir concentrations. Tenofovir is a substrate of the Breast Cancer Resistance Protein (BCRP) and P-glycoprotein (P-gp); rolapitant is a BCRP and P-gp inhibitor. The Cmax and AUC of another BCRP substrate, sulfasalazine, were increased by 140 percent and 130 percent, respectively, on day 1 with rolapitant, and by 17 percent and 32 percent, respectively, on day 8 after rolapitant administration. When rolapitant was administered with digoxin, a P-gp substrate, the day 1 Cmax and AUC were increased by 70 percent and 30 percent, respectively; the Cmax and AUC on day 8 were not studied.
Romidepsin: (Moderate) Consider monitoring electrolytes and ECGs at baseline and periodically during treatment if romidepsin is administered with rilpivirine as concurrent use may increase the risk of QT prolongation. Romidepsin has been reported to prolong the QT interval. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Ropeginterferon alfa-2b: (Moderate) Use together with caution and monitor for hepatic decompensation. Interferons and rilpivirine can both cause hepatotoxicity. Patients with chronic, cirrhotic HCV co-infected with HIV receiving antiretroviral agents and alpha interferons appear to be at increased risk for hepatic decompensation (e.g., Childs-Pugh score 6 or more) compared to patients not receiving HAART.
Salicylates: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as salicylates. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
Salsalate: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as salicylates. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
Saquinavir: (Contraindicated) Concurrent use or switching form rilpivirine to saquinavir boosted with ritonavir without a washout period of at least 2 weeks is contraindicated. Taking these drugs together is expected to increase rilpivirine concentrations and increase the risk for QT prolongation and torsade de pointes (TdP). Saquinavir boosted with ritonavir increases the QT interval in a dose-dependent fashion, which may increase the risk for serious arrhythmias such as TdP. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have also caused QT prolongation. Before administering saquinavir boosted with ritonavir, perform a baseline ECG and carefully follow monitoring recommendations.
Secobarbital: (Moderate) Close clinical monitoring is advised when administering barbiturates with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Barbiturates are inducers of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response.
Selpercatinib: (Major) Monitor ECGs more frequently for QT prolongation if coadministration of selpercatinib with rilpivirine is necessary due to the risk of additive QT prolongation. Concentration-dependent QT prolongation has been observed with selpercatinib therapy. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. (Moderate) Coadministration of tenofovir alafenamide with selpercatinib may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a P-gp substrate and selpercatinib is a P-gp inhibitor.
Sertraline: (Moderate) Concomitant use of sertraline and rilpivirine may increase the risk of QT/QTc prolongation and torsade de pointes (TdP) in some patients. Consider taking steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, especially in patients with additional risk factors for TdP. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose. The degree of QT prolongation associated with sertraline is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 2 times the maximum recommended dose.
Sevoflurane: (Major) Halogenated anesthetics should be used cautiously and with close monitoring with rilpivirine. Halogenated anesthetics can prolong the QT interval. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation; caution is advised when administering rilpivirine with other drugs that may prolong the QT or PR interval.
Siponimod: (Major) In general, do not initiate treatment with siponimod in patients receiving rilpivirine due to the potential for QT prolongation. Consult a cardiologist regarding appropriate monitoring if siponimod use is required. Siponimod therapy prolonged the QT interval at recommended doses in a clinical study. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Sodium Bicarbonate: (Moderate) Concurrent administration of rilpivirine and antacids may significantly decrease rilpivirine plasma concentrations, potentially resulting in treatment failure. To decrease the risk of virologic failure, avoid use of antacids for at least 2 hours before and at least 4 hours after administering rilpivirine.
Sodium Phenylbutyrate; Taurursodiol: (Moderate) Coadministration of tenofovir alafenamide with taurursodiol may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a P-gp and BCRP substrate and taurursodiol is a P-gp and BCRP inhibitor.
Sodium Stibogluconate: (Moderate) Concomitant use of sodium stibogluconate and rilpivirine may increase the risk of QT/QTc prolongation and torsade de pointes (TdP) in some patients. Consider taking steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, especially in patients with additional risk factors for TdP. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Sofosbuvir; Velpatasvir: (Moderate) Monitor patients for tenofovir-associated adverse reactions, such as renal toxicity, in patients receiving regimens containing tenofovir alafenamide and velpatasvir due to potential increases in tenofovir serum concentrations. Tenofovir alafenamide is a substrate of the breast cancer resistance protein (BCRP),P-glycoprotein (P-gP), OATP1B1, and OATB1B3 transporters, while velpatasvir inhibits these transporters.
Sofosbuvir; Velpatasvir; Voxilaprevir: (Moderate) Monitor patients for tenofovir-associated adverse reactions, such as renal toxicity, in patients receiving regimens containing tenofovir alafenamide and velpatasvir due to potential increases in tenofovir serum concentrations. Tenofovir alafenamide is a substrate of the breast cancer resistance protein (BCRP),P-glycoprotein (P-gP), OATP1B1, and OATB1B3 transporters, while velpatasvir inhibits these transporters.
Solifenacin: (Moderate) Caution is advised when administering rilpivirine with solifenacin as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Solifenacin has also been associated with dose-dependent prolongation of the QT interval. Torsade de pointes (TdP) has been reported with postmarketing use, although causality was not determined. This should be taken into consideration when prescribing solifenacin to patients taking other drugs that are associated with QT prolongation.
Sorafenib: (Major) Avoid coadministration of sorafenib with rilpivirine due to the risk of additive QT prolongation. If concomitant use is unavoidable, monitor electrocardiograms and correct electrolyte abnormalities. An interruption or discontinuation of sorafenib therapy may be necessary if QT prolongation occurs. Sorafenib is associated with QTc prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have also caused QT prolongation.
Sotalol: (Major) Concomitant use of sotalol and rilpivirine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Sotorasib: (Moderate) Coadministration of rilpivirine with sotorasib may result in decreased plasma concentrations of rilpivirine, leading to a reduction of antiretroviral efficacy and the potential development of viral resistance. Rilpivirine is a CYP3A4 substrate and sotorasib is a moderate CYP3A4 inducer. (Moderate) Coadministration of tenofovir alafenamide with sotorasib may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a P-gp and BCRP substrate. Sotorasib is a P-gp and BCRP inhibitor.
Sparsentan: (Moderate) Coadministration of tenofovir alafenamide with sparsentan may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a P-gp and BCRP substrate and sparsentan is a P-gp and BCRP inhibitor.
St. John's Wort, Hypericum perforatum: (Contraindicated) Concurrent use of St. John's Wort, Hypericum perforatum and rilpivirine is contraindicated. When coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. St. John's wort appears to be an inducer of CYP3A4, which is primarily responsible for the metabolism of rilpivirine. Coadministration may result in decreased rilpivirine serum concentrations, which could cause impaired virologic response to rilpivirine. (Major) Administering tenofovir alafenamide with St. John's wort is not recommended. Taking these drugs together is expected to decrease tenofovir plasma concentrations, which may increase the potential for resistance and HIV treatment failure.
Streptomycin: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as aminoglycosides. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions. (Moderate) Monitor for changes in serum creatinine and adverse reactions, such as lactic acidosis or hepatotoxicity if emtricitabine is administered in combination with nephrotoxic agents, such as aminoglycosides. Consider the potential for drug interaction prior to and during concurrent use of these medications. Both emtricitabine and aminoglycosides are excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. While no drug interactions due to competition for renal excretion have been observed, coadministration of these medications may increase concentrations of both drugs.
Sulindac: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Sumatriptan; Naproxen: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Sunitinib: (Moderate) Monitor for evidence of QT prolongation if sunitinib is administered with rilpivirine. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Sunitinib can prolong the QT interval.
Tacrolimus: (Moderate) Consider ECG and electrolyte monitoring periodically during treatment if tacrolimus is administered with rilpivirine. Tacrolimus may prolong the QT interval and cause torsade de pointes (TdP). Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. (Moderate) Monitor for changes in serum creatinine and adverse reactions, such as lactic acidosis or hepatotoxicity if emtricitabine is administered with tacrolimus. Consider the potential for drug interaction prior to and during concurrent use of these medications. Medications that decrease renal function, such as tacrolimus, may increase concentrations of emtricitabine; as emtricitabine is primarily exc reted via the kidneys by a combination of glomerular filtration and active tubular secretion. (Moderate) Tacrolimus therapeutic drug monitoring is recommended when administered concurrently with tenofovir alafenamide. Use of these medications together may result in elevated tacrolimus serum concentrations. Additionally, monitoring for changes in renal function is advised if tenofovir alafenamide is administered in combination with a nephrotoxic agent, such as tacrolimus. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions.
Tafamidis: (Moderate) Caution is advised with the coadministration of tafamidis and tenofovir alafenamide due to the potential for increased plasma concentrations of tenofovir alafenamide increasing the risk of adverse effects. Tenofovir alafenamide dose adjustment may be needed with coadministration. Tenofovir alafenamide is a substrate of breast cancer resistance protein (BCRP) and tafamidis is a BCRP inhibitor.
Tamoxifen: (Moderate) Concomitant use of tamoxifen and rilpivirine may increase the risk of QT/QTc prolongation and torsade de pointes (TdP) in some patients. Consider taking steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, especially in patients with additional risk factors for TdP. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Tedizolid: (Moderate) If possible, stop use of tenofovir alafenamide temporarily during treatment with oral tedizolid. If coadministration cannot be avoided, closely monitor for tenofovir-associated adverse events. Tenofovir plasma concentrations may be increased when tenofovir alafenamide is administered concurrently with oral tedizolid. Tenofovir alafenamide is a substrate of the Breast Cancer Resistance Protein (BCRP); oral tedizolid inhibits BCRP in the intestine. When tenofovir alafenamide is administered in combination with cobicistat, other inhibitors of BCRP are not expected to further increase tenofovir concentrations.
Telavancin: (Moderate) Caution is advised when administering rilpivirine with telavancin as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Telavancin has also been associated with QT prolongation.
Temsirolimus: (Moderate) Monitor for an increase in tenofovir alafenamide-related adverse reactions if coadministration with temsirolimus is necessary. Tenofovir alafenamide is a P-glycoprotein (P-gp) substrate and temsirolimus is a P-gp inhibitor. Concomitant use is likely to lead to increased concentrations of tenofovir alafenamide.
Tepotinib: (Moderate) Coadministration of tenofovir alafenamide with tepotinib may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a P-gp and BCRP substrate and tepotinib is a P-gp inhibitor.
Tetrabenazine: (Major) Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Tetrabenazine causes a small increase in the corrected QT interval (QTc). The manufacturer of tetrabenazine recommends avoiding concurrent use of tetrabenazine with other drugs known to prolong QTc such as rilpivirine.
Tezacaftor; Ivacaftor: (Minor) Use caution when administering ivacaftor and tenofovir alafenamide concurrently. Ivacaftor is an inhibitor of the drug transporter P-glycoprotein (P-gp). Tenofovir alafenamide is a substrate for P-gp. Concurrent use can increase tenofovir exposure leading to adverse events. Of note, when tenofovir alafenamide is administered as part of a cobicistat-containing product, its availability is increased by cobicistat and a further increase of tenofovir alafenamide concentrations is not expected upon coadministration of an additional P-gp inhibitor.
Thioridazine: (Contraindicated) Thioridazine is associated with a well-established risk of QT prolongation and TdP. Thioridazine is considered contraindicated for use along with rilpivirine which, when combined with thioridazine, may prolong the QT interval and increase the risk of TdP, and/or cause orthostatic hypotension.
Ticagrelor: (Moderate) Close clinical monitoring for adverse events is advised when administering rilpivirine with ticagrelor. Use of these drugs together may result in elevated rilpivirine plasma concentrations. Ticagrelor is a weak inhibitor of the hepatic isoenzyme CYP3A4 and drug transporter P-glycoprotein (P-gp). Rilpivirine is primarily metabolized by CYP3A4. (Moderate) Coadministration of tenofovir alafenamide with ticagrelor may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a P-gp substrate and ticagrelor is a P-gp inhibitor.
Tipranavir: (Major) Administering tenofovir alafenamide concurrently with tipranavir boosted with ritonavir is not recommended. Taking these drugs together is expected to decrease tenofovir plasma concentrations, which may increase the potential for resistance and HIV treatment failure. Tenofovir alafenamide is a substrate of P-glycoprotein (P-gp); tipranavir boosted with ritonavir is an inducer of P-gp. (Moderate) Close clinical monitoring is advised when administering the combination of tipranavir and ritonavir with rilpivirine due to an increased potential for rilpivirine-related adverse events. Predictions about the interaction can be made based on metabolic pathways. Tipranavir and ritonavir are inhibitors of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in increased rilpivirine plasma concentrations.
Tobramycin: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as aminoglycosides. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions. (Moderate) Monitor for changes in serum creatinine and adverse reactions, such as lactic acidosis or hepatotoxicity if emtricitabine is administered in combination with nephrotoxic agents, such as aminoglycosides. Consider the potential for drug interaction prior to and during concurrent use of these medications. Both emtricitabine and aminoglycosides are excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. While no drug interactions due to competition for renal excretion have been observed, coadministration of these medications may increase concentrations of both drugs.
Tolmetin: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Tolterodine: (Moderate) Caution is advised when administering rilpivirine with tolterodine as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Tolterodine has been associated with dose-dependent prolongation of the QT interval, especially in poor CYP2D6 metabolizers.
Topiramate: (Moderate) Close clinical monitoring is advised when administering topiramate with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Topiramate is an inducer of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response.
Toremifene: (Major) Avoid coadministration of rilpivirine with toremifene if possible due to the risk of additive QT prolongation. If concomitant use is unavoidable, closely monitor ECGs for QT prolongation and monitor electrolytes; correct hypokalemia or hypomagnesemia prior to administration of toremifene. Toremifene has been shown to prolong the QTc interval in a dose- and concentration-related manner. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have also caused QT prolongation.
Trandolapril; Verapamil: (Moderate) Close clinical monitoring is advised when administering verapamil with rilpivirine due to an increased potential for rilpivirine-related adverse events. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Verapamil is an inhibitor of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in increased rilpivirine plasma concentrations. (Moderate) Coadministration of tenofovir alafenamide with verapamil may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a P-gp substrate and verapamil is a P-gp inhibitor.
Trazodone: (Major) Concomitant use of trazodone and rilpivirine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Triclabendazole: (Moderate) Concomitant use of triclabendazole and rilpivirine may increase the risk of QT/QTc prolongation and torsade de pointes (TdP) in some patients. Consider taking steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, especially in patients with additional risk factors for TdP. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Trifluoperazine: (Minor) Caution is advised when administering rilpivirine with trifluoperazine as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Trifluoperazine is also associated with a possible risk for QT prolongation. Theoretically, trifluoperazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Triptorelin: (Moderate) Consider whether the benefits of androgen deprivation therapy (i.e., triptorelin) outweigh the potential risks of QT prolongation in patients receiving rilpivirine as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Androgen deprivation therapy may also prolong the QT/QTc interval.
Trospium: (Moderate) Tenofovir-containing products should be avoided with concurrent trospium administration as both are eliminated by active renal tubular secretion; coadministration has the potential to increase serum concentrations of either drug due to competition for the elimination pathway and patients should be carefully monitored.
Tucatinib: (Moderate) Coadministration of rilpivirine with tucatinib may result in increased plasma concentrations of rilpivirine, leading to an increase in rilpivirine-related adverse effects. Rilpivirine is a CYP3A4 substrate and tucatinib is a strong CYP3A4 inhibitor. (Moderate) Coadministration of tenofovir alafenamide with tucatinib may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a P-glycoprotein (P-gp) substrate and tucatinib is a P-gp inhibitor.
Valacyclovir: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with a nephrotoxic agent, such as valacyclovir. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for valacyclovir or emtricitabine-related adverse events during concomitant use. Concomitant use may increase valacyclovir or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as valacyclovir and emtricitabine, may increase the risk of adverse reactions.
Valdecoxib: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
Valganciclovir: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with a nephrotoxic agent, such as valganciclovir. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions. (Moderate) Monitor for changes in serum creatinine and adverse reactions, such as lactic acidosis or hepatotoxicity if emtricitabine is administered in combination with nephrotoxic agents, such as valganciclovir. Consider the potential for drug interaction prior to and during concurrent use of these medications. Both emtricitabine and valganciclovir are excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. While no drug interactions due to competition for renal excretion have been observed, coadministration of these medications may increase concentrations of both drugs.
Valproic Acid, Divalproex Sodium: (Moderate) Caution is advised when administering tenofovir alafenamide with valproic acid, divalproex sodium, as there is a potential for decreased tenofovir plasma concentrations. Valproic acid is an in vitro inducer of P-glycoprotein (P-gp); tenofovir alafenamide is a P-gp substrate. Concurrent use may decrease absorption and alter metabolism of tenofovir.
Vancomycin: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with a nephrotoxic agent, such as vancomycin. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions.
Vandetanib: (Major) Avoid coadministration of vandetanib with rilpivirine due to an increased risk of QT prolongation and torsade de pointes (TdP). If concomitant use is unavoidable, monitor ECGs for QT prolongation and monitor electrolytes; correct hypocalcemia, hypomagnesemia, and/or hypomagnesemia prior to vandetanib administration. An interruption of vandetanib therapy or dose reduction may be necessary for QT prolongation. Vandetanib can prolong the QT interval in a concentration-dependent manner; TdP and sudden death have been reported in patients receiving vandetanib. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have also caused QT prolongation.
Vardenafil: (Moderate) Concomitant use of vardenafil and rilpivirine may increase the risk of QT/QTc prolongation and torsade de pointes (TdP) in some patients. Consider taking steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, especially in patients with additional risk factors for TdP. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Vemurafenib: (Major) Due to the potential for QT prolongation and torsade de pointes (TdP), caution is advised when administering rilpivirine with vemurafenib. If these drugs must be coadministered, ECG monitoring is recommended; closely monitor the patient for QT interval prolongation. Both vemurafenib and supratherapeutic doses of rilpivirine (75 to 300 mg/day) have been associated with QT prolongation. Also, rilpivirine is a CYP3A4 substrate, while vemurafenib is a CYP3A4 substrate and inducer. Therefore, decreased concentrations of rilpivirine and potential loss of virologic response may occur with concomitant use. (Moderate) Coadministration of vemurafenib and tenofovir alafenamide may result in elevated tenofovir concentrations. Vemurafenib is an inhibitor of the drug transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP). Tenofovir alafenamide is a P-gp and BCRP substrate. Of note, when tenofovir alafenamide is administered as part of a cobicistat-containing product, its availability is increased by cobicistat and a further increase of tenofovir alafenamide concentrations is not expected upon coadministration of an additional P-gp inhibitor.
Venlafaxine: (Moderate) Concomitant use of venlafaxine and rilpivirine may increase the risk of QT/QTc prolongation and torsade de pointes (TdP) in some patients. Consider taking steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, especially in patients with additional risk factors for TdP. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Verapamil: (Moderate) Close clinical monitoring is advised when administering verapamil with rilpivirine due to an increased potential for rilpivirine-related adverse events. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Verapamil is an inhibitor of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in increased rilpivirine plasma concentrations. (Moderate) Coadministration of tenofovir alafenamide with verapamil may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Tenofovir alafenamide is a P-gp substrate and verapamil is a P-gp inhibitor.
Voclosporin: (Moderate) Coadministration of tenofovir alafenamide and voclosporin may result in increased plasma concentrations of tenofovir leading to an increase in tenofovir-related adverse effects. Concomitant use may also may result in additive nephrotoxicity. Monitor for renal toxicity if concomitant use is required. Tenofovir alafenamide is a P-gp substrate and voclosporin is a P-gp inhibitor. (Moderate) Concomitant use of voclosporin and rilpivirine may increase the risk of QT prolongation. Consider interventions to minimize the risk of progression to torsades de pointes (TdP), such as ECG monitoring and correcting electrolyte abnormalities, particularly in patients with additional risk factors for TdP. Both voclosporin and rilpivirine have been associated with QT prolongation at supratherapeutic doses.
Vonoprazan; Amoxicillin: (Contraindicated) Concomitant use of vonoprazan with rilpivirine is contraindicated due to the potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Vonoprazan reduces intragastric acidity, which may decrease the absorption of rilpivirine reducing its efficacy.
Vonoprazan; Amoxicillin; Clarithromycin: (Contraindicated) Concomitant use of vonoprazan with rilpivirine is contraindicated due to the potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Vonoprazan reduces intragastric acidity, which may decrease the absorption of rilpivirine reducing its efficacy. (Major) Close clinical monitoring is advised when administering clarithromycin with rilpivirine due to an increased potential for rilpivirine-related adverse events. When possible, alternative antibiotics should be considered. Predictions about the interaction can be made based on metabolic pathways. Clarithromycin is an inhibitor of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in increased rilpivirine plasma concentrations. Also, supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation; caution is advised when administering rilpivirine with other drugs that may prolong the QT or PR interval, such as clarithromycin. (Moderate) Coadministration of clarithromycin and tenofovir alafenamide may result in elevated tenofovir concentrations. Clarithromycin is an inhibitor of the drug transporter P-glycoprotein (P-gp). Tenofovir alafenamide is a P-gp substrate. However, when tenofovir alafenamide is administered as part of a cobicistat-containing product, its availability is increased by cobicistat and a further increase of tenofovir alafenamide concentrations is not expected upon coadministration of an additional P-gp inhibitor.
Voriconazole: (Moderate) Caution is advised when administering voriconazole with rilpivirine due to the potential for additive effects on the QT interval, increased exposure to rilpivirine, and decreased exposure to voriconazole. Monitor for breakthrough fungal infections in patients receiving rilpivirine with an azole antifungal. Rilpivirine, a CYP3A4 substrate, and voriconazole, a strong CYP3A4 inhibitor, are both associated with QT prolongation; rilpivirine dosage adjustments are not recommended. In addition, concurrent use of rilpivirine decreased exposure to another azole antifungal. A similar interaction may occur with voriconazole.
Vorinostat: (Moderate) Caution is advised when administering rilpivirine with vorinostat. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Vorinostat therapy is also associated with a risk of QT prolongation.
Voxelotor: (Moderate) Coadministration of rilpivirine with voxelotor may result in increased plasma concentrations of rilpivirine, leading to an increase in rilpivirine-related adverse effects. Rilpivirine is a CYP3A substrate and voxelotor is a moderate CYP3A inhibitor.
Zafirlukast: (Moderate) Close clinical monitoring is advised when administering zafirlukast with rilpivirine due to an increased potential for rilpivirine-related adverse events. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Zafirlukast is an inhibitor of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in increased rilpivirine plasma concentrations.
Ziprasidone: (Major) Concomitant use of ziprasidone and rilpivirine should be avoided due to the potential for additive QT prolongation. Clinical trial data indicate that ziprasidone causes QT prolongation; there are postmarketing reports of torsade de pointes (TdP) in patients with multiple confounding factors. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Zoledronic Acid: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with a nephrotoxic agent, such as zoledronic acid. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs; thus, increasing the risk of developing renal-related adverse reactions.
Zonisamide: (Minor) Caution is advised when administering tenofovir alafenamide concurrently with zonisamide, as coadministration may result in elevated tenofovir plasma concentrations. Inhibitors of the drug transporter P-glycoprotein (P-gp), such as zonisamide, may increase absorption of tenofovir alafenamide, a P-gp substrate. If these medications are administered together, monitor for tenofovir-associated adverse reactions. Of note, when tenofovir alafenamide is administered as part of a cobicistat-containing product, its availability is increased by cobicistat and a further increase of tenofovir alafenamide concentrations is not expected upon coadministration of an additional P-gp inhibitor.

How Supplied

ODEFSEY Oral Tab: 200-25-25mg

Maximum Dosage
Adults

1 tablet/day PO (200 mg emtricitabine; 25 mg rilpivirine; 25 mg tenofovir alafenamide).

Geriatric

1 tablet/day PO (200 mg emtricitabine; 25 mg rilpivirine; 25 mg tenofovir alafenamide).

Adolescents

weighing 35 kg or more: 1 tablet/day PO (200 mg emtricitabine; 25 mg rilpivirine; 25 mg tenofovir alafenamide).
weighing less than 35 kg: Safety and efficacy have not been established.

Children

12 years and weighing 35 kg or more: 1 tablet/day PO (200 mg emtricitabine; 25 mg rilpivirine; 25 mg tenofovir alafenamide).
1 to 11 years or 12 years weighing less than 35 kg: Safety and efficacy have not been established.

Infants

Safety and efficacy have not been established.

Neonates

Safety and efficacy have not been established.

Mechanism Of Action

The combination therapy of emtricitabine; rilpivirine; tenofovir alafenamide is not antagonistic in cell culture.
 
Emtricitabine: Emtricitabine, a synthetic nucleoside analog of cytidine, is phosphorylated by cellular enzymes to form emtricitabine 5'-triphosphate. Emtricitabine 5'-triphosphate inhibits the activity of HIV-1 reverse transcriptase (RT) by competing with the natural substrate deoxycytidine 5'-triphosphate for incorporation into nascent viral DNA, resulting in chain termination. Emtricitabine 5'-triphosphate is a weak inhibitor of mammalian DNA polymerase alpha, beta, epsilon, and mitochondrial DNA polymerase-gamma.
The antiviral activity of emtricitabine against laboratory and clinical isolates of HIV-1 was assessed in lymphoblastoid cell lines, the MAGI-CCR5 cell line, and peripheral blood mononuclear cells (PBMC). The 50% effective concentration (EC50) values for emtricitabine were in the range of 1.3 to 640 nanomolar. Emtricitabine displayed antiviral activity in cell culture against HIV-1 clades A, B, C, D, E, F, and G (EC50 values ranged from 7 to 75 nanomolar) and showed strain-specific activity against HIV-2 (EC50 values ranged from 7 to 1,500 nanomolar in PBMCs and MAGI cells).
Emtricitabine-resistant isolates of HIV-1 have been selected in cell culture and in vivo. Genotypic analysis of these isolates showed that the reduced susceptibility to emtricitabine was associated with a valine or isoleucine (M184V/I) substitution in the HIV-1 RT. People with the M184V/I mutation are cross-resistant to lamivudine, but retain susceptibility to didanosine, stavudine, tenofovir, and zidovudine, and to non-nucleoside reverse transcriptase inhibitors (NNRTIs). HIV-1 isolates containing the K65R substitution, selected in vivo by abacavir, didanosine, and tenofovir, demonstrated reduced susceptibility to inhibition by emtricitabine. Viruses harboring substitutions conferring reduced susceptibility to zidovudine and stavudine (M41L, D67N, K70R, L210W, T215Y/F, K219Q/E) or didanosine (L74V) remained susceptible to emtricitabine. HIV-1 containing the K103N substitution associated with resistance to NNRTIs was susceptible to emtricitabine.
 
Tenofovir alafenamide: Tenofovir alafenamide (tenofovir AF) is a phosphonoamidate prodrug of tenofovir. Tenofovir AF is taken up by cells, where it undergoes hydrolysis by cathepsin A to form tenofovir, an acyclic nucleoside phosphonate (nucleotide) analog of adenosine 5'-monophosphate. Subsequently, tenofovir is phosphorylated by cellular kinases to form the active metabolite, tenofovir diphosphate. Tenofovir diphosphate acts as a competitive inhibitor of RNA- and DNA-directed reverse transcriptase. Tenofovir diphosphate competes with the natural substrate deoxyadenosine 5'-triphosphate and, since it lacks a 3' hydroxyl group, causes premature DNA termination. The EC50 ranges from 2 to 14.7 nanomolar. In addition to inhibiting HIV reverse transcriptase, tenofovir diphosphate has activity against the hepatitis B virus (HBV). The drug is also a weak inhibitor of mammalian DNA polymerase alpha, beta, and mitochondrial DNA polymerase-gamma.
HIV isolates with reduced susceptibility to tenofovir have been selected in vitro. Viruses with reduced susceptibility to tenofovir expressed the K65R and K70E substitutions in reverse transcriptase. These mutations confer cross-resistance with abacavir, didanosine, emtricitabine, and lamivudine.
 
Rilpivirine: Rilpivirine inhibits HIV-1 reverse transcriptase. Unlike nucleoside reverse transcriptase inhibitors (NRTIs), it does not compete for binding nor does it require phosphorylation to be active. Rilpivirine binds directly to a site on reverse transcriptase that is distinct from where NRTIs bind. This binding causes disruption of the enzyme's active site thereby blocking RNA-dependent and DNA-dependent DNA polymerase activities. The EC50 for wild type laboratory-adapted strains of HIV-1 is 0.73 nanomolar. It has very limited activity against HIV-2 reverse transcriptase with an EC50 ranging from 2,510 to 10,830 nanomolar. Human cellular DNA polymerase alpha, beta, and gamma are not inhibited by rilpivirine.
During clinical use, treatment-emergent genotypic and phenotypic resistance occurred more frequently in patients receiving emtricitabine; rilpivirine; tenofovir (61%; n = 47/77) than in patients treated with efavirenz; emtricitabine; tenofovir (42%; n = 18/43). Amino acid substitutions observed in these rilpivirine virologic failures included V90I, K101E/P/T, E138K/A/Q/G, V179I/L, Y181C/I, V189I, H221Y, F227C/L, and M230L. In addition, resistance to emtricitabine or tenofovir developed in 57% (44/77) of patients in the rilpivirine group compared to 26% (11/43) in the efavirenz arm. Cross-resistance to efavirenz, etravirine, and nevirapine is likely after virologic failure and development of rilpivirine resistance.
Avoid the use of rilpivirine in patients with HIV-2, as HIV-2 is intrinsically resistant to NNRTIs. To identify the HIV strain, The Centers for Disease Control and Prevention guidelines for HIV diagnostic testing recommend initial HIV testing using an HIV-1/HIV-2 antigen/antibody combination immunoassay and subsequent testing using an HIV-1/HIV-2 antibody differentiation immunoassay.

Pharmacokinetics

Emtricitabine; rilpivirine; tenofovir alafenamide tablets are administered orally.
Emtricitabine: Emtricitabine exhibits low plasma protein binding of less than 4%, and protein binding is independent of plasma concentration. The mean plasma to blood drug concentration ratio is 0.6. Emtricitabine is metabolized via oxidation to 3'-sulfoxide diastereomer (approximately 9% of the dose) and via conjugation with glucuronic acid to 2'-O-glucuronide (approximately 4% of the dose). The median terminal plasma half-life of emtricitabine is approximately 10 hours. Emtricitabine is excreted renally (70%) and via feces (13.7%). Renal clearance is more than the estimated creatinine clearance; elimination is presumed to be by both glomerular filtration and active tubular secretion.
Tenofovir alafenamide: Plasma protein binding of tenofovir AF is approximately 80%, with a mean blood to plasma ratio of 1. Intracellularly, tenofovir AF is converted to tenofovir via hydrolysis by cathepsin A. Subsequently, tenofovir undergoes phosphorylation to its active metabolite, tenofovir diphosphate. Neither tenofovir nor tenofovir diphosphate are substrates for CYP450 hepatic isoenzymes; however CYP3A enzymes play a minor role in the metabolism of the prodrug, tenofovir AF. Metabolism is the primary mechanism by which tenofovir AF is eliminated (more than 80% of the dose), with excretion via feces and urine accounting for 31.7% and less than 1%, respectively. Elimination of the tenofovir metabolite occurs primarily via the kidneys (70% to 80%) by a combination of glomerular filtration and active tubular secretion. The median terminal plasma half-life of tenofovir AF is 0.51 hours; however, the active metabolite (tenofovir diphosphate) has a half-life of 150 to 180 hours.
Rilpivirine: Rilpivirine is highly protein-bound (99%), predominantly to albumin. It is unknown if there is distribution into compartments other than plasma, such as cerebrospinal fluid or gastrointestinal tract secretions. Metabolism occurs primarily via oxidation by CYP3A system. The median terminal elimination half-life is approximately 50 hours with excretion occurring predominately through the feces. After administration of a single oral dose, an average of 85% is eliminated via the feces and 6% is excreted in the urine.
 
Affected cytochrome P450 isoenzymes and drug transporters: CYP3A, P-gp, BCRP, OATP1B1, and OATP1B3
Rilpivirine is primarily metabolized by CYP3A4; tenofovir alafenamide is a minor substrate of CYP3A. Tenofovir alafenamide is also a substrate for the drug transporters P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), organic anion transporter polypeptide (OATP) 1B1, and OATP1B3. In vitro, tenofovir alafenamide is a weak inhibitor of CYP3A4; however, these effects are not observed in vivo.

Oral Route

Emtricitabine: Emtricitabine is rapidly and extensively absorbed, with a mean absolute bioavailability of 93%. Peak plasma concentrations (Cmax) are observed 3 hours post-dose. Systemic exposure (AUC) is not significantly affected by the presence food. The AUC and Cmax increase in proportion to oral dosage over the range of 25 to 200 mg.
Tenofovir alafenamide: Peak plasma concentrations (Cmax) are observed 1 hour after oral administration. Systemic exposure (AUC) is not significantly affected by the presence of food.
Rilpivirine: Absolute oral bioavailability is unknown; however, the time to reach maximum plasma concentrations is approximately 4 hours. Compared to fasting conditions, exposure (AUC) is increased by 40% when administered with a normal caloric (533 kcal) or high fat, high caloric meal (928 kcal). Another study found the AUC and Cmax increased by 9% and 34%, respectively, with a light meal (390 kcal; 12 g fat) and 16% and 26%, respectively, with a standard meal (540 kcal; 21 g fat). Administering with only a protein-rich nutritional drink decreases AUC by 50% when compared with fed conditions.

Pregnancy And Lactation
Pregnancy

Antiretroviral therapy should be provided to all patients during pregnancy, regardless of HIV RNA concentrations or CD4 cell count. Using highly active antiretroviral combination therapy (HAART) to maximally suppress viral replication is the most effective strategy to prevent the development of resistance and to minimize the risk of perinatal transmission. Begin HAART as soon as pregnancy is recognized, or HIV is diagnosed. HIV guidelines recommend emtricitabine; rilpivirine; tenofovir alafenamide as an alternative treatment option for use during pregnancy. However, because pharmacokinetic data show decreased rilpivirine exposures during the second and third trimesters, close monitoring of viral loads is recommended during pregnancy (i.e., every 1 to 2 months). Available data from the Antiretroviral Pregnancy Registry, which includes first trimester exposures to emtricitabine (more than 4,225 exposures), rilpivirine (more than 610 exposures), and tenofovir alafenamide (more than 680 exposures), have shown no difference in the risk of overall major birth defects when compared to the 2.7% background rate among pregnant women in the US. When exposure occurred in the first trimester, the prevalence of defects was 2.7% (95% CI: 2.2 to 3.2) for emtricitabine, 1.6% (95% CI: 0.8 to 3) for rilpivirine, and 3.5% (95% CI: 2.3 to 5.2) for tenofovir alafenamide. Nucleoside reverse transcriptase inhibitors (NRTIs) are known to induce mitochondrial dysfunction. An association of mitochondrial dysfunction in infants and in utero antiretroviral exposure has been suggested, but not established. While the development of severe or fatal mitochondrial disease in exposed infants appears to be extremely rare, more intensive monitoring of hematologic and electrolyte parameters during the first few weeks of life is advised. Nucleoside analogs have been associated with the development of lactic acidosis, especially during pregnancy. It is unclear if pregnancy augments the incidence of lactic acidosis/hepatic steatosis in patients receiving nucleoside analogs. However, because pregnancy can mimic some early symptoms of the lactic acid/hepatic steatosis syndrome or be associated with other significant disorders of liver metabolism, clinicians need to be alert for early diagnosis of this syndrome. Pregnant patients receiving nucleoside analogs should have LFTs and serum electrolytes assessed more frequently during the last trimester and any new symptoms should be evaluated thoroughly. Regular laboratory monitoring is recommended to determine antiretroviral efficacy. Monitor CD4 counts at the initial visit. Patients who have been on HAART for at least 2 years and have consistent viral suppression and CD4 counts consistently greater than 300 cells/mm3 do not need CD4 counts monitored after the initial visit during the pregnancy. However, CD4 counts should be monitored every 3 months during pregnancy for patients on HAART less than 2 years, patients with CD4 count less than 300 cells/mm3, or patients with inconsistent adherence or detectable viral loads. Monitor plasma HIV RNA at the initial visit (with review of prior levels), 2 to 4 weeks after initiating or changing therapy, monthly until undetectable, and then at least every 3 months during pregnancy. Viral load should also be assessed at approximately 36 weeks gestation, or within 4 weeks of delivery, to inform decisions regarding mode of delivery and optimal treatment for newborns. Patients whose HIV RNA levels are above the threshold for resistance testing (usually greater than 500 copies/mL but may be possible for levels greater than 200 copies/mL in some laboratories) should undergo antiretroviral resistance testing (genotypic testing, and if indicated, phenotypic testing). Resistance testing should be conducted before starting therapy in treatment-naive patients who have not been previously tested, starting therapy in treatment-experienced patients (including those who have received pre-exposure prophylaxis), modifying therapy in patients who become pregnant while receiving treatment, or modifying therapy in patients who have suboptimal virologic response to treatment that was started during pregnancy. DO NOT delay initiation of antiretroviral therapy while waiting on the results of resistance testing; treatment regimens can be modified, if necessary, once the testing results are known. First trimester ultrasound is recommended to confirm gestational age and provide an accurate estimation of gestational age at delivery. A second trimester ultrasound can be used for both anatomical survey and determination of gestational age in those patients not seen until later in gestation. Perform standard glucose screening in patients receiving antiretroviral therapy at 24 to 28 weeks gestation, although it should be noted that some experts would perform earlier screening with ongoing chronic protease inhibitor-based therapy initiated prior to pregnancy, similar to recommendations for patients with high-risk factors for glucose intolerance. Liver function testing is recommended within 2 to 4 weeks after initiating or changing antiretroviral therapy, and approximately every 3 months thereafter during pregnancy (or as needed). All pregnant patients should be counseled about the importance of adherence to their antiretroviral regimen to reduce the potential for the development of resistance and perinatal transmission. It is strongly recommended that antiretroviral therapy, once initiated, not be discontinued. If a patient decides to discontinue therapy, a consultation with an HIV specialist is recommended. There is a pregnancy exposure registry that monitors outcomes in pregnant patients exposed to emtricitabine; rilpivirine; tenofovir alafenamide; information about the registry can be obtained at www.apregistry.com or by calling 1-800-258-4263.

HIV treatment guidelines recommend clinicians provide mothers with evidence-based, patient-centered counseling to support shared decision-making regarding infant feeding. Inform patients that use of replacement feeding (i.e., formula or banked pasteurized donor human milk) eliminates the risk of HIV transmission; thus, replacement feeding is recommended for use when mothers with HIV are not on antiretroviral therapy (ART) or do not have suppressed viral load during pregnancy, as well as at delivery. For patients on ART who have achieved and maintained viral suppression during pregnancy (at minimum throughout the third trimester) and postpartum, the transmission risk from breast-feeding is less than 1%, but not zero. Virologically suppressed mothers who choose to breast-feed should be supported in this decision. If breast-feeding is chosen, counsel the patient about the importance of adherence to therapy and recommend that the infant be exclusively breast-fed for up to 6 months of age, as exclusive breast-feeding has been associated with a lower rate of HIV transmission as compared to mixed feeding (i.e., breast milk and formula). Promptly identify and treat mastitis, thrush, and cracked or bleeding nipples, as these conditions may increase the risk of HIV transmission through breast-feeding. Breast-fed infants should undergo immediate diagnostic and virologic HIV testing. Testing should continue throughout breast-feeding and up to 6 months after cessation of breast-feeding. For expert consultation, healthcare workers may contact the Perinatal HIV Hotline (888-448-8765). There is limited experience using rilpivirine and tenofovir alafenamide during breast-feeding and their excretion into breast milk is unknown. Limited data suggest small amounts of emtricitabine is excreted into breast milk. One study estimated the exposure to emtricitabine in exclusively breast-fed infants at approximately 2% of the recommended infant dose. Other antiretroviral medications whose passage into human breast milk have been evaluated include tenofovir disoproxil fumarate, nevirapine, zidovudine, lamivudine, and nelfinavir.