PDR MEMBER LOGIN:
  • PDR Search

    Required field
  • Advertisement
  • CLASSES

    Other Agents for Tuberculosis

    DEA CLASS

    Rx

    DESCRIPTION

    Oral antituberculosis agent that may inhibit folic acid synthesis and/or inhibit synthesis of a cell wall component 
    Use second-line to treat tuberculosis infection; often used for multi-drug resistant tuberculosis
    Must be used as part of a multi-drug treatment regimen

    COMMON BRAND NAMES

    PASER

    HOW SUPPLIED

    Aminosalicylic Acid/PASER Oral Gran: 4g

    DOSAGE & INDICATIONS

    For the treatment of drug-susceptible tuberculosis infection as part of combination therapy.
    Oral dosage
    Adults

    8 to 12 g/day or 5 days/week PO divided in 2 to 3 doses. Usual dose: 4,000 mg PO 2 to 3 times daily.[34362] [43054] [61094] Daily dosing is defined as 5- or 7 days/week.[61094] Para-aminosalicylic acid is generally recommended as second-line therapy; duration is dependent on the site of involvement.[61094] [65619]

    Adolescents

    200 to 300 mg/kg/day (Max: 12 g/day) or 5 days/week PO divided in 2 to 3 doses.[34362] [43054] [61094] Daily dosing is defined as 5- or 7 days/week.[61094] Para-aminosalicylic acid is generally recommended as second-line therapy; duration is dependent on the site of involvement.[61094] [65619]

    Infants and Children

    200 to 300 mg/kg/day (Max: 10 g/day) or 5 days/week PO divided in 2 to 3 doses. Daily dosing is defined as 5- or 7 days/week. Para-aminosalicylic acid is generally recommended as second-line therapy; duration is dependent on the site of involvement.

    For the treatment of drug-resistant tuberculosis infection as part of combination therapy.
    Oral dosage
    Adults

    6 to 12 g/day PO divided in 1 to 3 doses.

    Infants, Children, and Adolescents

    200 to 300 mg/kg/day (Max: 12 g/day) PO divided in 2 to 4 doses.

    For aminosalicylic acid desensitization.
    Oral dosage
    Adults

    10 mg PO as a single dose, then double the dose every 2 days until reaching a total of 1 g, then begin regular dose. If a mild temperature rise or a skin reaction develops, decrease by 1 dose increment or hold the progression for 1 cycle. Reactions are rare after a total dosage of 1.5 g.[43054]

    Infants, Children, and Adolescents

    10 mg PO as a single dose, then double the dose every 2 days until reaching a total of 1 g, then begin regular dose. If a mild temperature rise or a skin reaction develops, decrease by 1 dose increment or hold the progression for 1 cycle. Reactions are rare after a total dosage of 1.5 g.[43054]

    MAXIMUM DOSAGE

    Adults

    12 g/day PO.

    Geriatric

    12 g/day PO.

    Adolescents

    300 mg/kg/day (Max: 12 g/day) PO.

    Children

    300 mg/kg/day (Max: 10 g/day) PO.

    Infants

    300 mg/kg/day PO.

    Neonates

    Safety and efficacy have not been established.

    DOSING CONSIDERATIONS

    Hepatic Impairment

    Specific guidelines for dosage adjustments in hepatic impairment are not available; it appears that no dosage adjustments are needed. Patients with hepatic disease may not tolerate aminosalicylic acid as well as those without hepatic disease.[43054]

    Renal Impairment

    Aminosalicylic acid is contraindicated in patients with end-stage renal disease.[43054]
     
    Adult patients†
    CrCl 30 mL/minute or more: No dosage adjustment necessary.
    CrCl 10 to 30 mL/minute: 4 g PO twice daily or 50% to 75% of the dose.
    CrCl less than 10 mL/minute: 4 g PO twice daily or 50% of the dose.
     
    Intermittent hemodialysis
    Aminosalicylic acid is contraindicated in patients with end-stage renal disease.[43054]
     
    Adult patients†
    4 g PO twice daily; administer after hemodialysis on dialysis days.
     
    Peritoneal dialysis†
    Adult patients
    Administer 50% of the dose.
     
    Continuous renal replacement therapy (CRRT)†
    NOTE: Various CRRT modalities include continuous venovenous hemofiltration (CVVH), continuous venovenous hemodialysis (CVVHD), continuous venovenous hemodiafiltration (CVVHDF), continuous venovenous high-flux hemodialysis (CVVHFD), continuous arteriovenous hemofiltration (CAVH), continuous arteriovenous hemodialysis (CAVHD), and continuous arteriovenous hemodiafiltration (CAVHDF). Dosing should take into consideration patient-specific factors (e.g., intrinsic renal function), type of infection, the duration of renal replacement therapy, the effluent flow rate, and the replacement solution administered.
     
    Adult patients
    Administer 50% to 75% of the dose.

    ADMINISTRATION

     
    Directly observed therapy (DOT) is recommended for all children as well as adolescents and adults living with HIV.[34361] [34362] [61094]

    Oral Administration
    Other Oral Formulations

    Oral granules
    The coating to protect the granules dissolves promptly under neutral conditions; therefore, administer granules by sprinkling on acidic foods, such as applesauce or yogurt, or by suspension in a fruit drink with a pH less than 5. Satisfactory juices include tomato, orange, grapefruit, grape, cranberry, apple, and "fruit punch".
    Swirl the fruit drink to resuspend granules that may sink.
    Patients who have neutralized gastric acid with antacids will not need to protect the acid-resistant coating with an acidic food as the neutralized gastric acid will not render the drug ineffective.
    The skeleton of the granules may be seen in the stool.
    Storage: The granule coating is protected for 2 hours in either acidic food or fruit drink.[43054]

    STORAGE

    PASER:
    - Avoid excessive heat (above 104 degrees F)
    - Product may be stored at room temperature for short periods of time
    - Store below 59 degrees F in a refrigerator or freezer

    CONTRAINDICATIONS / PRECAUTIONS

    General Information

    Aminosalicylic acid is contraindicated in patients with hypersensitivity to any components of the medication. Discontinue all drugs at the first sign suggesting a hypersensitivity reaction. They may be restarted 1 at a time in very small but gradually increasing doses to determine whether the manifestations are drug-induced, and if so, which drug is responsible. Aminosalicylic acid desensitization has been accomplished successfully.[43054]

    Renal disease, renal failure

    Aminosalicylic acid is contraindicated in patients with severe renal disease (i.e., renal failure). Patients with severe renal disease will accumulate aminosalicylic acid and its acetyl metabolite but will continue to acetylate, thus leading exclusively to the inactive acetylated form; deacetylation, if any, is not significant. Although aminosalicylic acid passes dialysis membranes, the frequency of dialysis usually is not comparable to the half-life of 50 minutes for the free acid. Patients with end-stage renal disease should not receive aminosalicylic acid.

    Hepatic disease

    Patients with hepatic disease may not tolerate aminosalicylic acid as well as patients without hepatic disease even though the metabolism in patients with hepatic disease has been reported to be comparable to that in normal volunteers.[43054] Most combination therapy for active TB disease includes more than 1 agent that may contribute to hepatotoxicity.[61094]

    Vitamin B12 deficiency

    Consider patients on aminosalicylic acid therapy for more than 1 month for supplementation with vitamin B12 due to aminosalicylic acid-induced vitamin B12 deficiency. As a result of competition, vitamin B12 absorption is reduced by aminosalicylic acid with clinically significant erythrocyte abnormalities developing after depletion.[43054]

    Laboratory test interference

    Aminosalicylic acid has been reported to cause laboratory test interference with the serum determinations of albumin by dye-binding, AST by the azoene dye method, and with qualitative urine tests for ketones, bilirubin, urobilinogen, or porphobilinogen.[43054]

    Pregnancy

    Use aminosalicylic during pregnancy only if clearly needed. Literature reports on aminosalicylic acid in pregnant women always report coadministration of other medications. Aminosalicylic acid has been reported to produce occipital malformations in rats when given at doses within the human dose range. Although there probably is a dose-response, the frequency of abnormalities was comparable to controls at the highest level tested (2 times the human dosage). When administered to rabbits at 5 mg/kg, throughout all trimesters, no teratologic or embryocidal effects were seen.[43054]

    Breast-feeding

    After administration of a different preparation of aminosalicylic acid to a breast-feeding woman, the maximum concentration in the milk was 1 mcg/mL at 3 hours with a half-life of 2.5 hours; the maximum maternal plasma concentration was 70 mcg/mL at 2 hours.[43054] Aminosalicylic acid use as part of multidrug regimens to treat 2 pregnant women with multidrug-resistant tuberculosis, 1 throughout pregnancy and postpartum and the other postpartum only, has been reported. The infants were breast-fed and developing normally except for a mild speech delay in 1 infant and hyperactivity in the other.[48384]

    ADVERSE REACTIONS

    Severe

    pericarditis / Delayed / Incidence not known
    vasculitis / Delayed / Incidence not known
    optic neuritis / Delayed / Incidence not known
    exfoliative dermatitis / Delayed / Incidence not known
    agranulocytosis / Delayed / Incidence not known
    hemolytic anemia / Delayed / Incidence not known

    Moderate

    hepatitis / Delayed / 0.5-0.5
    leukopenia / Delayed / Incidence not known
    encephalopathy / Delayed / Incidence not known
    hypoglycemia / Early / Incidence not known
    thrombocytopenia / Delayed / Incidence not known
    jaundice / Delayed / Incidence not known
    hepatomegaly / Delayed / Incidence not known
    eosinophilia / Delayed / Incidence not known
    lymphadenopathy / Delayed / Incidence not known
    crystalluria / Delayed / Incidence not known
    vitamin B12 deficiency / Delayed / Incidence not known

    Mild

    vomiting / Early / Incidence not known
    diarrhea / Early / Incidence not known
    nausea / Early / Incidence not known
    abdominal pain / Early / Incidence not known
    fever / Early / Incidence not known
    anorexia / Delayed / Incidence not known
    leukocytosis / Delayed / Incidence not known
    steatorrhea / Delayed / Incidence not known

    DRUG INTERACTIONS

    Acetazolamide: (Major) Avoid the coadministration of high-dose salicylates and carbonic anhydrase inhibitors whenever possible. There were reports of anorexia, tachypnea, lethargy, metabolic acidosis, coma, and death with high-dose aspirin and acetazolamide. Two mechanisms could cause increased acetazolamide concentrations, resulting in CNS depression and metabolic acidosis: first, competition with aspirin for renal tubular secretion and, second, displacement by salicylates from plasma protein binding sites. Additionally, carbonic anhydrase inhibitors alkalinize urine and increase the excretion of normal doses of salicylates; decreased plasma salicylate concentrations may or may not be clinically significant.
    Aliskiren; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Alogliptin: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
    Alogliptin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
    Alogliptin; Pioglitazone: (Moderate) Monitor blood glucose during concomitant thiazolidinedione and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
    Alpha-glucosidase Inhibitors: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
    Amiloride: (Moderate) Salicylates can increase the risk of renal insufficiency in patients receiving diuretics, secondary to effects on renal blood flow. Salicylates inhibit renal prostaglandin production, which causes salt and water retention and decreased renal blood flow. Coadministration may cause hyperkalemia.
    Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Salicylates can increase the risk of renal insufficiency in patients receiving diuretics, secondary to effects on renal blood flow. Salicylates inhibit renal prostaglandin production, which causes salt and water retention and decreased renal blood flow. Coadministration may cause hyperkalemia.
    Aminoglycosides: (Minor) Due to the inhibition of renal prostaglandins by salicylates, concurrent use of salicylates and other nephrotoxic agents like the aminoglycosides may lead to additive nephrotoxicity.
    Amlodipine; Benazepril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
    Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Amphotericin B cholesteryl sulfate complex (ABCD): (Minor) Concurrent use of amphotericin B and other potentially nephrotoxic medications, like the salicylates, may enhance the potential for drug-induced renal toxicity.
    Amphotericin B lipid complex (ABLC): (Minor) Concurrent use of amphotericin B and other potentially nephrotoxic medications, like the salicylates, may enhance the potential for drug-induced renal toxicity.
    Amphotericin B liposomal (LAmB): (Minor) Concurrent use of amphotericin B and other potentially nephrotoxic medications, like the salicylates, may enhance the potential for drug-induced renal toxicity.
    Amphotericin B: (Minor) Concurrent use of amphotericin B and other potentially nephrotoxic medications, like the salicylates, may enhance the potential for drug-induced renal toxicity.
    Angiotensin-converting enzyme inhibitors: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
    Antithrombin III: (Moderate) Large doses of salicylates (more than 3 to 4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Patients taking large doses of salicylates and antithrombin III should be monitored closely for bleeding.
    Apixaban: (Major) Large doses of salicylates (3 to 4 g/day or more) can cause hypoprothrombinemia, an additional risk factor for bleeding. Patients taking large doses of salicylates and apixaban should be monitored closely for bleeding.
    Articaine; Epinephrine: (Moderate) Coadministration of articaine with oxidizing agents, such as aminosalicylic acid, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue articaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
    Atenolol; Chlorthalidone: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Azilsartan; Chlorthalidone: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Bacitracin: (Minor) Additive nephrotoxicity may occur with concurrent use of systemic bacitracin and other nephrotoxic agents, including salicylates. Topical administration of any preparation containing bacitracin, especially when applied to large surface areas, also should not be given with other drugs that have a nephrotoxic potential.
    Barbiturates: (Moderate) Due to high protein binding, salicylates could be displaced from binding sites, or could displace other highly protein-bound drugs such as barbiturates. An enhanced effect of the displaced drug may occur.
    Benazepril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
    Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Bendroflumethiazide; Nadolol: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Bromocriptine: (Minor) Bromocriptine is highly bound (more than 90%) to serum proteins. Therefore, it may increase the unbound fraction of other highly protein-bound medications (e.g., aspirin and other salicylates), which may alter their effectiveness and risk for side effects.
    Bumetanide: (Moderate) Salicylates may decrease the diuretic, natriuretic, and antihypertensive actions of diuretics, possibly through inhibition of renal prostaglandin synthesis. Patients receiving loop diuretics and salicylates should be monitored for changes in the effectiveness of their diuretic therapy.
    Bupivacaine Liposomal: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as aminosalicylic acid, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
    Bupivacaine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as aminosalicylic acid, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
    Bupivacaine; Epinephrine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as aminosalicylic acid, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
    Bupivacaine; Lidocaine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as aminosalicylic acid, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) Coadministration of lidocaine with oxidizing agents, such as aminosalicylic acid, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue lidocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
    Bupivacaine; Meloxicam: (Major) Avoid concomitant use of meloxicam with aminosalicylic acid due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy. (Moderate) Coadministration of bupivacaine with oxidizing agents, such as aminosalicylic acid, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
    Canagliflozin: (Moderate) Monitor blood glucose during concomitant canagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Canagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant canagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Capreomycin: (Major) Since capreomycin is eliminated by the kidney, coadministration with other potentially nephrotoxic drugs, including salicylates, may increase serum concentrations of either drug. Theoretically, the chronic coadministration of these drugs may increase the risk of developing nephrotoxicity, even in patients who have normal renal function. Monitor patients for changes in renal function if these drugs are coadministered.
    Captopril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
    Captopril; Hydrochlorothiazide, HCTZ: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Cefixime: (Minor) In vitro, salicylates have displaced cefixime from its protein-binding sites, resulting in a 50% increase in free cefixime levels. The clinical significance of this effect is unclear at this time.
    Cefotetan: (Minor) Cefotetan has been associated with hypoprothrombinemia and may cause additive effects when given concurrently with salicylates.
    Chloroprocaine: (Moderate) Coadministration of chloroprocaine with oxidizing agents, such as aminosalicylic acid, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue chloroprocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
    Chlorothiazide: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Major) Avoid concomitant use of ibuprofen with aminosalicylic acid due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
    Chlorthalidone: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Chlorthalidone; Clonidine: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Citric Acid; Potassium Citrate; Sodium Citrate: (Moderate) Urinary alkalinizing agents, like potassium citrate, increase the excretion of salicylates by increasing renal clearance.
    Colistimethate, Colistin, Polymyxin E: (Major) Theoretically, the chronic coadministration of these drugs may increase the risk of developing nephrotoxicity, even in patients who have normal renal function. Monitor patients for changes in renal function if these drugs are coadministered. Since colistimethate sodium is eliminated by the kidney, coadministration with other potentially nephrotoxic drugs, including salicylates, may increase serum concentrations of either drug.
    Colistin: (Major) Theoretically, the chronic coadministration of these drugs may increase the risk of developing nephrotoxicity, even in patients who have normal renal function. Monitor patients for changes in renal function if these drugs are coadministered. Since colistimethate sodium is eliminated by the kidney, coadministration with other potentially nephrotoxic drugs, including salicylates, may increase serum concentrations of either drug.
    Corticosteroids: (Moderate) Monitor for gastrointestinal toxicity during concurrent corticosteroid and salicylate use. Concomitant use increases the risk of GI bleeding. In patients receiving concomitant corticosteroids and chronic use of salicylates, withdrawal of corticosteroids may result in salicylism because corticosteroids enhance renal clearance of salicylates and their withdrawal is followed by return to normal rates of renal clearance.
    Cyclosporine: (Minor) Due to the inhibition of renal prostaglandins by salicylates, concurrent use of salicylates and other nephrotoxic agents like cyclosporine may lead to additive nephrotoxicity.
    Dabigatran: (Major) Educate patients about the signs of increased bleeding and the need to report these signs to a healthcare provider immediately if coadministration of dabigatran and aspirin or another salicylate is necessary. Dabigatran can cause significant and, sometimes, fatal bleeding. This risk may be increased by concurrent use of chronic salicylate therapy.
    Dalteparin: (Moderate) An additive risk of bleeding may be seen in patients receiving a low molecular weight heparin in combination with other agents known to increase the risk of bleeding such as salicylates. Monitor clinical and laboratory response closely during concurrent use.
    Dapagliflozin: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Dapagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Dapagliflozin; Saxagliptin: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Daratumumab; Hyaluronidase: (Minor) Salicylates, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
    Deferasirox: (Moderate) Because gastric ulceration and GI bleeding have been reported in patients taking deferasirox, use caution when coadministering with other drugs known to increase the risk of peptic ulcers or gastric hemorrhage including salicylates.
    Diclofenac: (Major) Avoid concomitant use of diclofenac with aminosalicylic acid due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
    Diclofenac; Misoprostol: (Major) Avoid concomitant use of diclofenac with aminosalicylic acid due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
    Diflunisal: (Major) The concurrent use of diflunisal and salicylates is not recommended due to the increased risk of gastrointestinal toxicity with little or no increase in anti-inflammatory efficacy.
    Diphenhydramine; Ibuprofen: (Major) Avoid concomitant use of ibuprofen with aminosalicylic acid due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
    Diphenhydramine; Naproxen: (Major) Avoid concomitant use of naproxen with aminosalicylic acid due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
    Doravirine; Lamivudine; Tenofovir disoproxil fumarate: (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus.
    Edoxaban: (Moderate) Patients taking large doses of salicylates and edoxaban should be monitored closely for bleeding. Large doses of salicylates (3 g to 4 g/day or more) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Efavirenz; Emtricitabine; Tenofovir Disoproxil Fumarate: (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus.
    Efavirenz; Lamivudine; Tenofovir Disoproxil Fumarate: (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus.
    Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus.
    Empagliflozin: (Moderate) Monitor blood glucose during concomitant empagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Empagliflozin; Linagliptin: (Moderate) Monitor blood glucose during concomitant empagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant linagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Empagliflozin; Linagliptin; Metformin: (Moderate) Monitor blood glucose during concomitant empagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant linagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Empagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant empagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Emtricitabine; Rilpivirine; Tenofovir Disoproxil Fumarate: (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus.
    Emtricitabine; Tenofovir Disoproxil Fumarate: (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus.
    Enalapril, Enalaprilat: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
    Enalapril; Felodipine: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
    Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Enoxaparin: (Moderate) An additive risk of bleeding may be seen in patients receiving a low molecular weight heparin in combination with other agents known to increase the risk of bleeding such as salicylates. Monitor clinical and laboratory response closely during concurrent use.
    Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Ertugliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Ertugliflozin; Sitagliptin: (Moderate) Monitor blood glucose during concomitant sitagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Ethacrynic Acid: (Moderate) Salicylates may decrease the diuretic, natriuretic, and antihypertensive actions of diuretics, possibly through inhibition of renal prostaglandin synthesis. Patients receiving loop diuretics and salicylates should be monitored for changes in the effectiveness of their diuretic therapy.
    Ethambutol: (Moderate) Careful monitoring of hepatic function is recommended with the concurrent use of aminosalicylate sodium, aminosalicylic acid and ethambutol. Each drug has the potential to cause hepatotoxicity, and hepatotoxicity risk may be increased with concomitant use. These drugs may be used together for the treatment of active tuberculosis (TB) infection, and patients should also be assessed for additional risk factors for hepatotoxicity, such as other hepatotoxic drugs, alcohol use, and underlying hepatic disease. Any adverse event leading to hospitalization or death should be reported to local or state health departments as well as the FDA MedWatch program.
    Ethanol: (Major) Concomitant ingestion of alcohol with salicylates, especially aspirin, ASA, increases the risk of developing gastric irritation and GI mucosal bleeding. Alcohol and salicylates are mucosal irritants and aspirin decreases platelet aggregation. Routine ingestion of alcohol and aspirin can cause significant GI bleeding, which may or may not be overt. Even occasional concomitant use of salicylates and alcohol should be avoided. Chronic ingestion of alcohol is often associated with hypoprothrombinemia and this condition increases the risk of salicylate-induced bleeding. Patients should be warned regarding the potential for increased risk of GI bleeding if alcohol-containing beverages are taken concurrently with salicylates.
    Ethionamide: (Moderate) Careful monitoring of hepatic function is recommended with the concurrent use of ethionamide and aminosalicylate sodium, aminosalicylic acid. Each drug has the potential to cause hepatotoxicity, and hepatotoxicity risk may be increased with concomitant use. These drugs may be used together for the treatment of active tuberculosis (TB) infection, and patients should also be assessed for additional risk factors for hepatotoxicity, such as other hepatotoxic drugs, alcohol use, and underlying hepatic disease. Any adverse event leading to hospitalization or death should be reported to local or state health departments as well as the FDA MedWatch program.
    Ethotoin: (Minor) Large doses of salicylates can displace hydantoins from plasma protein-binding sites. Although increased serum concentrations of unbound phenytoin may lead to phenytoin toxicity, the liver may also more rapidly clear unbound drug.
    Etodolac: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
    Fenoprofen: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
    Flurbiprofen: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
    Fondaparinux: (Moderate) An additive risk of bleeding may be seen in patients receiving platelet inhibitors (e.g. aspirin, ASA) in combination with fondaparinux. Data on the concomitant use of fondaparinux with aspirin are lacking; however, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Foscarnet: (Minor) Due to the inhibition of renal prostaglandins by salicylates, concurrent use of salicylates and other nephrotoxic agents, such as foscarnet, may lead to additive nephrotoxicity.
    Fosinopril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
    Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Fosphenytoin: (Minor) Large doses of salicylates can displace phenytoin from plasma protein-binding sites. Although increased serum concentrations of unbound phenytoin may lead to phenytoin toxicity, the liver may also more rapidly clear unbound drug. Fosphenytoin is converted to phenytoin in vivo, so this interaction may also occur with fosphenytoin.
    Furosemide: (Moderate) Salicylates may decrease the diuretic, natriuretic, and antihypertensive actions of diuretics, possibly through inhibition of renal prostaglandin synthesis. Patients receiving loop diuretics and salicylates should be monitored for changes in the effectiveness of their diuretic therapy.
    Glimepiride; Rosiglitazone: (Moderate) Monitor blood glucose during concomitant thiazolidinedione and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Glipizide; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Glyburide; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Griseofulvin: (Moderate) Concurrent administration of griseofulvin with salicylates may result in decreased salicylate serum concentrations. Caution and close monitoring for changes in the effectiveness of the salicylate are recommended.
    Heparin: (Moderate) An additive risk of bleeding may be seen in patients receiving platelet inhibitors (e.g. aspirin, ASA). Despite the potential drug-drug interaction between aspirin and heparin, heparin is frequently administered in combination with low-dose aspirin therapy to patients who have had an acute myocardial infarction and in other disease states. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Hyaluronidase, Recombinant; Immune Globulin: (Minor) Salicylates, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
    Hyaluronidase: (Minor) Salicylates, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
    Hydralazine; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Hydrochlorothiazide, HCTZ; Methyldopa: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Hydrocodone; Ibuprofen: (Major) Avoid concomitant use of ibuprofen with aminosalicylic acid due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
    Ibuprofen: (Major) Avoid concomitant use of ibuprofen with aminosalicylic acid due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
    Ibuprofen; Famotidine: (Major) Avoid concomitant use of ibuprofen with aminosalicylic acid due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
    Ibuprofen; Oxycodone: (Major) Avoid concomitant use of ibuprofen with aminosalicylic acid due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
    Ibuprofen; Pseudoephedrine: (Major) Avoid concomitant use of ibuprofen with aminosalicylic acid due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
    Incretin Mimetics: (Moderate) Monitor blood glucose during concomitant incretin mimetic and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Indapamide: (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics because salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance.
    Inotersen: (Moderate) Use caution with concomitant use of inotersen and salicylates due to the risk of glomerulonephritis and nephrotoxicity as well as the potential risk of bleeding from thrombocytopenia. Consider discontinuation of salicylates in a patient taking inotersen with a platelet count of less than 50,000 per microliter.
    Insulins: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Irbesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Isoniazid, INH: (Moderate) Careful monitoring of hepatic function is recommended with the concurrent use of aminosalicylate sodium, aminosalicylic acid and isoniazid, INH. Each drug has the potential to cause hepatotoxicity, and hepatotoxicity risk may be increased with concomitant use. These drugs may be used together for the treatment of active tuberculosis (TB) infection, and patients should also be assessed for additional risk factors for hepatotoxicity, such as other hepatotoxic drugs, alcohol use, and underlying hepatic disease. When administered as a rapidly available formulation at a dose of 12 g, aminosalicylic acid has been reported to produce a 20% reduction in the acetylation of isoniazid, INH, especially in rapid acetylators. However, the INH serum concentrations, half-lives, and excretion in fast acetylators still remained half of those noted in slow acetylators, with or without aminosalicylic acid. The effect is dose related and has not been studied in the delayed-release preparation (i.e. delayed-release granules) of aminosalicylic acid. Lower serum concentrations observed with the delayed release aminosalicylic acid products should result in a reduced effect on the acetylation of INH. Any adverse event leading to hospitalization or death should be reported to local or state health departments as well as the FDA MedWatch program.
    Isoniazid, INH; Pyrazinamide, PZA; Rifampin: (Moderate) Careful monitoring of hepatic function is recommended with the concurrent use of aminosalicylate sodium, aminosalicylic acid and isoniazid, INH. Each drug has the potential to cause hepatotoxicity, and hepatotoxicity risk may be increased with concomitant use. These drugs may be used together for the treatment of active tuberculosis (TB) infection, and patients should also be assessed for additional risk factors for hepatotoxicity, such as other hepatotoxic drugs, alcohol use, and underlying hepatic disease. When administered as a rapidly available formulation at a dose of 12 g, aminosalicylic acid has been reported to produce a 20% reduction in the acetylation of isoniazid, INH, especially in rapid acetylators. However, the INH serum concentrations, half-lives, and excretion in fast acetylators still remained half of those noted in slow acetylators, with or without aminosalicylic acid. The effect is dose related and has not been studied in the delayed-release preparation (i.e. delayed-release granules) of aminosalicylic acid. Lower serum concentrations observed with the delayed release aminosalicylic acid products should result in a reduced effect on the acetylation of INH. Any adverse event leading to hospitalization or death should be reported to local or state health departments as well as the FDA MedWatch program. (Moderate) Careful monitoring of hepatic function is recommended with the concurrent use of pyrazinamide, PZA and aminosalicylate sodium, aminosalicylic acid. Each drug has the potential to cause hepatotoxicity, and hepatotoxicity risk may be increased with concomitant use. These drugs may be used together for the treatment of active tuberculosis (TB) infection, and patients should also be assessed for additional risk factors for hepatotoxicity, such as other hepatotoxic drugs, alcohol use, and underlying hepatic disease. Any adverse event leading to hospitalization or death should be reported to local or state health departments as well as the FDA MedWatch program. (Moderate) Careful monitoring of hepatic function is recommended with the concurrent use of rifampin and aminosalicylate sodium, aminosalicylic acid. Each drug has the potential to cause hepatotoxicity, and hepatotoxicity risk may be increased with concomitant use. These drugs may be used together for the treatment of active tuberculosis (TB) infection, and patients should also be assessed for additional risk factors for hepatotoxicity, such as other hepatotoxic drugs, alcohol use, and underlying hepatic disease. Aminosalicylic acid has previously been reported to block the absorption of rifampin; however, this was due to an excipient not included in the aminosalicylic acid granules. Oral administration of a solution of both agents showed full absorption of each product. Any adverse event leading to hospitalization or death should be reported to local or state health departments as well as the FDA MedWatch program.
    Isoniazid, INH; Rifampin: (Moderate) Careful monitoring of hepatic function is recommended with the concurrent use of aminosalicylate sodium, aminosalicylic acid and isoniazid, INH. Each drug has the potential to cause hepatotoxicity, and hepatotoxicity risk may be increased with concomitant use. These drugs may be used together for the treatment of active tuberculosis (TB) infection, and patients should also be assessed for additional risk factors for hepatotoxicity, such as other hepatotoxic drugs, alcohol use, and underlying hepatic disease. When administered as a rapidly available formulation at a dose of 12 g, aminosalicylic acid has been reported to produce a 20% reduction in the acetylation of isoniazid, INH, especially in rapid acetylators. However, the INH serum concentrations, half-lives, and excretion in fast acetylators still remained half of those noted in slow acetylators, with or without aminosalicylic acid. The effect is dose related and has not been studied in the delayed-release preparation (i.e. delayed-release granules) of aminosalicylic acid. Lower serum concentrations observed with the delayed release aminosalicylic acid products should result in a reduced effect on the acetylation of INH. Any adverse event leading to hospitalization or death should be reported to local or state health departments as well as the FDA MedWatch program. (Moderate) Careful monitoring of hepatic function is recommended with the concurrent use of rifampin and aminosalicylate sodium, aminosalicylic acid. Each drug has the potential to cause hepatotoxicity, and hepatotoxicity risk may be increased with concomitant use. These drugs may be used together for the treatment of active tuberculosis (TB) infection, and patients should also be assessed for additional risk factors for hepatotoxicity, such as other hepatotoxic drugs, alcohol use, and underlying hepatic disease. Aminosalicylic acid has previously been reported to block the absorption of rifampin; however, this was due to an excipient not included in the aminosalicylic acid granules. Oral administration of a solution of both agents showed full absorption of each product. Any adverse event leading to hospitalization or death should be reported to local or state health departments as well as the FDA MedWatch program.
    Ketoprofen: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
    Ketorolac: (Contraindicated) Ketorolac is contraindicated in patients currently receiving salicylates due to increased risk of serious NSAID-related adverse events, including gastrointestinal bleeding, ulceration, and perforation.
    Lamivudine; Tenofovir Disoproxil Fumarate: (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus.
    Lansoprazole; Naproxen: (Major) Avoid concomitant use of naproxen with aminosalicylic acid due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
    Lidocaine: (Moderate) Coadministration of lidocaine with oxidizing agents, such as aminosalicylic acid, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue lidocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
    Lidocaine; Epinephrine: (Moderate) Coadministration of lidocaine with oxidizing agents, such as aminosalicylic acid, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue lidocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
    Lidocaine; Prilocaine: (Moderate) Coadministration of lidocaine with oxidizing agents, such as aminosalicylic acid, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue lidocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) Coadministration of prilocaine with oxidizing agents, such as aminosalicylic acid, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue prilocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
    Linagliptin: (Moderate) Monitor blood glucose during concomitant linagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Linagliptin; Metformin: (Moderate) Monitor blood glucose during concomitant linagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Lisinopril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
    Lisinopril; Hydrochlorothiazide, HCTZ: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Loop diuretics: (Moderate) Salicylates may decrease the diuretic, natriuretic, and antihypertensive actions of diuretics, possibly through inhibition of renal prostaglandin synthesis. Patients receiving loop diuretics and salicylates should be monitored for changes in the effectiveness of their diuretic therapy.
    Losartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Low Molecular Weight Heparins: (Moderate) An additive risk of bleeding may be seen in patients receiving a low molecular weight heparin in combination with other agents known to increase the risk of bleeding such as salicylates. Monitor clinical and laboratory response closely during concurrent use.
    Macimorelin: (Major) Avoid use of macimorelin with drugs that directly affect pituitary growth hormone secretion, such as salicylates. Healthcare providers are advised to discontinue salicylate therapy and observe a sufficient washout period before administering macimorelin. Use of these medications together may impact the accuracy of the macimorelin growth hormone test.
    Mannitol: (Major) In general, avoid use of mannitol and salicylates. Concomitant administration of nephrotoxic drugs, such as the salicylates, increases the risk of renal failure after administration of mannitol. However, mannitol promotes the urinary excretion of salicylates, and may be used as an adjunct in salicylate intoxication.
    Measles Virus; Mumps Virus; Rubella Virus; Varicella Virus Vaccine, Live: (Major) No adverse events associated with the use of salicylates after varicella vaccination have been reported. However, the manufacturer of varicella virus vaccine live recommends the avoidance of salicylates or aspirin, ASA use for 6 weeks after vaccination. Reye's syndrome, which exclusively affects children under 15 years old, has been associated with aspirin use following active varicella infection. Vaccination with close clinical monitoring is recommended for children who require therapeutic aspirin, ASA therapy; according to the CDC the use of attenuated, live varicella virus vaccine is thought to present less risk than natural varicella disease to such children.
    Meclofenamate Sodium: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
    Mefenamic Acid: (Major) Increased adverse gastrointestinal (GI) effects are possible if mefenamic acid is used with salicylates. In addition, concomitant administration of salicylates and mefenamic acid may result in an increase in unbound plasma concentrations of either drug, which could result in greater adverse effects. In general, concomitant use of aspirin and mefenamic acid is not recommended.
    Meglitinides: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar and may potentiate the effects of antidiabetic agents. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose or use of greater than maximum recommended daily dosages, salicylates can cause either hypoglycemia or hyperglycemia. Large doses of aspirin should be used cautiously in patients who receive antidiabetic agents.
    Meloxicam: (Major) Avoid concomitant use of meloxicam with aminosalicylic acid due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
    Mepivacaine: (Moderate) Coadministration of mepivacaine with oxidizing agents, such as aminosalicylic acid, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue mepivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
    Metformin: (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Metformin; Repaglinide: (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar and may potentiate the effects of antidiabetic agents. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose or use of greater than maximum recommended daily dosages, salicylates can cause either hypoglycemia or hyperglycemia. Large doses of aspirin should be used cautiously in patients who receive antidiabetic agents.
    Metformin; Rosiglitazone: (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant thiazolidinedione and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Metformin; Saxagliptin: (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Metformin; Sitagliptin: (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant sitagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Methazolamide: (Major) Avoid the coadministration of high-dose salicylates and carbonic anhydrase inhibitors, like methazolamide, whenever possible. The combination yielded reports of anorexia, tachypnea, lethargy, metabolic acidosis, coma, and death. The mechanism appears to be accumulation of the carbonic anhydrase inhibitor, resulting in increased CNS depression and metabolic acidosis. The acidosis may allow greater CNS penetration of the salicylate.
    Methotrexate: (Major) Do not administer salicylates before or concomitantly with high doses of methotrexate, such as used in the treatment of osteosarcoma. Concomitant administration of some NSAIDs with high dose methotrexate therapy has been reported to elevate and prolong serum methotrexate concentrations, resulting in deaths from severe hematologic and gastrointestinal toxicity. Use caution when salicylates are administered concomitantly with lower doses of methotrexate. Salicylates have been reported to reduce the tubular secretion of methotrexate in an animal model and may enhance its toxicity. Methotrexate is partially bound to serum albumin, and toxicity may be increased because of displacement by salicylates.
    Methyclothiazide: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Metolazone: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Moexipril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
    Mycophenolate: (Moderate) Mycophenolic acid is more than 98% bound to albumin. Concurrent use of mycophenolate with salicylates can decrease the protein binding of mycophenolic acid resulting in an increase in the free fraction of MPA. Patients should be observed for increased clinical effects from mycophenolate as well as additive adverse effects.
    Nabumetone: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
    Naproxen: (Major) Avoid concomitant use of naproxen with aminosalicylic acid due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
    Naproxen; Esomeprazole: (Major) Avoid concomitant use of naproxen with aminosalicylic acid due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
    Naproxen; Pseudoephedrine: (Major) Avoid concomitant use of naproxen with aminosalicylic acid due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
    Nateglinide: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar and may potentiate the effects of antidiabetic agents. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose or use of greater than maximum recommended daily dosages, salicylates can cause either hypoglycemia or hyperglycemia. Large doses of aspirin should be used cautiously in patients who receive antidiabetic agents.
    Nitazoxanide: (Moderate) The active metabolite of nitazoxanide, tizoxanide, is highly bound to plasma proteins. Caution should be exercised when administering nitazoxanide concurrently with other highly plasma protein-bound drugs with narrow therapeutic indices because competition for binding sites may occur.
    Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Olmesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Omeprazole; Amoxicillin; Rifabutin: (Moderate) Careful monitoring of hepatic function is recommended with the concurrent use of rifabutin and aminosalicylate sodium, aminosalicylic acid. Each drug has the potential to cause hepatotoxicity, and hepatotoxicity risk may be increased with concomitant use. These drugs may be used together for the treatment of active tuberculosis (TB) infection, and patients should also be assessed for additional risk factors for hepatotoxicity, such as other hepatotoxic drugs, alcohol use, and underlying hepatic disease. Any adverse event leading to hospitalization or death should be reported to local or state health departments as well as the FDA MedWatch program.
    Oxaprozin: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
    Penicillin G Benzathine; Penicillin G Procaine: (Moderate) Coadministration of penicillin G procaine with oxidizing agents, such as aminosalicylic acid, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue penicillin G procaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
    Penicillin G Procaine: (Moderate) Coadministration of penicillin G procaine with oxidizing agents, such as aminosalicylic acid, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue penicillin G procaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
    Pentosan: (Moderate) Pentosan is a weak anticoagulant. Pentosan has 1/15 the anticoagulant activity of heparin. An additive risk of bleeding may be seen in patients receiving other platelet inhibitors (e.g. aspirin, ASA) in combination with pentosan. Also, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Perindopril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
    Perindopril; Amlodipine: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
    Pertuzumab; Trastuzumab; Hyaluronidase: (Minor) Salicylates, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
    Phenytoin: (Minor) Large doses of salicylates can displace phenytoin from plasma protein-binding sites. Although increased serum concentrations of unbound phenytoin may lead to phenytoin toxicity, the liver may also more rapidly clear unbound drug. Displacement of phenytoin from binding sites can lead to a decrease in the total phenytoin serum concentration. Close monitoring for excessive phenytoin toxicity or decreased phenytoin efficacy is recommended.
    Photosensitizing agents (topical): (Minor) Preclinical data suggest that agents that affect platelet function and inhibit prostaglandin synthesis could decrease the efficacy of photosensitizing agents used during photodynamic therapy.
    Pioglitazone: (Moderate) Monitor blood glucose during concomitant thiazolidinedione and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Pioglitazone; Glimepiride: (Moderate) Monitor blood glucose during concomitant thiazolidinedione and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Pioglitazone; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant thiazolidinedione and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Piroxicam: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
    Potassium Bicarbonate: (Moderate) Urinary alkalinizing agents, like potassium citrate, increase the excretion of salicylates by increasing renal clearance.
    Potassium Chloride: (Moderate) Urinary alkalinizing agents, like potassium citrate, increase the excretion of salicylates by increasing renal clearance.
    Potassium Citrate: (Moderate) Urinary alkalinizing agents, like potassium citrate, increase the excretion of salicylates by increasing renal clearance.
    Potassium Citrate; Citric Acid: (Moderate) Urinary alkalinizing agents, like potassium citrate, increase the excretion of salicylates by increasing renal clearance.
    Pramlintide: (Moderate) Salicylates can indirectly increase insulin secretion, and thus decrease blood glucose concentrations. In large doses, salicylates may cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
    Prilocaine: (Moderate) Coadministration of prilocaine with oxidizing agents, such as aminosalicylic acid, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue prilocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
    Prilocaine; Epinephrine: (Moderate) Coadministration of prilocaine with oxidizing agents, such as aminosalicylic acid, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue prilocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
    Probenecid: (Contraindicated) Concurrent use of probenecid and salicylates is contraindicated. The uricosuric actions of probenecid are inhibited by salicylates. When probenecid is used to treat hyperuricemia or gout, do not administer with salicylates.
    Probenecid; Colchicine: (Contraindicated) Concurrent use of probenecid and salicylates is contraindicated. The uricosuric actions of probenecid are inhibited by salicylates. When probenecid is used to treat hyperuricemia or gout, do not administer with salicylates.
    Propranolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Psyllium: (Moderate) Psyllium can interfere with the absorption of certain oral drugs if administered concomitantly. For example, psyllium fiber can adsorb salicylates. Per the psyllium manufacturers, administration of other prescribed oral drugs should be separated from the administration of psyllium by at least 2 hours.
    Pyrazinamide, PZA: (Moderate) Careful monitoring of hepatic function is recommended with the concurrent use of pyrazinamide, PZA and aminosalicylate sodium, aminosalicylic acid. Each drug has the potential to cause hepatotoxicity, and hepatotoxicity risk may be increased with concomitant use. These drugs may be used together for the treatment of active tuberculosis (TB) infection, and patients should also be assessed for additional risk factors for hepatotoxicity, such as other hepatotoxic drugs, alcohol use, and underlying hepatic disease. Any adverse event leading to hospitalization or death should be reported to local or state health departments as well as the FDA MedWatch program.
    Quinapril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
    Quinapril; Hydrochlorothiazide, HCTZ: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Ramipril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
    Repaglinide: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar and may potentiate the effects of antidiabetic agents. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose or use of greater than maximum recommended daily dosages, salicylates can cause either hypoglycemia or hyperglycemia. Large doses of aspirin should be used cautiously in patients who receive antidiabetic agents.
    Rifabutin: (Moderate) Careful monitoring of hepatic function is recommended with the concurrent use of rifabutin and aminosalicylate sodium, aminosalicylic acid. Each drug has the potential to cause hepatotoxicity, and hepatotoxicity risk may be increased with concomitant use. These drugs may be used together for the treatment of active tuberculosis (TB) infection, and patients should also be assessed for additional risk factors for hepatotoxicity, such as other hepatotoxic drugs, alcohol use, and underlying hepatic disease. Any adverse event leading to hospitalization or death should be reported to local or state health departments as well as the FDA MedWatch program.
    Rifampin: (Moderate) Careful monitoring of hepatic function is recommended with the concurrent use of rifampin and aminosalicylate sodium, aminosalicylic acid. Each drug has the potential to cause hepatotoxicity, and hepatotoxicity risk may be increased with concomitant use. These drugs may be used together for the treatment of active tuberculosis (TB) infection, and patients should also be assessed for additional risk factors for hepatotoxicity, such as other hepatotoxic drugs, alcohol use, and underlying hepatic disease. Aminosalicylic acid has previously been reported to block the absorption of rifampin; however, this was due to an excipient not included in the aminosalicylic acid granules. Oral administration of a solution of both agents showed full absorption of each product. Any adverse event leading to hospitalization or death should be reported to local or state health departments as well as the FDA MedWatch program.
    Rituximab; Hyaluronidase: (Minor) Salicylates, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
    Rivaroxaban: (Major) Salicylates such as aspirin are known to increase bleeding, and bleeding risk may be increased when these drugs are used concomitantly with rivaroxaban. The safety of long-term concomitant use of these drugs has not been studied. Promptly evaluate any signs or symptoms of bleeding or blood loss if patients are treated concomitantly with salicylates. In a single-dose drug interaction study, no pharmacokinetic interactions were observed after concomitant administration of acetylsalicylic acid (aspirin, ASA) with rivaroxaban.
    Ropivacaine: (Moderate) Coadministration of ropivacaine with oxidizing agents, such as aminosalicylic acid, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue ropivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
    Rosiglitazone: (Moderate) Monitor blood glucose during concomitant thiazolidinedione and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Salicylic Acid: (Moderate) Concomitant use of salicylic acid with other drugs which may contribute to elevated serum salicylate levels (e.g., oral aspirin or other oral salicylates and other salicylate containing medications, such as sports injury creams) should be avoided. Concurrent use may result in excessive exposure to salicylic acid. Consider replacing aspirin therapy with an alternative non-steroidal anti-inflammatory agent that is not salicylate based where appropriate.
    Saxagliptin: (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Serotonin norepinephrine reuptake inhibitors: (Moderate) Platelet aggregation may be impaired by serotonin norepinephrine reuptake inhibitors (SNRIs) due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving aspirin, ASA or other salicylates which affect hemostasis. Patients should be instructed to monitor for signs and symptoms of bleeding while taking an SNRI with medications which impair platelet function and to promptly report any bleeding events to the practitioner.
    Simvastatin; Sitagliptin: (Moderate) Monitor blood glucose during concomitant sitagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Sitagliptin: (Moderate) Monitor blood glucose during concomitant sitagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Sodium Thiosulfate; Salicylic Acid: (Moderate) Concomitant use of salicylic acid with other drugs which may contribute to elevated serum salicylate levels (e.g., oral aspirin or other oral salicylates and other salicylate containing medications, such as sports injury creams) should be avoided. Concurrent use may result in excessive exposure to salicylic acid. Consider replacing aspirin therapy with an alternative non-steroidal anti-inflammatory agent that is not salicylate based where appropriate.
    Spironolactone: (Moderate) Salicylates can increase the risk of renal insufficiency in patients receiving diuretics, secondary to effects on renal blood flow. Salicylates inhibit renal prostaglandin production, which causes salt and water retention and decreased renal blood flow. Coadministration may cause hyperkalemia.
    Spironolactone; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Salicylates can increase the risk of renal insufficiency in patients receiving diuretics, secondary to effects on renal blood flow. Salicylates inhibit renal prostaglandin production, which causes salt and water retention and decreased renal blood flow. Coadministration may cause hyperkalemia.
    Sulfinpyrazone: (Major) Salicylates should not be used concurrently with probenecid or sulfinpyrazone when these are used to treat hyperuricemia or gout because the uricosuric effect can be decreased. In addition, probenecid and sulfinpyrazone can decrease salicylic acid excretion leading to increased plasma concentration.
    Sulfonamides: (Minor) Due to high protein binding, salicylates could be displaced from binding sites, or could displace other highly protein-bound drugs such as sulfonamides. An enhanced effect of the displaced drug may occur.
    Sulindac: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
    Sumatriptan; Naproxen: (Major) Avoid concomitant use of naproxen with aminosalicylic acid due to an increased risk of gastrointestinal toxicity and renal impairment, with little or no increase in efficacy.
    Tacrolimus: (Moderate) Tacrolimus, in the absence of overt renal impairment, may adversely affect renal function. Care should be taken in using tacrolimus with other nephrotoxic drugs, such as salicylates.
    Telavancin: (Minor) Concurrent or sequential use of telavancin with drugs that inhibit renal prostaglandins such as salicylates may lead to additive nephrotoxicity. Closely monitor renal function and adjust telavancin doses based on calculated creatinine clearance.
    Telmisartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Tenofovir Alafenamide: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as salicylates. Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
    Tenofovir Disoproxil Fumarate: (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus.
    Tetracaine: (Moderate) Coadministration of tetracaine with oxidizing agents, such as aminosalicylic acid, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue tetracaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
    Thiazide diuretics: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Thiazolidinediones: (Moderate) Monitor blood glucose during concomitant thiazolidinedione and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Thrombin Inhibitors: (Moderate) An additive risk of bleeding may be seen in patients receiving salicylates (e.g. aspirin, ASA) in combination with thrombin inhibitors. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Nonsteroidal antiinflammatory drugs (NSAIDs) may also increase bleeding risk when given with argatroban because of their potential to cause GI bleeding or inhibit platelet aggregation.
    Thrombolytic Agents: (Moderate) Concurrent administration of thrombolytic agents and salicylates may further increase the serious risk of bleeding.
    Tolmetin: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
    Torsemide: (Moderate) Salicylates may decrease the diuretic, natriuretic, and antihypertensive actions of diuretics, possibly through inhibition of renal prostaglandin synthesis. Patients receiving loop diuretics and salicylates should be monitored for changes in the effectiveness of their diuretic therapy.
    Trandolapril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
    Trandolapril; Verapamil: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
    Trastuzumab; Hyaluronidase: (Minor) Salicylates, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
    Trazodone: (Moderate) Monitor for signs and symptoms of bleeding during concomitant trazodone and salicylate use due to increased risk for bleeding. Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding. Altered anticoagulant effects, including increased bleeding, have been reported when serotonin norepinephrine reuptake inhibitors are coadministered with another anticoagulant.
    Treprostinil: (Moderate) When used concurrently with anticoagulants or platelet inhibitors, treprostinil may increase the risk of bleeding.
    Triamterene: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant triamterene and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Triamterene; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant triamterene and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Valproic Acid, Divalproex Sodium: (Moderate) Concurrent salicylate therapy can increase the free-fraction of valproic acid, causing possible valproic acid toxicity. Valproic acid levels should be monitored when these agents are used concomitantly.
    Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
    Vancomycin: (Minor) Due to the inhibition of renal prostaglandins by salicylates, concurrent use of salicylates and other nephrotoxic agents, such as vancomycin, may lead to additive nephrotoxicity.
    Varicella-Zoster Virus Vaccine, Live: (Major) No adverse events associated with the use of salicylates after varicella vaccination have been reported. However, the manufacturer of varicella virus vaccine live recommends the avoidance of salicylates or aspirin, ASA use for 6 weeks after vaccination. Reye's syndrome, which exclusively affects children under 15 years old, has been associated with aspirin use following active varicella infection. Vaccination with close clinical monitoring is recommended for children who require therapeutic aspirin, ASA therapy; according to the CDC the use of attenuated, live varicella virus vaccine is thought to present less risk than natural varicella disease to such children.
    Vilazodone: (Moderate) Patients should be instructed to monitor for signs and symptoms of bleeding while taking vilazodone concurrently with salicylates or other platelet inhibitors and to promptly report any bleeding events to the practitioner. Platelet aggregation may be impaired by vilazodone due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving platelet inhibitors (e.g., aspirin, cilostazol, clopidogrel, dipyridamole, ticlopidine, platelet glycoprotein IIb/IIIa inhibitors).
    Vortioxetine: (Moderate) Platelet aggregation may be impaired by vortioxetine due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving aspirin, ASA or other salicylates. Bleeding events related to drugs that inhibit serotonin reuptake have ranged from ecchymosis to life-threatening hemorrhages. Patients should be instructed to monitor for signs and symptoms of bleeding while taking vortioxetine concurrently with aspirin products and to promptly report any bleeding events to the practitioner.

    PREGNANCY AND LACTATION

    Pregnancy

    Use aminosalicylic during pregnancy only if clearly needed. Literature reports on aminosalicylic acid in pregnant women always report coadministration of other medications. Aminosalicylic acid has been reported to produce occipital malformations in rats when given at doses within the human dose range. Although there probably is a dose-response, the frequency of abnormalities was comparable to controls at the highest level tested (2 times the human dosage). When administered to rabbits at 5 mg/kg, throughout all trimesters, no teratologic or embryocidal effects were seen.[43054]

    After administration of a different preparation of aminosalicylic acid to a breast-feeding woman, the maximum concentration in the milk was 1 mcg/mL at 3 hours with a half-life of 2.5 hours; the maximum maternal plasma concentration was 70 mcg/mL at 2 hours.[43054] Aminosalicylic acid use as part of multidrug regimens to treat 2 pregnant women with multidrug-resistant tuberculosis, 1 throughout pregnancy and postpartum and the other postpartum only, has been reported. The infants were breast-fed and developing normally except for a mild speech delay in 1 infant and hyperactivity in the other.[48384]

    MECHANISM OF ACTION

    Aminosalicylic acid is bacteriostatic against Mycobacterium tuberculosis. It has been postulated that aminosalicylic acid inhibits folic acid synthesis (without potentiation with antifolic compounds) and/or inhibits the synthesis of the cell wall component, mycobactin; therefore, reducing iron uptake by M. tuberculosis. Aminosalicylic acid may also inhibit the onset of bacterial resistance to streptomycin and isoniazid.

    PHARMACOKINETICS

    Aminosalicylic acid is administered orally. Approximately 50—60% of the drug is protein bound with binding reduced by 50% in kwashiorkor. The half-life in healthy volunteers was 26.4 minutes. Penetration into the cerebrospinal fluid occurs only with inflamed meninges. Approximately 80% of aminosalicylic acid is excreted in the urine, with 50% or more of the dosage excreted in acetylated form. The acetylation process is genetically determined. Aminosalicylic acid is excreted by glomerular filtration; however, probenecid does not enhance plasma concentrations.

    Oral Route

    Aminosalicylic acid granules are enteric coated. Unprotected granules are decarboxylated to form meta-aminophenol, a known hepatotoxin when exposed to gastric fluid. The acid-resistant coating of the granules protects them from degradation in the stomach. Suspension in an acidic drink or food will protect the coating for at least 2 hours. The small granules are also designed to escape the usual restriction on gastric emptying of large particles. Under neutral conditions, such as in the small intestine, the acid-resistant coating dissolves within 1 minute. In a single 4 g dose pharmacokinetic study with food in normal volunteers, the initial time to a 2 mcg/mL serum concentration was 2 hours (range 45 min to 24 hours). The median time to peak was 6 hours (range 1.5—24 hours). The mean peak concentration was 20 mcg/mL (range 9—35 mcg/mL). A concentration of 2 mcg/mL was maintained for an average of 7.9 hours (range 5—9 hours) and a concentration of 1 mcg/mL was maintained for an average of 8.8 hours (range 6—11.5 hours).