Theraflu Severe Cold & Cough Daytime

Browse PDR's full list of drug information

Theraflu Severe Cold & Cough Daytime

Classes

Acetaminophen, Non-Opioid Antitussive, and Decongestant Combinations

Administration
Oral Administration

May be administered orally without regard to meals.
Oral powder: Place powder on tongue and allow to dissolve; swallow.

Adverse Reactions
Severe

bradycardia / Rapid / Incidence not known
myocardial infarction / Delayed / Incidence not known
arrhythmia exacerbation / Early / Incidence not known
stroke / Early / Incidence not known
angioedema / Rapid / Incidence not known
toxic epidermal necrolysis / Delayed / Incidence not known
acute generalized exanthematous pustulosis (AGEP) / Delayed / Incidence not known
anaphylactoid reactions / Rapid / Incidence not known
anaphylactic shock / Rapid / Incidence not known
exfoliative dermatitis / Delayed / Incidence not known
agranulocytosis / Delayed / Incidence not known
pancytopenia / Delayed / Incidence not known
hepatotoxicity / Delayed / Incidence not known
myocarditis / Delayed / Incidence not known
hepatic necrosis / Delayed / Incidence not known
GI bleeding / Delayed / Incidence not known
renal failure (unspecified) / Delayed / Incidence not known
renal tubular necrosis / Delayed / Incidence not known
renal papillary necrosis / Delayed / Incidence not known
interstitial nephritis / Delayed / Incidence not known
methemoglobinemia / Early / Incidence not known
hemolytic anemia / Delayed / Incidence not known
ocular hypertension / Delayed / Incidence not known

Moderate

psychosis / Early / Incidence not known
hallucinations / Early / Incidence not known
excitability / Early / Incidence not known
confusion / Early / Incidence not known
dysarthria / Delayed / Incidence not known
angina / Early / Incidence not known
hypertension / Early / Incidence not known
erythema / Early / Incidence not known
contact dermatitis / Delayed / Incidence not known
urinary retention / Early / Incidence not known
dysuria / Early / Incidence not known
colitis / Delayed / Incidence not known
thrombocytosis / Delayed / Incidence not known
thrombocytopenia / Delayed / Incidence not known
bleeding / Early / Incidence not known
hypoprothrombinemia / Delayed / Incidence not known
encephalopathy / Delayed / Incidence not known
elevated hepatic enzymes / Delayed / Incidence not known
jaundice / Delayed / Incidence not known
hemolysis / Early / Incidence not known
withdrawal / Early / Incidence not known
medication overuse headache / Delayed / Incidence not known

Mild

anxiety / Delayed / Incidence not known
drowsiness / Early / Incidence not known
insomnia / Early / Incidence not known
headache / Early / Incidence not known
dizziness / Early / Incidence not known
restlessness / Early / Incidence not known
irritability / Delayed / Incidence not known
vomiting / Early / Incidence not known
nausea / Early / Incidence not known
maculopapular rash / Early / Incidence not known
purpura / Delayed / Incidence not known
fever / Early / Incidence not known
pruritus / Rapid / Incidence not known
urticaria / Rapid / Incidence not known
rash / Early / Incidence not known
anorexia / Delayed / Incidence not known
abdominal pain / Early / Incidence not known
xerostomia / Early / Incidence not known

Common Brand Names

Alka-Seltzer Plus Day Cold, Alka-Seltzer Plus Day Cold & Flu, Alka-Seltzer Plus Severe Cold, Cough & Flu, Alka-Seltzer Plus Severe Sinus and Congestion and Cough, Alka-Seltzer Plus Severe Sinus Congestion and Cough, BC Daytime, Comtrex Cold and Cough, Day Time Multi-Symptom, DayTime, Mapap Multi-Symptom Cold, Mucinex Fast-Max Congestion & Headache, Mucinex Fast-Max Severe Cold & Sinus, Mucinex Sinus-Max, Sudafed PE, Sudafed PE Pressure + Pain + Cough, Theraflu ExpressMax Severe Cold & Cough, Theraflu Multi-Symptom Cold Daytime Warming, Theraflu Severe Cold & Cough Daytime, Theraflu Severe Cold Daytime, Tylenol Cold, Tylenol Cold Head Congestion Daytime, Tylenol Cold Multi-Symptom Daytime, Tylenol Cold Multi-Symptom Daytime Rapid Release, Vicks DayQuil Cold & Flu, Vicks DayQuil Nature Fusion, Vicks Nature Fusion Cold & Flu

Dea Class

OTC

Description

Combination of an analgesic (acetaminophen), non-opiate antitussive (dextromethorphan) and sympathomimetic decongestion (phenylephrine)
Used for symptomatic relief of mild pain, fever, cough, nasal congestion, headache, sore throat due to a common cold or influenza
Do not exceed recommended daily dosages, particularly for acetaminophen due to hepatotoxicity

Dosage And Indications
For temporary relief from common cold or flu symptoms such as mild pain, cough, nasal congestion, headache, sore throat (pharyngitis), and fever. Oral dosage (acetaminophen 325 mg; dextromethorphan 10 mg; phenylephrine 5 mg per capsule or tablet) Adults, Adolescents, and Children 12 years and older

2 capsules or tablets (providing 650 mg acetaminophen with 20 mg dextromethorphan and 10 mg of phenylephrine per dose) PO every 6 hours as needed. Max: 4 doses per 24 hours.

Oral dosage (oral powder with acetaminophen 650 mg; dextromethorphan 20 mg; phenylephrine 10 mg per packet) Adults, Adolescents, and Children 12 years and older

Place 1 powder (containing 650 mg acetaminophen; 20 mg dextromethorphan; 10 mg of phenylephrine) PO every 4 hours as needed. Max: Do not exceed 6 powders/24 hours.

Oral dosage (oral solutions with acetaminophen 325 mg; dextromethorphan 10 mg and phenylephrine 5 mg per 15 mL) Adults, Adolescents, and Children 12 years and older

Take 650 mg acetaminophen with 20 mg dextromethorphan and 10 mg of phenylephrine per dose PO every 6 hours as needed. Max: 4 doses per 24 hours.

Oral dosage (oral solution drops with acetaminophen 80 mg, dextromethorphan 2.5 mg and phenylephrine 1.25 mg per 1 mL) Children 6 to 11 years

4 mL (total dose acetaminophen 320 mg; dextromethorphan 10 mg; phenylephrine 5 mg) PO every 4 hours as needed. Max: Do not exceed 5 doses per 24 hours.

Dosing Considerations
Hepatic Impairment

Specific guidelines for dosage adjustments in hepatic impairment are not available; however, lower doses may be warranted due to the potential for decreased metabolism of one or more ingredients.

Renal Impairment

Dosage may require modification based on clinical response and degree of renal impairment, but no quantitative guidelines are available.

Drug Interactions

Abacavir; Lamivudine, 3TC; Zidovudine, ZDV: (Minor) Both acetaminophen and zidovudine, ZDV undergo glucuronidation. Competition for the metabolic pathway is thought to have caused a case of acetaminophen-related hepatotoxicity. This interaction may be more clinically significant in patients with depleted glutathione stores, such as patients with acquired immunodeficiency syndrome, poor nutrition, or alcoholism.
Abiraterone: (Moderate) Abiraterone inhbits CYP2D6 and dextromethorphan is a CYP2D6 substrate. Monitor for dextromethorphan-related side effects, such as drowsiness, nausea or vomiting, sweating, restlessness, or tremor. If dextromethorphan- related side effects occur, a dose reduction or discontinuation of dextromethorphan may be necessary. In an in vivo drug-drug interaction trial, the Cmax and AUC of the CYP2D6 substrate dextromethorphan were increased 2.8- and 2.9-fold, respectively when dextromethorphan 30 mg was given with abiraterone acetate 1,000 mg daily along with prednisone 5 mg twice daily. The AUC for dextrorphan, the active metabolite of dextromethorphan, increased approximately 1.3 fold.
Acarbose: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acebutolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Acetaminophen; Aspirin, ASA; Caffeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acetaminophen; Caffeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acetaminophen; Caffeine; Dihydrocodeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acetaminophen; Caffeine; Pyrilamine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Acetaminophen; Codeine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Dextromethorphan; Guaifenesin; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Acetaminophen; Dextromethorphan; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Acetaminophen; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Aclidinium; Formoterol: (Moderate) Caution and close observation should be used when formoterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Acrivastine; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Albuterol: (Moderate) Caution and close observation should be used when albuterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Albuterol; Budesonide: (Moderate) Caution and close observation should be used when albuterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects. (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Alfentanil: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering alfentanil with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Alogliptin; Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Alogliptin; Pioglitazone: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking thiazolidinediones. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Alpha-blockers: (Major) Sympathomimetics can antagonize the effects of antihypertensives such as alpha-blockers when administered concomitantly.
Alpha-glucosidase Inhibitors: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Alprazolam: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Ambrisentan: (Major) Sympathomimetics can antagonize the effects of vasodilators when administered concomitantly. Patients should be monitored for reduced efficacy if taking ambrisentan with a sympathomimetic.
Amiloride: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Amiodarone: (Moderate) Use phenylephrine with caution in patients receiving amiodarone. Amiodarone possesses alpha-adrenergic blocking properties and can directly counteract the effects of phenylephrine. Phenylephrine also can block the effects of amiodarone. Monitor patients for decreased pressor effect and decreased amiodarone activity if these agents are administered concomitantly.
Amlodipine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Amlodipine; Atorvastatin: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Amlodipine; Benazepril: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Amlodipine; Celecoxib: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Amlodipine; Olmesartan: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Amlodipine; Valsartan: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Amobarbital: (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Amoxapine: (Major) Concomitant use of amoxapine with sympathomimetics should be avoided whenever possible; use with caution when concurrent use cannot be avoided. One drug information reference suggests that cyclic antidepressants potentiate the pharmacologic effects of direct-acting sympathomimetics, but decrease the pressor response to indirect-acting sympathomimetics, however, the data are not consistent.
Angiotensin II receptor antagonists: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Angiotensin-converting enzyme inhibitors: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Antacids: (Minor) Antacids can delay the oral absorption of acetaminophen, but the interactions are not likely to be clinically significant as the extent of acetaminophen absorption is not appreciably affected.
Aprepitant, Fosaprepitant: (Minor) Use caution if acetaminophen and aprepitant are used concurrently and monitor for an increase in acetaminophen-related adverse effects for several days after administration of a multi-day aprepitant regimen. Acetaminophen is a minor (10 to 15%) substrate of CYP3A4. Aprepitant, when administered as a 3-day oral regimen (125 mg/80 mg/80 mg), is a moderate CYP3A4 inhibitor and inducer and may increase plasma concentrations of acetaminophen. For example, a 5-day oral aprepitant regimen increased the AUC of another CYP3A4 substrate, midazolam (single dose), by 2.3-fold on day 1 and by 3.3-fold on day 5. After a 3-day oral aprepitant regimen, the AUC of midazolam (given on days 1, 4, 8, and 15) increased by 25% on day 4, and then decreased by 19% and 4% on days 8 and 15, respectively. As a single 125 mg or 40 mg oral dose, the inhibitory effect of aprepitant on CYP3A4 is weak, with the AUC of midazolam increased by 1.5-fold and 1.2-fold, respectively. After administration, fosaprepitant is rapidly converted to aprepitant and shares many of the same drug interactions. However, as a single 150 mg intravenous dose, fosaprepitant only weakly inhibits CYP3A4 for a duration of 2 days; there is no evidence of CYP3A4 induction. Fosaprepitant 150 mg IV as a single dose increased the AUC of midazolam (given on days 1 and 4) by approximately 1.8-fold on day 1; there was no effect on day 4. Less than a 2-fold increase in the midazolam AUC is not considered clinically important.
Arformoterol: (Moderate) Caution and close observation should be used when arformoterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Artemether; Lumefantrine: (Moderate) Use of dextromethorphan with lumefantrine may result in increased dextromethorphan exposure. Lumefantrine inhibits CYP2D6 and dextromethorphan is a CYP2D6 substrate. Monitor for dextromethorphan-related side effects, such as drowsiness, nausea or vomiting, sweating, restlessness, or tremor.
Articaine; Epinephrine: (Moderate) Coadministration of articaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue articaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Aspirin, ASA; Butalbital; Caffeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Aspirin, ASA; Caffeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Aspirin, ASA; Caffeine; Orphenadrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Aspirin, ASA; Carisoprodol; Codeine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Aspirin, ASA; Citric Acid; Sodium Bicarbonate: (Minor) Antacids can delay the oral absorption of acetaminophen, but the interactions are not likely to be clinically significant as the extent of acetaminophen absorption is not appreciably affected.
Atazanavir; Cobicistat: (Moderate) Use of dextromethorphan with cobicistat may result in increased dextromethorphan exposure. Cobicistat inhibits CYP2D6 and dextromethorphan is a CYP2D6 substrate. Monitor for dextromethorphan-related side effects, such as drowsiness, nausea or vomiting, sweating, restlessness, or tremor.
Atenolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Atenolol; Chlorthalidone: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Atomoxetine: (Moderate) Due to the potential for additive increases in blood pressure and heart rate, atomoxetine should be used cautiously with vasopressors such as phenylephrine. Consider monitoring the patient's blood pressure and heart rate at baseline and regularly if vasopressors are coadministered with atomoxetine.
Atropine: (Major) Atropine blocks the vagal reflex bradycardia caused by sympathomimetic agents, such as phenylephrine, and increases its pressor effect.
Atropine; Difenoxin: (Major) Atropine blocks the vagal reflex bradycardia caused by sympathomimetic agents, such as phenylephrine, and increases its pressor effect.
Avanafil: (Minor) The therapeutic effect of phenylephrine injection may be decreased in patients receiving phosphodiesterase inhibitors. A decreased pressor effect of phenylephrine might occur. Monitor for proper blood pressure when these drugs are used together.
Azelastine; Fluticasone: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Azilsartan; Chlorthalidone: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Barbiturates: (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Beclomethasone: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Benzodiazepines: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Major) Because of the potential risk and severity of serotonin syndrome, coadministration of dextromethorphan and IV methylene blue should be avoided if possible. Methylene blue has been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs). Dextromethorphan increases central serotonin effects. If methylene blue is judged to be indicated, all SRIs, including dextromethorphan, must be ceased prior to treatment/procedure/surgery. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Beta-blockers: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Betamethasone: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Betaxolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Bethanechol: (Moderate) Bethanechol offsets the effects of sympathomimetics at sites where sympathomimetic and cholinergic receptors have opposite effects.
Bisoprolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Bretylium: (Moderate) Monitor blood pressure and heart rate closely when sympathomimetics are administered with bretylium. The pressor and arrhythmogenic effects of catecholamines are enhanced by bretylium.
Brimonidine; Timolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Bromocriptine: (Moderate) The combination of bromocriptine with phenylephrine may cause headache, tachycardia, other cardiovascular abnormalities, seizures, and other serious effects. Concurrent use of bromocriptine and phenylephrine should be approached with caution. One case report documented worsening headache, hypertension, premature ventricular complexes, and ventricular tachycardia in a post-partum patient receiving bromocriptine for lactation suppression who was subsequently prescribed acetaminophen; dichloralphenazone; isometheptene for a headache. A second case involved a post-partum patient receiving bromocriptine who was later prescribed phenylpropanolamine; guaifenesin and subsequently developed hypertension, tachycardia, seizures, and cerebral vasospasm.
Brompheniramine; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Brompheniramine; Pseudoephedrine; Dextromethorphan: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Budesonide: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Budesonide; Formoterol: (Moderate) Caution and close observation should be used when formoterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects. (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Budesonide; Glycopyrrolate; Formoterol: (Moderate) Caution and close observation should be used when formoterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects. (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Bumetanide: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Bupivacaine Liposomal: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Bupivacaine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Bupivacaine; Epinephrine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Bupivacaine; Lidocaine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) Coadministration of lidocaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue lidocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Bupivacaine; Meloxicam: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Buprenorphine: (Moderate) If concomitant use of buprenorphine and dextromethorphan is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Buprenorphine; Naloxone: (Moderate) If concomitant use of buprenorphine and dextromethorphan is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Bupropion: (Moderate) Monitor for dextromethorphan-related side effects, such as dizziness or drowsiness, if concomitant use of bupropion is necessary. Concomitant use may increase dextromethorphan exposure and side effects. Dextromethorphan is a CYP2D6 substrate and bupropion is a strong CYP2D6 inhibitor. Concomitant use with another strong CYP2D6 inhibitor increased dextromethorphan overall exposure by 2.69-fold.
Bupropion; Naltrexone: (Moderate) Monitor for dextromethorphan-related side effects, such as dizziness or drowsiness, if concomitant use of bupropion is necessary. Concomitant use may increase dextromethorphan exposure and side effects. Dextromethorphan is a CYP2D6 substrate and bupropion is a strong CYP2D6 inhibitor. Concomitant use with another strong CYP2D6 inhibitor increased dextromethorphan overall exposure by 2.69-fold.
Busulfan: (Moderate) Use busulfan and acetaminophen together with caution; concomitant use may result in increased busulfan levels and increased busulfan toxicity. Separating the administration of these drugs may mitigate this interaction; avoid giving acetaminophen within 72 hours prior to or concurrently with busulfan. Busulfan is metabolized in the liver through conjugation with glutathione; acetaminophen decreases glutathione levels in the blood and tissues and may reduce the clearance of busulfan.
Butabarbital: (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Butalbital; Acetaminophen: (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Butalbital; Acetaminophen; Caffeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Butalbital; Acetaminophen; Caffeine; Codeine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Butalbital; Aspirin; Caffeine; Codeine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Butorphanol: (Moderate) The rate of butorphanol absorption through the nasal mucosa is decreased when administered with sympathomimetic nasal decongestants such as phenylephrine. However, the extent of absorption is not decreased. A slower onset of action should be expected if butorphanol is administered concurrently with or immediately following a sympathomimetic nasal decongestant.
Caffeine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Caffeine; Sodium Benzoate: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Calcium-channel blockers: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Canagliflozin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Canagliflozin; Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Captopril; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Carbamazepine: (Minor) Carbamazepine may potentially accelerate the hepatic metabolism of acetaminophen. In addition, due to enzyme induction, carbamazepine may increase the risk for acetaminophen-induced hepatotoxicity via generation of a greater percentage of acetaminophen's hepatotoxic metabolite, NAPQI. Clinicians should be alert to decreased effect of acetaminophen. Dosage adjustments may be necessary, and closer monitoring of clinical and/or adverse effects is warranted.
Cardiac glycosides: (Moderate) Carefully monitor patients receiving cardiac glycosides and vasopressors concurrently due to the increased risk of arrhythmia.
Carteolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Carvedilol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Cetirizine; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Charcoal: (Minor) Activated charcoal binds many drugs within the gut. Administering charcoal dietary supplements at the same time as a routine acetaminophen dosage would be expected to interfere with the analgesic and antipyretic efficacy of acetaminophen. Charcoal is mostly used in the setting of acetaminophen overdose; however, patients should never try to treat an acetaminophen overdose with charcoal dietary supplements. Advise patients to get immediate medical attention for an acetaminophen overdose.
Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Chlordiazepoxide: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Chlordiazepoxide; Amitriptyline: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Chlordiazepoxide; Clidinium: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Chloroprocaine: (Moderate) Coadministration of chloroprocaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue chloroprocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Chlorothiazide: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Chlorpheniramine; Codeine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Chlorpheniramine; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Chlorthalidone: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Chlorthalidone; Clonidine: (Major) The cardiovascular effects of sympathomimetics, such as phenylephrine, may reduce the antihypertensive effects produced by clonidine. Blood pressure and heart rates should be monitored closely to confirm that the desired antihypertensive effect is achieved. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Cholestyramine: (Moderate) Cholestyramine has been shown to decrease the absorption of acetaminophen by roughly 60%. Experts have recommended that cholestyramine not be given within 1 hour of acetaminophen if analgesic or antipyretic effect is to be achieved.
Choline Salicylate; Magnesium Salicylate: (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. Although salicylates are rarely associated with nephrotoxicity, high-dose, chronic administration of salicylates combined other analgesics, including acetaminophen, significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Additive hepatic toxicity may occur, especially in combined overdose situations. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy.
Ciclesonide: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Citalopram: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with citalopram. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Clevidipine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Clobazam: (Moderate) Use of dextromethorphan with clobazam may result in increased dextromethorphan exposure. Monitor for dextromethorphan-related side effects, such as drowsiness, nausea or vomiting, sweating, restlessness, or tremor. Clobazam inhibits CYP2D6 and dextromethorphan is a CYP2D6 substrate. A dosage reduction of dextromethorphan may be necessary for some patients. During one in vivo study, co-administration of dextromethorphan and clobazam resulted in increased AUC and Cmax of dextromethorphan by 90% and 59%, respectively.
Clonazepam: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Clonidine: (Major) The cardiovascular effects of sympathomimetics, such as phenylephrine, may reduce the antihypertensive effects produced by clonidine. Blood pressure and heart rates should be monitored closely to confirm that the desired antihypertensive effect is achieved.
Clorazepate: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Cobicistat: (Moderate) Use of dextromethorphan with cobicistat may result in increased dextromethorphan exposure. Cobicistat inhibits CYP2D6 and dextromethorphan is a CYP2D6 substrate. Monitor for dextromethorphan-related side effects, such as drowsiness, nausea or vomiting, sweating, restlessness, or tremor.
Cocaine: (Major) Avoid concomitant use of additional vasoconstrictor agents with cocaine. If unavoidable, prolonged vital sign and ECG monitoring may be required. Myocardial ischemia, myocardial infarction, and ventricular arrhythmias have been reported after concomitant administration of topical intranasal cocaine and vasoconstrictor agents during nasal and sinus surgery. The risk for nervousness, irritability, convulsions, and other cardiac arrhythmias may increase during coadministration.
Codeine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Codeine; Guaifenesin: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Codeine; Guaifenesin; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Codeine; Phenylephrine; Promethazine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Codeine; Promethazine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Colchicine: (Minor) The response to sympathomimetics may be enhanced by colchicine.
Corticosteroids: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Cortisone: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Dacomitinib: (Moderate) Monitor for dextromethorphan-related side effects, such as dizziness or drowsiness, if concomitant use of dacomitinib is necessary. For patients receiving combination dextromethorphan; bupropion, do not exceed a maximum dose of 45 mg dextromethorphan; 105 mg bupropion once daily. Concomitant use may increase dextromethorphan exposure and side effects. Dextromethorphan is a CYP2D6 substrate and dacomitinib is a strong CYP2D6 inhibitor. Concomitant use with another strong CYP2D6 inhibitor increased dextromethorphan overall exposure by 2.69-fold.
Dapagliflozin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dapagliflozin; Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dapagliflozin; Saxagliptin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics

are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dapsone: (Moderate) Coadministration of dapsone with acetaminophen may increase the risk of developing methemoglobinemia. Advise patients to discontinue treatment and seek immediate medical attention with any signs or symptoms of methemoglobinemia.
Darifenacin: (Minor) Use of dextromethorphan with darifenacin may result in increased dextromethorphan exposure. Darifenacin is a moderate inhibitor of CYP2D6 and dextromethorphan is a CYP2D6 substrate. Monitor for dextromethorphan-related side effects, such as drowsiness, nausea or vomiting, sweating, restlessness, or tremor.
Darunavir; Cobicistat: (Moderate) Use of dextromethorphan with cobicistat may result in increased dextromethorphan exposure. Cobicistat inhibits CYP2D6 and dextromethorphan is a CYP2D6 substrate. Monitor for dextromethorphan-related side effects, such as drowsiness, nausea or vomiting, sweating, restlessness, or tremor.
Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Moderate) Use of dextromethorphan with cobicistat may result in increased dextromethorphan exposure. Cobicistat inhibits CYP2D6 and dextromethorphan is a CYP2D6 substrate. Monitor for dextromethorphan-related side effects, such as drowsiness, nausea or vomiting, sweating, restlessness, or tremor.
Deflazacort: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Delavirdine: (Moderate) Use of dextromethorphan with delavirdine may result in increased dextromethorphan exposure. Delavirdine inhibits CYP2D6 and dextromethorphan is a CYP2D6 substrate. Monitor for dextromethorphan-related side effects, such as drowsiness, nausea or vomiting, sweating, restlessness, or tremor.
Desloratadine; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Desmopressin: (Moderate) Although the pressor activity of desmopressin is very low compared to its antidiuretic activity, large doses of desmopressin should be used with other pressor agents like phenylephrine only with careful patient monitoring.
Desogestrel; Ethinyl Estradiol: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Desvenlafaxine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with desvenlafaxine. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. In addition, the manufacturer of desvenlafaxine recommends that the dose of CYP2D6 substrates, such as dextromethorphan, be reduced by up to 50% if used with desvenlafaxine 400 mg/day, a CYP2D6 inhibitor.
Dexamethasone: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Dexbrompheniramine; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Dextromethorphan; Bupropion: (Moderate) Monitor for dextromethorphan-related side effects, such as dizziness or drowsiness, if concomitant use of bupropion is necessary. Concomitant use may increase dextromethorphan exposure and side effects. Dextromethorphan is a CYP2D6 substrate and bupropion is a strong CYP2D6 inhibitor. Concomitant use with another strong CYP2D6 inhibitor increased dextromethorphan overall exposure by 2.69-fold.
Dextromethorphan; Guaifenesin; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Dextromethorphan; Quinidine: (Moderate) Monitor for dextromethorphan-related side effects, such as dizziness or drowsiness, if concomitant use of quinidine is necessary. For patients receiving combination dextromethorphan; bupropion, do not exceed a maximum dose of 45 mg dextromethorphan; 105 mg bupropion once daily. Concomitant use may increase dextromethorphan exposure and side effects. Dextromethorphan is a CYP2D6 substrate and quinidine is a strong CYP2D6 inhibitor. Concomitant use with another strong CYP2D6 inhibitor increased dextromethorphan overall exposure by 2.69-fold.
Diazepam: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Diethylpropion: (Major) Diethylpropion has vasopressor effects. Coadministration with other vasopressors may have the potential for serious cardiac adverse effects such as hypertensive crisis and cardiac arrhythmias.
Diflunisal: (Moderate) Acetaminophen plasma concentrations can increase by approximately 50% following administration of diflunisal. Acetaminophen has no effect on diflunisal concentrations. Acetaminophen in high doses has been associated with severe hepatotoxic reactions; therefore, caution should be exercised when using these agents concomitantly.
Digoxin: (Moderate) Carefully monitor patients receiving cardiac glycosides and vasopressors concurrently due to the increased risk of arrhythmia.
Dihydroergotamine: (Major) Avoid concomitant use of ergot alkaloids and vasopressors due to synergistic vasoconstriction and severe hypertension.
Diltiazem: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Dipeptidyl Peptidase-4 Inhibitors: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Diphenoxylate; Atropine: (Major) Atropine blocks the vagal reflex bradycardia caused by sympathomimetic agents, such as phenylephrine, and increases its pressor effect.
Donepezil; Memantine: (Moderate) Dextromethorphan is a NMDA antagonist and may lead to additive adverse effects if combined with memantine, also an NMDA antagonist. It may be prudent to avoid coadministration of dextromethorphan with memantine. If coadministration cannot be avoided, monitor for increased adverse effects such as agitation, dizziness and other CNS events.
Dopamine: (Moderate) Monitor blood pressure during concomitant use of dopamine and other vasopressors, such as phenylephrine, due to the risk for severe hypertension.
Dorzolamide; Timolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Doxazosin: (Major) Sympathomimetics can antagonize the effects of antihypertensives such as alpha-blockers when administered concomitantly.
Dronabinol: (Moderate) Concurrent use of dronabinol, THC with sympathomimetics may result in additive hypertension, tachycardia, and possibly cardiotoxicity. Dronabinol, THC has been associated with occasional hypotension, hypertension, syncope, and tachycardia. In a study of 7 adult males, combinations of IV cocaine and smoked marijuana, 1 g marijuana cigarette, 0 to 2.7% delta-9-THC, increased the heart rate above levels seen with either agent alone, with increases plateauing at 50 bpm.
Dronedarone: (Moderate) Use of dextromethorphan with dronedarone may result in increased dextromethorphan exposure. Dronedarone inhibits CYP2D6 and dextromethorphan is a CYP2D6 substrate. Monitor for dextromethorphan-related side effects, such as drowsiness, nausea or vomiting, sweating, restlessness, or tremor.
Drospirenone; Ethinyl Estradiol: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Drospirenone; Ethinyl Estradiol; Levomefolate: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Dulaglutide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Duloxetine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with duloxetine. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Efavirenz: (Minor) Drugs that induce the hepatic isoenzymes CYP2E1 and CYP1A2, such as efavirenz, may potentially increase the risk for acetaminophen-induced hepatotoxicity via generation of a greater percentage of acetaminophen's hepatotoxic metabolite, NAPQI. Also, the analgesic activity of acetaminophen may be reduced.
Efavirenz; Emtricitabine; Tenofovir Disoproxil Fumarate: (Minor) Drugs that induce the hepatic isoenzymes CYP2E1 and CYP1A2, such as efavirenz, may potentially increase the risk for acetaminophen-induced hepatotoxicity via generation of a greater percentage of acetaminophen's hepatotoxic metabolite, NAPQI. Also, the analgesic activity of acetaminophen may be reduced.
Efavirenz; Lamivudine; Tenofovir Disoproxil Fumarate: (Minor) Drugs that induce the hepatic isoenzymes CYP2E1 and CYP1A2, such as efavirenz, may potentially increase the risk for acetaminophen-induced hepatotoxicity via generation of a greater percentage of acetaminophen's hepatotoxic metabolite, NAPQI. Also, the analgesic activity of acetaminophen may be reduced.
Eliglustat: (Moderate) Use of dextromethorphan with eliglustat may result in increased dextromethorphan exposure. Eliglustat inhibits CYP2D6 and dextromethorphan is a CYP2D6 substrate. Monitor for dextromethorphan-related side effects, such as drowsiness, nausea or vomiting, sweating, restlessness, or tremor.
Eltrombopag: (Moderate) Eltrombopag is a UDP-glucuronyltransferase inhibitor. Acetaminophen is a substrate of UDP-glucuronyltransferases. The significance or effect of this interaction is not known; however, elevated concentrations of acetaminophen are possible. Monitor patients for adverse reactions if these drugs are coadministered.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Alafenamide: (Moderate) Use of dextromethorphan with cobicistat may result in increased dextromethorphan exposure. Cobicistat inhibits CYP2D6 and dextromethorphan is a CYP2D6 substrate. Monitor for dextromethorphan-related side effects, such as drowsiness, nausea or vomiting, sweating, restlessness, or tremor.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Moderate) Use of dextromethorphan with cobicistat may result in increased dextromethorphan exposure. Cobicistat inhibits CYP2D6 and dextromethorphan is a CYP2D6 substrate. Monitor for dextromethorphan-related side effects, such as drowsiness, nausea or vomiting, sweating, restlessness, or tremor.
Empagliflozin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Empagliflozin; Linagliptin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Empagliflozin; Linagliptin; Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Empagliflozin; Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Epoprostenol: (Major) Avoid use of sympathomimetic agents with epoprostenol. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including epoprostenol. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications.
Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Ergoloid Mesylates: (Major) Avoid concomitant use of ergot alkaloids and vasopressors due to synergistic vasoconstriction and severe hypertension.
Ergot alkaloids: (Major) Avoid concomitant use of ergot alkaloids and vasopressors due to synergistic vasoconstriction and severe hypertension.
Ergotamine: (Major) Avoid concomitant use of ergot alkaloids and vasopressors due to synergistic vasoconstriction and severe hypertension.
Ergotamine; Caffeine: (Major) Avoid concomitant use of ergot alkaloids and vasopressors due to synergistic vasoconstriction and severe hypertension. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Ertugliflozin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Ertugliflozin; Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Ertugliflozin; Sitagliptin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Escitalopram: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with escitalopram. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Esmolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Estazolam: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Ethacrynic Acid: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Ethanol: (Major) The risk of developing hepatotoxicity from acetaminophen appears to be increased in patients who regularly consume alcohol. Patients who drink more than 3 alcohol-containing drinks a day and take acetaminophen are at increased risk of developing hepatotoxicity. Acute or chronic alcohol use increases acetaminophen-induced hepatotoxicity by inducing CYP2E1 leading to increased formation of the hepatotoxic metabolite of acetaminophen. Also, chronic alcohol use can deplete liver glutathione stores. Administration of acetaminophen should be limited or avoided altogether in patients with alcoholism or patients who consume alcohol regularly.
Ethinyl Estradiol; Norelgestromin: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Ethinyl Estradiol; Norethindrone Acetate: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Ethinyl Estradiol; Norgestrel: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Ethynodiol Diacetate; Ethinyl Estradiol: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Etonogestrel; Ethinyl Estradiol: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Exenatide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
Fedratinib: (Moderate) Use of dextromethorphan with fedratinib may result in increased dextromethorphan exposure. Fedratinib is a moderate inhibitor of CYP2D6 and dextromethorphan is a CYP2D6 substrate. Monitor for dextromethorphan-related side effects, such as drowsiness, nausea or vomiting, sweating, restlessness, or tremor.
Felodipine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Fenfluramine: (Moderate) Use fenfluramine and dextromethorphan with caution due to an increased risk of serotonin syndrome. Monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Fentanyl: (Major) Pain control may be impaired if fentanyl nasal spray is administered in patients receiving vasoconstrictive nasal decongestants (e.g., phenylephrine); do not titrate fentanyl nasal spray dose in such patients. This interaction is not expected with other fentanyl administration routes. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering fentanyl with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Fexofenadine; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Finasteride; Tadalafil: (Minor) The therapeutic effect of phenylephrine injection may be decreased in patients receiving phosphodiesterase inhibitors. A decreased pressor effect of phenylephrine might occur. Monitor for proper blood pressure when these drugs are used together.
Fludrocortisone: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Flunisolide: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Fluoxetine: (Moderate) Monitor for dextromethorphan-related side effects, such as dizziness or drowsiness, if concomitant use of fluoxetine is necessary. For patients receiving combination dextromethorphan; bupropion, do not exceed a maximum dose of 45 mg dextromethorphan; 105 mg bupropion once daily. Additionally, monitor patients for signs and symptoms of serotonin syndrome. Concomitant use may increase dextromethorphan exposure and the risk for serotonin syndrome. Dextromethorphan is a CYP2D6 substrate and fluoxetine is a strong CYP2D6 inhibitor. Concomitant use with another strong CYP2D6 inhibitor increased dextromethorphan overall exposure by 2.69-fold.
Flurazepam: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Fluticasone: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Fluticasone; Salmeterol: (Moderate) Caution and close observation should also be used when salmeterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects. (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Fluticasone; Umeclidinium; Vilanterol: (Moderate) Administer sympathomimetics with caution with beta-agonists such as vilanterol. The cardiovascular effects of beta-2 agonists may be potentiated by concomitant use. Monitor the patient for tremors, nervousness, increased heart rate, or other additive side effects. (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Fluticasone; Vilanterol: (Moderate) Administer sympathomimetics with caution with beta-agonists such as vilanterol. The cardiovascular effects of beta-2 agonists may be potentiated by concomitant use. Monitor the patient for tremors, nervousness, increased heart rate, or other additive side effects. (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Fluvoxamine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with fluvoxamine. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Formoterol: (Moderate) Caution and close observation should be used when formoterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Formoterol; Mometasone: (Moderate) Caution and close observation should be used when formoterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects. (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Furosemide: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Ginger, Zingiber officinale: (Minor) In vitro studies have demonstrated the positive inotropic effects of certain gingerol constituents of ginger; but it is unclear if whole ginger root exhibits these effects clinically in humans. It is theoretically possible that excessive doses of ginger could affect the action of vasopressors like phenylephrine; however, no clinical data are available.
Givosiran: (Moderate) If possible, avoid concomitant use of dextromethorphan with givosiran due to the risk of increased dextromethorphan-related adverse reactions. If use is necessary, consider decreasing the dextromethorphan dose. Monitor for dextromethorphan-related side effects, such as drowsiness, nausea or vomiting, sweating, restlessness, or tremor. Dextromethorphan is a sensitive CYP2D6 substrate. Givosiran may moderately reduce hepatic CYP2D6 enzyme activity because of its pharmacological effects on the hepatic heme biosynthesis pathway.
Glipizide; Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Glyburide; Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Glycopyrrolate; Formoterol: (Moderate) Caution and close observation should be used when formoterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Grapefruit juice: (Minor) Intake of grapefruit juice or seville orange juice increased dextromethorphan bioavailability in one study. Patients with increased concentrations of dextromethorphan may experience drowsiness or serotonergic side effects (dizziness, nervousness or restlessness, nausea, vomiting, stomach upset) not usually noted with prescribed or nonprescription product doses. Grapefruit juice and seville orange juice contain compounds that can inhibit P-glycoprotein in the intestinal wall, and dextromethorphan absorption may be affected by P-glycoprotein activity. Dextromethorphan is largely metabolized by CYP2D6, so this particular interaction with grapefruit juice may be more relevant in patients who are poor CYP2D6 metabolizers.
Green Tea: (Moderate) Some, but not all, green tea products contain caffeine. Caffeine should be avoided or used cautiously with phenylephrine. CNS stimulants and sympathomimetics are associated with adverse effects such as nervousness, irritability, insomnia, and cardiac arrhythmias.
Guaifenesin; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Haloperidol: (Moderate) Non-cardiovascular drugs with alpha-blocking activity such as haloperidol, directly counteract the effects of phenylephrine and can counter the desired pharmacologic effect. They also can be used to treat excessive phenylephrine-induced hypertension.
Hydantoins: (Minor) Hydantoin anticonvulsants induce hepatic microsomal enzymes and may increase the metabolism of other drugs, leading to reduced efficacy of medications like acetaminophen. In addition, the risk of hepatotoxicity from acetaminophen may be increased with the chronic dosing of acetaminophen along with phenytoin. Adhere to recommended acetaminophen dosage limits. Acetaminophen-related hepatotoxicity has occurred clinically with the concurrent use of acetaminophen 1300 mg to 6200 mg daily and phenytoin. Acetaminophen cessation led to serum transaminase normalization within 2 weeks.
Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Hydrochlorothiazide, HCTZ; Methyldopa: (Major) Sympathomimetics, such as phenylephrine, can antagonize the antihypertensive effects of methyldopa when administered concomitantly. Blood pressure should be monitored closely to confirm that the desired antihypertensive effect is achieved. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Hydrocodone; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Hydrocortisone: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate: (Major) Because of the potential risk and severity of serotonin syndrome, coadministration of dextromethorphan and IV methylene blue should be avoided if possible. Methylene blue has been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs). Dextromethorphan increases central serotonin effects. If methylene blue is judged to be indicated, all SRIs, including dextromethorphan, must be ceased prior to treatment/procedure/surgery. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Ibuprofen; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Iloprost: (Major) Avoid use of sympathomimetic agents with iloprost. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including iloprost. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications.
Imatinib: (Major) Imatinib, STI-571 may affect the metabolism of acetaminophen. In vitro, imatinib was found to inhibit acetaminophen O-glucuronidation at therapeutic levels. Therefore, systemic exposure to acetaminophen is expected to be increased with coadministration of imatinib. Chronic acetaminophen therapy should be avoided in patients receiving imatinib. (Moderate) Use of dextromethorphan with imatinib may result in increased dextromethorphan exposure. Imatinib inhibits CYP2D6 and dextromethorphan is a CYP2D6 substrate. Monitor for dextromethorphan-related side effects, such as drowsiness, nausea or vomiting, sweating, restlessness, or tremor.
Incretin Mimetics: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Indacaterol: (Moderate) Administer sympathomimetics with caution with beta-agonists such as indacaterol. The cardiovascular effects of beta-2 agonists may be potentiated by concomitant use. Monitor the patient for tremors, nervousness, increased heart rate, or other additive side effects.
Indacaterol; Glycopyrrolate: (Moderate) Administer sympathomimetics with caution with beta-agonists such as indacaterol. The cardiovascular effects of beta-2 agonists may be potentiated by concomitant use. Monitor the patient for tremors, nervousness, increased heart rate, or other additive side effects.
Indapamide: (Moderate) Sympathomimetics can antagonize the antihypertensive effects of vasodilators when administered concomitantly. Patients should be monitored to confirm that the desired antihypertensive effect is achieved.
Insulin Degludec; Liraglutide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Insulin Glargine; Lixisenatide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Minor) When 1,000 mg acetaminophen was given 1 or 4 hours after 10 mcg lixisenatide, the AUC was not significantly changed, but the acetaminophen Cmax was decreased by 29% and 31%, respectively and median Tmax was delayed by 2 and 1.75 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before lixisenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying) and the clinical impact has not been assessed. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least one hour prior to lixisenatide subcutaneous injection.
Insulins: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Iobenguane I 123: (Major) Discontinue medications that decrease norepinephrine uptake, such as phenylephrine, for at least 5 biological half-lives prior to iobenguane I 123 administration. Consider medication tapering or additional supportive therapy as appropriate to minimize the risk for precipitating phenylephrine withdrawal symptoms. Medications that decrease the uptake of norepinephrine can cause false negative imaging results. Increasing the dose of iobenguane I 123 will not overcome any potential uptake limiting effect of this medication.
Iobenguane I 131: (Major) Discontinue sympathomimetics for at least 5 half-lives before the administration of the dosimetry dose or a therapeutic dose of iobenguane I-131. Do not restart sympathomimetics until at least 7 days after each iobenguane I-131 dose. Drugs that reduce catecholamine uptake or deplete catecholamine stores, such as sympathomimetics, may interfere with iobenguane I-131 uptake into cells and interfere with dosimetry calculations resulting in altered iobenguane I-131 efficacy.
Ionic Contrast Media: (Major) The intravascular injection of a contrast medium should never be made after the administration of vasopressors since they strongly potentiate neurologic effects. Serious neurologic sequelae, including permanent paralysis, have been reported after cerebral arteriography, selective spinal arteriography, and arteriography of vessels supplying the spinal cord.
Ipratropium; Albuterol: (Moderate) Caution and close observation should be used when albuterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Irbesartan; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Isavuconazonium: (Moderate) Concomitant use of isavuconazonium with acetaminophen may result in increased serum concentrations of acetaminophen. Acetaminophen is a substrate of the hepatic isoenzyme CYP3A4; isavuconazole, the active moiety of isavuconazonium, is a moderate inhibitor of this enzyme. Caution and close monitoring are advised if these drugs are used together.
Isocarboxazid: (Contraindicated) Dextromethorphan products are contraindicated in patients taking a monoamine oxidase inhibitor (MAOI) or in patients who have taken an MAOI within the last 14 days, due to the risk of serious and possibly fatal drug interactions, including serotonin syndrome. A washout period of at least 14 days should elapse between the start of dextromethorphan after discontinuation of an MAOI. Patients should read nonprescription product labels carefully. Before initiating an MAOI after using other serotonergic agents, a sufficient amount of time must be allowed for clearance of the serotonergic agent and its active metabolites. (Contraindicated) In general, sympathomimetics should be avoided in patients receiving MAOIs due to an increased risk of hypertensive crisis. This applies to sympathomimetics including stimulants for ADHD, narcolepsy or weight loss, nasal, oral, and ophthalmic decongestants and cold products, and respiratory sympathomimetics (e.g., beta agonist drugs). Some local anesthetics also contain a sympathomimetic (e.g., epinephrine). In general, medicines containing sympathomimetic agents should not be used concurrently with MAOIs or within 14 days before or after their use.
Isoflurane: (Major) Halogenated anesthetics may sensitize the myocardium to the effects of sympathomimetics, including phenylephrine, which can increase the risk of developing cardiac arrhythmias and hypotension.
Isoniazid, INH: (Major) Agents which induce the hepatic isoenzyme CYP2E1, such as isoniazid, may potentially increase the risk for acetaminophen-induced hepatotoxicity via generation of a greater percentage of acetaminophen's hepatotoxic metabolites. The combination of isoniazid and acetaminophen has caused severe hepatotoxicity in at least one patient; studies in rats have demonstrated that pre-treatment with isoniazid potentiates acetaminophen hepatotoxicity.
Isoniazid, INH; Pyrazinamide, PZA; Rifampin: (Major) Agents which induce the hepatic isoenzyme CYP2E1, such as isoniazid, may potentially increase the risk for acetaminophen-induced hepatotoxicity via generation of a greater percentage of acetaminophen's hepatotoxic metabolites. The combination of isoniazid and acetaminophen has caused severe hepatotoxicity in at least one patient; studies in rats have demonstrated that pre-treatment with isoniazid potentiates acetaminophen hepatotoxicity. (Moderate) Concomitant use of acetaminophen with rifampin may increase the known risk of hepatotoxicity in relation to each drug. Severe hepatic dysfunction including fatalities were reported in patients taking rifampin with other hepatotoxic agents.
Isoniazid, INH; Rifampin: (Major) Agents which induce the hepatic isoenzyme CYP2E1, such as isoniazid, may potentially increase the risk for acetaminophen-induced hepatotoxicity via generation of a greater percentage of acetaminophen's hepatotoxic metabolites. The combination of isoniazid and acetaminophen has caused severe hepatotoxicity in at least one patient; studies in rats have demonstrated that pre-treatment with isoniazid potentiates acetaminophen hepatotoxicity. (Moderate) Concomitant use of acetaminophen with rifampin may increase the known risk of hepatotoxicity in relation to each drug. Severe hepatic dysfunction including fatalities were reported in patients taking rifampin with other hepatotoxic agents.
Isradipine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Ketamine: (Moderate) Closely monitor vital signs when ketamine and phenylephrine are coadministered; consider dose adjustment individualized to the patient's clinical situation. Phenylephrine may enhance the sympathomimetic effects of ketamine.
Labetalol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Lamivudine, 3TC; Zidovudine, ZDV: (Minor) Both acetaminophen and zidovudine, ZDV undergo glucuronidation. Competition for the metabolic pathway is thought to have caused a case of acetaminophen-related hepatotoxicity. This interaction may be more clinically significant in patients with depleted glutathione stores, such as patients with acquired immunodeficiency syndrome, poor nutrition, or alcoholism.
Lamotrigine: (Moderate) Monitor patients for possible loss of lamotrigine efficacy and seizure activity during coadministration with acetaminophen. Acetaminophen may induce glucuronidation pathways involved in lamotrigine metabolism. During a study among 12 healthy volunteers, concomitant administration of acetaminophen 4 g/day with lamotrigine at steady-state increased the formation clearance of lamotrigine glucuronide conjugates by 45%, decreased lamotrigine AUC by 20%, and reduced lamotrigine trough concentrations by 25%.
Lasmiditan: (Moderate) Serotonin syndrome may occur during coadministration of lasmiditan and dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly after a dose increase or the addition of other serotonergic medications to an existing regimen. Discontinue all serotonergic agents if serotonin syndrome occurs and implement appropriate medical management.
Levalbuterol: (Moderate) Caution and close observation should be used when albuterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Levamlodipine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Levobunolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Levomilnacipran: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with levomilnacipran. Dextromethorphan has serotonergic activity. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Levonorgestrel; Ethinyl Estradiol: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Levonorgestrel; Ethinyl Estradiol; Ferrous Bisglycinate: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Levonorgestrel; Ethinyl Estradiol; Ferrous Fumarate: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Levothyroxine: (Moderate) Monitor hemodynamic parameters during concomitant sympathomimetic agent and thyroid hormone use; dosage adjustments may be necessary. Concomitant use may increase the effects of sympathomimetics or thyroid hormone.
Levothyroxine; Liothyronine (Porcine): (Moderate) Monitor hemodynamic parameters during concomitant sympathomimetic agent and thyroid hormone use; dosage adjustments may be necessary. Concomitant use may increase the effects of sympathomimetics or thyroid hormone.
Levothyroxine; Liothyronine (Synthetic): (Moderate) Monitor hemodynamic parameters during concomitant sympathomimetic agent and thyroid hormone use; dosage adjustments may be necessary. Concomitant use may increase the effects of sympathomimetics or thyroid hormone.
Lidocaine: (Moderate) Coadministration of lidocaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue lidocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
< strong>Lidocaine; Epinephrine: (Moderate) Coadministration of lidocaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue lidocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Lidocaine; Prilocaine: (Moderate) Coadministration of lidocaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue lidocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) Coadministration of prilocaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue prilocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Linagliptin; Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Linezolid: (Major) Linezolid may enhance the hypertensive effect of phenylephrine. Initial doses of phenylephrine, if given by intravenous infusion, should be reduced and subsequent dosing titrated to desired response. Closely monitor blood pressure during coadministration. Linezolid is an antibiotic that is also a weak, reversible nonselective inhibitor of monoamine oxidase (MAO). Therefore, linezolid has the potential for interaction with adrenergic agents, such as phenylephrine. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering linezolid with dextromethorphan. Linezolid is an antibiotic that is also a reversible, non-selective MAO inhibitor and has potential to interact with serotonergic agents. Dextromethorphan has serotonergic activity. However, the potential for interaction has been studied. Subjects were administered dextromethorphan (two 20-mg doses given 4 hours apart) with or without linezolid. No serotonin syndrome effects (confusion, delirium, restlessness, tremors, blushing, diaphoresis, hyperpyrexia) have been observed in normal subjects receiving linezolid and dextromethorphan.
Liothyronine: (Moderate) Monitor hemodynamic parameters during concomitant sympathomimetic agent and thyroid hormone use; dosage adjustments may be necessary. Concomitant use may increase the effects of sympathomimetics or thyroid hormone.
Liraglutide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Lisinopril; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Lixisenatide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Minor) When 1,000 mg acetaminophen was given 1 or 4 hours after 10 mcg lixisenatide, the AUC was not significantly changed, but the acetaminophen Cmax was decreased by 29% and 31%, respectively and median Tmax was delayed by 2 and 1.75 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before lixisenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying) and the clinical impact has not been assessed. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least one hour prior to lixisenatide subcutaneous injection.
Lomitapide: (Moderate) Caution should be exercised when lomitapide is used with other medications known to have potential for hepatotoxicity, such as acetaminophen (> 4 g/day PO for >= 3 days/week). The effect of concomitant administration of lomitapide with other hepatotoxic medications is unknown. More frequent monitoring of liver-related tests may be warranted.
Loop diuretics: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Lopinavir; Ritonavir: (Moderate) Concurrent administration of acetaminophen with ritonavir may result in elevated acetaminophen plasma concentrations and subsequent adverse events. Acetaminophen is metabolized by the hepatic isoenzyme CYP3A4; ritonavir is an inhibitor of this enzyme. Caution and close monitoring are advised if these drugs are administered together.
Loratadine; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Lorazepam: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Lorcaserin: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with lorcaserin. Both medications have serotonergic activity. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. In addition, lorcaserin inhibits CYP2D6-mediated metabolism of dextromethorphan, increasing dextromethorphan Cmax by approximately 76% and AUC by approximately 2-fold. Increased dextromethorphan exposure may result in adverse effects consistent with the serotonin syndrome.
Losartan; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Loxapine: (Moderate) Patients taking loxapine can have reduced pressor response to phenylephrine.
Macitentan: (Major) Avoid use of sympathomimetic agents with macitentan. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including macitentan. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications.
Maprotiline: (Moderate) Use maprotiline and sympathomimetics together with caution and close clinical monitoring. Regularly assess blood pressure, heart rate, the efficacy of treatment, and the emergence of sympathomimetic/adrenergic adverse events. Carefully adjust dosages as clinically indicated. Maprotiline has pharmacologic activity similar to tricyclic antidepressant agents and may cause additive sympathomimetic effects when combined with agents with adrenergic/sympathomimetic activity.
Mecamylamine: (Major) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by mecamylamine. Close monitoring of blood pressure or the selection of alternative therapeutic agents may be needed.
Meglitinides: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Memantine: (Moderate) Dextromethorphan is a NMDA antagonist and may lead to additive adverse effects if combined with memantine, also an NMDA antagonist. It may be prudent to avoid coadministration of dextromethorphan with memantine. If coadministration cannot be avoided, monitor for increased adverse effects such as agitation, dizziness and other CNS events.
Mepivacaine: (Moderate) Coadministration of mepivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue mepivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Metaproterenol: (Major) Caution and close observation should also be used when metaproterenol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Metformin; Repaglinide: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Metformin; Rosiglitazone: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking thiazolidinediones. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Metformin; Saxagliptin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Metformin; Sitagliptin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Methenamine; Sodium Acid Phosphate; Methylene Blue; Hyoscyamine: (Major) Because of the potential risk and severity of serotonin syndrome, coadministration of dextromethorphan and IV methylene blue should be avoided if possible. Methylene blue has been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs). Dextromethorphan increases central serotonin effects. If methylene blue is judged to be indicated, all SRIs, including dextromethorphan, must be ceased prior to treatment/procedure/surgery. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Methohexital: (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Methyclothiazide: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Methyldopa: (Major) Sympathomimetics, such as phenylephrine, can antagonize the antihypertensive effects of methyldopa when administered concomitantly. Blood pressure should be monitored closely to confirm that the desired antihypertensive effect is achieved.
Methylene Blue: (Major) Because of the potential risk and severity of serotonin syndrome, coadministration of dextromethorphan and IV methylene blue should be avoided if possible. Methylene blue has been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs). Dextromethorphan increases central serotonin effects. If methylene blue is judged to be indicated, all SRIs, including dextromethorphan, must be ceased prior to treatment/procedure/surgery. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Methylergonovine: (Major) Avoid concomitant use of ergot alkaloids and vasopressors due to synergistic vasoconstriction and severe hypertension.
Methylphenidate Derivatives: (Moderate) Methylphenidate derivatives can potentiate the actions of both exogenous (such as dopamine and epinephrine) and endogenous (such as norepinephrine) vasopressors. It is advisable to monitor cardiac function if these medications are coadministered. Vasopressors include medications such as epinephrine, dopamine, midodrine, and non-prescription medications such as pseudoephedrine and phenylephrine.
Methylprednisolone: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Metolazone: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Metoprolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Metyrapone: (Major) Coadministration of metyrapone and acetaminophen may result in acetaminophen toxicity. Acetaminophen glucuronidation is inhibited by metyrapone. It may be advisable for patients to avoid acetaminophen while taking metyrapone.
Midazolam: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Midodrine: (Major) Midodrine stimulates alpha-adrenergic receptors. Coadministration of midodrine with other vasoconstrictive agents, such as phenylephrine, may enhance or potentiate the effects of midodrine.
Miglitol: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Milnacipran: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with milnacipran. Dextromethorphan has serotonergic activity. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Mipomersen: (Moderate) Caution should be exercised when mipomersen is used with other medications known to have potential for hepatotoxicity, such as acetaminophen (> 4 g/day for >= 3 days/week). The effect of concomitant administration of mipomersen with other hepatotoxic medications is unknown. More frequent monitoring of liver-related tests may be warranted.
Mirabegron: (Minor) Use of dextromethorphan with mirabegron may result in increased dextromethorphan exposure. Mirabegron moderately inhibits CYP2D6 and dextromethorphan is a CYP2D6 substrate. Monitor for dextromethorphan-related side effects, such as drowsiness, nausea or vomiting, sweating, restlessness, or tremor.
Mirtazapine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with mirtazapine. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Mitotane: (Minor) Use caution if mitotane and acetaminophen are used concomitantly, and monitor for decreased efficacy of acetaminophen. Mitotane is a strong CYP3A4 inducer and acetaminophen is a minor (10% to 15%) CYP3A4 substrate; coadministration may result in decreased plasma concentrations of acetaminophen.
Mometasone: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Monoamine oxidase inhibitors: (Contraindicated) Dextromethorphan products are contraindicated in patients taking a monoamine oxidase inhibitor (MAOI) or in patients who have taken an MAOI within the last 14 days, due to the risk of serious and possibly fatal drug interactions, including serotonin syndrome. A washout period of at least 14 days should elapse between the start of dextromethorphan after discontinuation of an MAOI. Patients should read nonprescription product labels carefully. Before initiating an MAOI after using other serotonergic agents, a sufficient amount of time must be allowed for clearance of the serotonergic agent and its active metabolites. (Contraindicated) In general, sympathomimetics should be avoided in patients receiving MAOIs due to an increased risk of hypertensive crisis. This applies to sympathomimetics including stimulants for ADHD, narcolepsy or weight loss, nasal, oral, and ophthalmic decongestants and cold products, and respiratory sympathomimetics (e.g., beta agonist drugs). Some local anesthetics also contain a sympathomimetic (e.g., epinephrine). In general, medicines containing sympathomimetic agents should not be used concurrently with MAOIs or within 14 days before or after their use.
Nabilone: (Moderate) Concurrent use of nabilone with sympathomimetics (e.g., amphetamine or cocaine) may result in additive hypertension, tachycardia, and possibly cardiotoxicity. In a study of 7 adult males, combinations of cocaine (IV) and smoked marijuana (1 g marijuana cigarette, 0 to 2.7% delta-9-THC) increased the heart rate above levels seen with either agent alone, with increases reaching a plateau at 50 bpm.
Nadolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Nafarelin: (Moderate) If use of a topical nasal decongestants (e.g., oxymetazoline, tetrahydrozoline, phenylephrine nasal) is necessary during therapy with intranasal nafarelin, the decongestant should not be used for at least 2 hours after nafarelin is administered.
Naproxen; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Nebivolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Nebivolol; Valsartan: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Nefazodone: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with nefazodone. Both drugs have serotonergic activity. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Nicardipine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Nicotine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e., nicotine nasal spray); however, no dosage adjustments are recommended.
Nifedipine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Nimodipine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Niraparib; Abiraterone: (Moderate) Abiraterone inhbits CYP2D6 and dextromethorphan is a CYP2D6 substrate. Monitor for dextromethorphan-related side effects, such as drowsiness, nausea or vomiting, sweating, restlessness, or tremor. If dextromethorphan- related side effects occur, a dose reduction or discontinuation of dextromethorphan may be necessary. In an in vivo drug-drug interaction trial, the Cmax and AUC of the CYP2D6 substrate dextromethorphan were increased 2.8- and 2.9-fold, respectively when dextromethorphan 30 mg was given with abiraterone acetate 1,000 mg daily along with prednisone 5 mg twice daily. The AUC for dextrorphan, the active metabolite of dextromethorphan, increased approximately 1.3 fold.
Nirmatrelvir; Ritonavir: (Moderate) Concurrent administration of acetaminophen with ritonavir may result in elevated acetaminophen plasma concentrations and subsequent adverse events. Acetaminophen is metabolized by the hepatic isoenzyme CYP3A4; ritonavir is an inhibitor of this enzyme. Caution and close monitoring are advised if these drugs are administered together.
Nisoldipine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Nitrates: (Moderate) Sympathomimetics can antagonize the antianginal effects of nitrates, and can increase blood pressure and/or heart rate. Anginal pain may be induced when coronary insufficiency is present.
Non-Ionic Contrast Media: (Major) Do not administer non-ionic contrast media intra-arterially after the administration of vasopressors since they strongly potentiate neurologic effects.
Norethindrone Acetate; Ethinyl Estradiol; Ferrous fumarate: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Norethindrone; Ethinyl Estradiol: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Norethindrone; Ethinyl Estradiol; Ferrous fumarate: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Norgestimate; Ethinyl Estradiol: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Olanzapine; Fluoxetine: (Moderate) Monitor for dextromethorphan-related side effects, such as dizziness or drowsiness, if concomitant use of fluoxetine is necessary. For patients receiving combination dextromethorphan; bupropion, do not exceed a maximum dose of 45 mg dextromethorphan; 105 mg bupropion once daily. Additionally, monitor patients for signs and symptoms of serotonin syndrome. Concomitant use may increase dextromethorphan exposure and the risk for serotonin syndrome. Dextromethorphan is a CYP2D6 substrate and fluoxetine is a strong CYP2D6 inhibitor. Concomitant use with another strong CYP2D6 inhibitor increased dextromethorphan overall exposure by 2.69-fold.
Oliceridine: (Moderate) If concomitant use of oliceridine and dextromethorphan is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Olmesartan; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Olopatadine; Mometasone: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Omeprazole; Amoxicillin; Rifabutin: (Moderate) As a cytochrome P450 isoenzyme inducers, rifabutin could induce the metabolism of acetaminophen. An increase in acetaminophen-induced hepatotoxicity may be seen by increasing the metabolism of acetaminophen to its toxic metabolite, NAPQI. Also, the analgesic activity of acetaminophen may be reduced.
Omeprazole; Sodium Bicarbonate: (Minor) Antacids can delay the oral absorption of acetaminophen, but the interactions are not likely to be clinically significant as the extent of acetaminophen absorption is not appreciably affected.
Oritavancin: (Moderate) Administration of oritavancin, a weak inducer of CYP2D6 and CYP3A4, with dextromethorphan resulted in a 31% reduction in the ratio of dextromethorphan to dextrorphan concentrations in the urine. The efficacy of dextromethorphan may be reduced if these drugs are administered concurrently.
Oxazepam: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Oxytocin: (Major) The administration of prophylactic vasopressors with oxytocin can cause severe, persistent hypertension, as the 2 drugs may have a synergistic and additive vasoconstrictive effect. This interaction was noted when oxytocin was given 3 to 4 hours after prophylactic vasoconstrictor in conjunction with caudal anesthesia. The incidence of such an interaction may be decreased if vasopressors are not administered prior to oxytocin.
Ozanimod: (Contraindicated) Coadministration of ozanimod with dextromethorphan is contraindicated. Allow at least 14 days between discontinuation of ozanimod and initiation of dextromethorphan. Consider if an alternative to dextromethorphan would be appropriate. An active metabolite of ozanimod inhibits MAO-B, which may increase the potential for serious and possibly fatal drug interactions with dextromethorphan, including serotonin syndrome. (Major) Coadministration of ozanimod with sympathomimetics such as phenylephrine is not routinely recommended due to the potential for hypertensive crisis. If coadministration is medically necessary, closely monitor the patient for hypertension. An active metabolite of ozanimod inhibits MAO-B, which may increase the potential for hypertensive crisis. Sympathomimetics may increase blood pressure by increasing norepinephrine concentrations and monoamine oxidase inhibitors (MAOIs) are known to potentiate these effects. Concomitant use of ozanimod with pseudoephedrine did not potentiate the effects on blood pressure. However, hypertensive crisis has occurred with administration of ozanimod alone and also during coadministration of sympathomimetic medications and other selective or nonselective MAO inhibitors.
Panobinostat: (Major) Avoid coadministrating panobinostat with sensitive CYP2D6 substrates such as dextromethorphan due to increased dextromethorphan exposure. Consider alternatives to dextromethorphan if possible. If concomitant use cannot be avoided, closely monitor for dextromethorphan-related side effects, such as drowsiness, nausea or vomiting, sweating, restlessness, or tremor. Panobinostat inhibits CYP2D6. When a single 60-mg dose of dextromethorphan (DM) was administered after 3 doses of panobinostat (20 mg on days 3, 5, and 8), the DM Cmax increased by 20% to 200% and DM exposure (AUC) increased by 20% to 130% (interquartile ranges) vs. when DM was given alone; however, the change in exposure was highly variable among the patients studied.
Paroxetine: (Moderate) Monitor for dextromethorphan-related side effects, such as dizziness or drowsiness, if concomitant use of paroxetine is necessary. For patients receiving combination dextromethorphan; bupropion, do not exceed a maximum dose of 45 mg dextromethorphan; 105 mg bupropion once daily. Additionally, monitor patients for signs and symptoms of serotonin syndrome. Concomitant use may increase dextromethorphan exposure and the risk for serotonin syndrome. Dextromethorphan is a CYP2D6 substrate and paroxetine is a strong CYP2D6 inhibitor. Concomitant use with paroxetine increased dextromethorphan overall exposure by 2.69-fold.
Pazopanib: (Moderate) Use of dextromethorphan with pazopanib may result in increased dextromethorphan exposure. Monitor for dextromethorphan-related side effects, such as drowsiness, nausea or vomiting, sweating, restlessness, or tremor. Results from drug-drug interaction trials conducted in cancer patients suggest that pazopanib is a weak inhibitor of CYP2D6 and dextromethorphan is a CYP2D6 substrate. Coadministration of dextromethorphan and pazopanib resulted in an increase of 33% to 64% in the ratio of dextromethorphan to dextrorphan concentrations in the urine, indicating reduced CYP2D6 metabolism to the dextrorphan metabolite.
Peginterferon Alfa-2b: (Minor) Monitor for adverse effects associated with increased exposure to dextromethorphan if peginterferon alfa-2b is coadministered. Peginterferon alfa -2b is a CYP2D6 inhibitor, while dextromethorphan is a CYP2D6 substrate.
Penicillin G Benzathine; Penicillin G Procaine: (Moderate) Coadministration of penicillin G procaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue penicillin G procaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Penicillin G Procaine: (Moderate) Coadministration of penicillin G procaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue penicillin G procaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Pentobarbital: (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Perindopril; Amlodipine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Phendimetrazine: (Major) Phendimetrazine is a phenylalkaline sympathomimetic agent. All sympathomimetics and psychostimulants, including other anorexiants, should be used cautiously or avoided in patients receiving phendimetrazine. The combined use of these agents may have the potential for additive side effects, such as hypertensive crisis or cardiac arrhythmia.
Phenelzine: (Contraindicated) Dextromethorphan products are contraindicated in patients taking a monoamine oxidase inhibitor (MAOI) or in patients who have taken an MAOI within the last 14 days, due to the risk of serious and possibly fatal drug interactions, including serotonin syndrome. A washout period of at least 14 days should elapse between the start of dextromethorphan after discontinuation of an MAOI. Patients should read nonprescription product labels carefully. Before initiating an MAOI after using other serotonergic agents, a sufficient amount of time must be allowed for clearance of the serotonergic agent and its active metabolites. (Contraindicated) In general, sympathomimetics should be avoided in patients receiving MAOIs due to an increased risk of hypertensive crisis. This applies to sympathomimetics including stimulants for ADHD, narcolepsy or weight loss, nasal, oral, and ophthalmic decongestants and cold products, and respiratory sympathomimetics (e.g., beta agonist drugs). Some local anesthetics also contain a sympathomimetic (e.g., epinephrine). In general, medicines containing sympathomimetic agents should not be used concurrently with MAOIs or within 14 days before or after their use.
Phenobarbital: (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Phenobarbital; Hyoscyamine; Atropine; Scopolamine: (Major) Atropine blocks the vagal reflex bradycardia caused by sympathomimetic agents, such as phenylephrine, and increases its pressor effect. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Phenothiazines: (Moderate) Other non-cardiovascular drugs with alpha-blocking activity such as phenothiazines, directly counteract the effects of phenylephrine and can counter the desired pharmacologic effect. They also can be used to treat excessive phenylephrine-induced hypertension.
Phenoxybenzamine: (Major) Sympathomimetics can antagonize the effects of antihypertensives such as alpha-blockers when administered concomitantly.
Phentermine: (Major) Because phentermine is a sympathomimetic and anorexic agent (i.e., psychostimulant) it should not be used in combination with other sympathomimetics. The combined use of these agents may have the potential for additive side effects, such as hypertensive crisis or cardiac arrhythmias.
Phentermine; Topiramate: (Major) Because phentermine is a sympathomimetic and anorexic agent (i.e., psychostimulant) it should not be used in combination with other sympathomimetics. The combined use of these agents may have the potential for additive side effects, such as hypertensive crisis or cardiac arrhythmias.
Phentolamine: (Major) Sympathomimetics can antagonize the effects of antihypertensives such as alpha-blockers when administered concomitantly.
Phosphodiesterase inhibitors: (Minor) The therapeutic effect of phenylephrine injection may be decreased in patients receiving phosphodiesterase inhibitors. A decreased pressor effect of phenylephrine might occur. Monitor for proper blood pressure when these drugs are used together.
Pindolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Pioglitazone: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking thiazolidinediones. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Pioglitazone; Glimepiride: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking thiazolidinediones. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Pioglitazone; Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking thiazolidinediones. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Pneumococcal Vaccine, Polyvalent: (Moderate) Concomitant administration of antipyretics, such as acetaminophen, may decrease an individual's immunological response to the pneumococcal vaccine. A post-marketing study conducted in Poland using a non-US vaccination schedule (2, 3, 4, and 12 months of age) evaluated the impact of prophylactic oral acetaminophen on antibody responses to Prevnar 13. Data show that acetaminophen, given at the time of vaccination and then dosed at 6 to 8 hour intervals for 3 doses on a scheduled basis, reduced the antibody response to some serotypes after the third dose of Prevnar 13 when compared to the antibody responses of infants who only received antipyretics 'as needed' for treatment. However, reduced antibody responses were not observed after the fourth dose of Prevnar 13 with prophylactic acetaminophen.
Posaconazole: (Moderate) Posaconazole and acetaminophen should be coadministered with caution due to an increased potential for acetaminophen-related adverse events. Posaconazole is a potent inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of acetaminophen. These drugs used in combination may result in elevated acetaminophen plasma concentrations, causing an increased risk for acetaminophen-related adverse events.
Potassium-sparing diuretics: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Pramlintide: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Minor) Because pramlintide has the potential to delay the absorption of concomitantly administered medications, medications should be administered at least 1 hour before or 2 hours after pramlintide injection when the rapid onset of a concomitantly administered oral medication is a critical determinant of effectiveness (i.e., analgesics).
Prazosin: (Major) Sympathomimetics can antagonize the effects of antihypertensives such as alpha-blockers when administered concomitantly.
Prednisolone: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Prednisone: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Prilocaine: (Moderate) Coadministration of prilocaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue prilocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Prilocaine; Epinephrine: (Moderate) Coadministration of prilocaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue prilocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Primidone: (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Probenecid; Colchicine: (Minor) The response to sympathomimetics may be enhanced by colchicine.
Procarbazine: (Major) Because procarbazine exhibits some monoamine oxidase inhibitory (MAOI) activity, sympathomimetic drugs should be avoided. As with MAOIs, the use of a sympathomimetic drug with procarbazine may precipitate hypertensive crisis or other serious side effects. In the presence of MAOIs, drugs that cause release of norepinephrine induce severe cardiovascular and cerebrovascular responses. In general, do not use a sympathomimetic drug unless clinically necessary (e.g., medical emergencies, agents like dopamine) within the 14 days prior, during or 14 days after procarbazine therapy. If use is necessary within 2 weeks of the MAOI drug, in general the initial dose of the sympathomimetic agent must be greatly reduced. Patients should be counseled to avoid non-prescription (OTC) decongestants and other drug products, weight loss products, and energy supplements that contain sympathomimetic agents. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with procarbazine, an antineoplastic agent with monoamine oxidase inhibitor (MAOI) activity. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Propafenone: (Minor) Use of dextromethorphan with propafenone might increase dextromethorphan exposure. Monitor for dextromethorphan-related side effects, such as drowsiness, nausea or vomiting, sweating, restlessness, or tremor. In vitro studies suggest that propafenone inhibits CYP2D6, but clinically relevant interactions have not been reported due to this potential action. Dextromethorphan is a CYP2D6 substrate.
Propofol: (Moderate) Initially, vasopressors may reduce propofol serum concentrations due to increased metabolic clearance secondary to increased hepatic blood flow. An increase in the propofol dose may be required. Additionally, the vasopressor dose may need to be increased over time due to tachyphylaxis. Thus, these drugs may drive each other in a progressively myocardial depressive loop, which could lead to cardiac arrhythmias or cardiac failure.
Propranolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Propranolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Pseudoephedrine; Triprolidine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Quazepam: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Quinapril; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Quinidine: (Moderate) Monitor for dextromethorphan-related side effects, such as dizziness or drowsiness, if concomitant use of quinidine is necessary. For patients receiving combination dextromethorphan; bupropion, do not exceed a maximum dose of 45 mg dextromethorphan; 105 mg bupropion once daily. Concomitant use may increase dextromethorphan exposure and side effects. Dextromethorphan is a CYP2D6 substrate and quinidine is a strong CYP2D6 inhibitor. Concomitant use with another strong CYP2D6 inhibitor increased dextromethorphan overall exposure by 2.69-fold.
Quinine: (Moderate) Although clinical drug interaction studies have not been performed, antimalarial doses of quinine (greater than or equal to 600 mg/day in adults) may inhibit the metabolism of CYP2D6 substrates such as dextromethorphan and may result in increased dextromethorphan exposure. Monitor for dextromethorphan-related side effects, such as drowsiness, nausea or vomiting, sweating, restlessness, or tremor.
Racepinephrine: (Major) Racepinephrine is a sympathomimetic drug with agonist actions at both the alpha and beta receptors. Patients using racepinephrine inhalation are advised to avoid other non-prescription products containing sympathomimetics since additive adverse effects on the cardiovascular and nervous system are possible, some which may be undesirable. Side effects such as nausea, tremor, nervousness, difficulty with sleep, and increased heart rate or blood pressure may be additive. Patients should avoid use of non-prescription decongestants, such as phenylephrine and pseudoephedrine, while using racepinephrine inhalations. Patients should avoid dietary supplements containing ingredients that are reported or claimed to have a stimulant or weight-loss effect, such as ephedrine and ephedra, Ma huang, and phenylpropanolamine.
Rasagiline: (Contraindicated) Dextromethorphan prescription products are contraindicated in patients taking monoamine oxidase inhibitors (MAOIs) or in patients who have taken MAOIs within the preceding 14 days, due to the risk of serious and possibly fatal drug interactions, including serotonin syndrome. Allow at least 14 days after stopping dextromethorphan before starting an MAOI, including rasagiline. Brief episodes of psychosis or bizarre behavior have also been reported with this combination. Patients should read nonprescription product labels carefully. Before initiating an MAOI after using other serotoninergic agents, a sufficient amount of time must be allowed for clearance of the serotoninergic agent and its active metabolites. (Moderate) The concomitant use of rasagiline and sympathomimetics was not allowed in clinical studies; therefore, caution is advised during concurrent use of rasagiline and sympathomimetics including stimulants for ADHD and weight loss, non-prescription nasal, oral, and ophthalmic decongestants, and weight loss dietary supplements containing Ephedra. Although sympathomimetics are contraindicated for use with other non-selective monoamine oxidase inhibitors (MAOIs), hypertensive reactions generally are not expected to occur during concurrent u se with rasagiline because of the selective monoamine oxidase-B (MAO-B) inhibition of rasagiline at manufacturer recommended doses. One case of elevated blood pressure has been reported in a patient during concurrent use of the recommended dose of rasagiline and ophthalmic tetrahydrozoline. One case of hypertensive crisis has been reported in a patient taking the recommended dose of another MAO-B inhibitor, selegiline, in combination with ephedrine. It should be noted that the MAO-B selectivity of rasagiline decreases in a dose-related manner as increases are made above the recommended daily dose and interactions with sympathomimetics may be more likely to occur at these higher doses.
Remimazolam: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Rifabutin: (Moderate) As a cytochrome P450 isoenzyme inducers, rifabutin could induce the metabolism of acetaminophen. An increase in acetaminophen-induced hepatotoxicity may be seen by increasing the metabolism of acetaminophen to its toxic metabolite, NAPQI. Also, the analgesic activity of acetaminophen may be reduced.
Rifampin: (Moderate) Concomitant use of acetaminophen with rifampin may increase the known risk of hepatotoxicity in relation to each drug. Severe hepatic dysfunction including fatalities were reported in patients taking rifampin with other hepatotoxic agents.
Riociguat: (Major) Avoid use of sympathomimetic agents with riociguat. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including riociguat. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications.
Ritonavir: (Moderate) Concurrent administration of acetaminophen with ritonavir may result in elevated acetaminophen plasma concentrations and subsequent adverse events. Acetaminophen is metabolized by the hepatic isoenzyme CYP3A4; ritonavir is an inhibitor of this enzyme. Caution and close monitoring are advised if these drugs are administered together.
Rolapitant: (Moderate) Rolapitant increases exposure to dextromethorphan. Monitor for dextromethorphan-related side effects, such as drowsiness, nausea or vomiting, sweating, restlessness, or tremor. Rolapitant is a moderate CYP2D6 inhibitor with a prolonged effect; the inhibitory effect of rolapitant is expected to persist beyond 28 days for an unknown duration. During drug interaction studies, exposure (AUC) to dextromethorphan following a single dose of rolapitant increased close to 3-fold on Days 8 and Day 22. The inhibition of CYP2D6 persisted on Day 28 with a 2.3-fold increase in dextromethorphan exposure (AUC), the last time point measured.
Ropivacaine: (Moderate) Coadministration of ropivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue ropivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Rosiglitazone: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking thiazolidinediones. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Safinamide: (Contraindicated) Dextromethorphan prescription products are contraindicated in patients taking monoamine oxidase inhibitors (MAOIs) or in patients who have taken MAOIs within the preceding 14 days, due to the risk of serious and possibly fatal drug interactions, including serotonin syndrome. Allow at least 14 days after stopping dextromethorphan before starting an MAOI, including safinamide. Brief episodes of psychosis or bizarre behavior have also been reported with this combination. Patients should read nonprescription product labels carefully. Before initiating an MAOI after using other serotoninergic agents, a sufficient amount of time must be allowed for clearance of the serotoninergic agent and its active metabolites. (Moderate) Severe hypertensive reactions, including hypertensive crisis, have been reported in patients taking monoamine oxidase inhibitors (MAOIs), such as safinamide, and sympathomimetic medications, such as phenylephrine. If concomitant use of safinamide and phenylephrine is necessary, monitor for hypertension and hypertensive crisis.
Salmeterol: (Moderate) Caution and close observation should also be used when salmeterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Secobarbital: (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Segesterone Acetate; Ethinyl Estradiol: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation.
Selegiline: (Contraindicated) Dextromethorphan products are contraindicated in patients taking selegiline, a selective monoamine oxidase type B inhibitor (MAO-B inhibitor) or in patients who have taken an selegiline within the last 14 days, due to the risk of serious and possibly fatal drug interactions, including serotonin syndrome. A washout period of at least 14 days should elapse between the start of dextromethorphan after discontinuation of selegiline. Patients should read nonprescription product labels carefully. Before initiating selegiline after using dextromethorphan, a sufficient amount of time is advisable for clearance of dextromethorphan. (Contraindicated) The product label for phenylephrine contraindicates use with monoamine oxidase inhibitors (MAOIs) due to the risk of hypertensive crisis. Selegiline is a selective monoamine oxidase inhibitor type B; however, the selectivity of the drug decreases with increasing doses. The manufacturers of selegiline products recommend caution and monitoring of blood pressure during concurrent use with sympathomimetics. Phenylephrine should generally not be used concurrently with MAOIs or within 14 days before or after their use.
Selexipag: (Major) Avoid use of sympathomimetic agents with selexipag. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including selexipag. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications.
Semaglutide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Serotonin-Receptor Agonists: (Moderate) Monitor for signs and symptoms of serotonin syndrome, particularly during treatment initiation and dosage increase, during concomitant dextromethorphan and serotonin-receptor agonists use. If serotonin syndrome occurs, discontinue therapy. Concomitant use increases the risk for serotonin syndrome.
Sertraline: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with sertraline. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. In addition, sertraline inhibits CYP2D6 and may increase systemic dextromethorphan exposure. Increased dextromethorphan concentrations may result in adverse effects consistent with the serotonin syndrome.
Sevoflurane: (Major) Halogenated anesthetics may sensitize the myocardium to the effects of sympathomimetics, including phenylephrine, which can increase the risk of developing cardiac arrhythmias and hypotension.
SGLT2 Inhibitors: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Sildenafil: (Minor) The therapeutic effect of phenylephrine injection may be decreased in patients receiving phosphodiesterase inhibitors. A decreased pressor effect of phenylephrine might occur. Monitor for proper blood pressure when these drugs are used together.
Sodium Bicarbonate: (Minor) Antacids can delay the oral absorption of acetaminophen, but the interactions are not likely to be clinically significant as the extent of acetaminophen absorption is not appreciably affected.
Solriamfetol: (Moderate) Monitor blood pressure and heart rate during coadministration of solriamfetol, a norepinephrine and dopamine reuptake inhibitor, and vasopressors. Concurrent use of solriamfetol and other medications that increase blood pressure and/or heart rate may increase the risk of such effects. Coadministration of solriamfetol with other drugs that increase blood pressure or heart rate has not been evaluated.
Sotagliflozin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Sotalol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Spironolactone: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Spironolactone; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
St. John's Wort, Hypericum perforatum: (Major) St. John's wort may have MAOI-like activities, and could potentially increase the cardiac stimulation and vasopressor effects of the sympathomimetics. St. John's wort should be used cautiously with any sympathomimetic agent. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with St. John's Wort. Inform patients of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Minor) St. John's wort, Hypericum perforatum induces cytochrome P450 1A2. About 10 to 15% of the acetaminophen dose undergoes oxidative metabolism via cytochrome P450 isoenzymes CYP2E1, 3A4 and 1A2, which produces the hepatotoxic metabolite, N-acetyl-p-benzoquinonimine. Thus, theoretically St. John's wort might increase the risk of acetaminophen-induced hepatotoxicity by increasing the metabolism of acetaminophen to NAPQI.
Sulfonylureas: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Tadalafil: (Minor) The therapeutic effect of phenylephrine injection may be decreased in patients receiving phosphodiesterase inhibitors. A decreased pressor effect of phenylephrine might occur. Monitor for proper blood pressure when these drugs are used together.
Tedizolid: (Minor) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with tedizolid. Tedizolid is an antibiotic that is also a weak, reversible, non-selective MAO inhibitor in vitro. In theory, tedizolid has potential to interact with serotonergic agents, but interactions are thought to be unlikely. In clinical interaction studies with a related antibiotic (linezolid), interactions with dextromethorphan were studied, but serotonin syndrome or adverse effects were not reported. No drug-drug interaction precautions with dextromethorphan are specifically mentioned in the tedizolid label. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Telmisartan; Amlodipine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Telmisartan; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Temazepam: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Terazosin: (Major) Sympathomimetics can antagonize the effects of antihypertensives such as alpha-blockers when administered concomitantly.
Terbinafine: (Moderate) Monitor for dextromethorphan-related side effects, such as dizziness or drowsiness, if concomitant use of terbinafine is necessary. For patients receiving combination dextromethorphan; bupropion, do not exceed a maximum dose of 45 mg dextromethorphan; 105 mg bupropion once daily. Concomitant use may increase dextromethorphan exposure and side effects. Dextromethorphan is a CYP2D6 substrate and terbinafine is a strong CYP2D6 inhibitor. Concomitant use with another strong CYP2D6 inhibitor increased dextromethorphan overall exposure by 2.69-fold.
Terbutaline: (Major) Concomitant use of sympathomimetics with beta-agonists might result in additive cardiovascular effects such as increased blood pressure and heart rate.
Tetracaine: (Moderate) Coadministration of tetracaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue tetracaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Theophylline, Aminophylline: (Moderate) Concurrent administration of theophylline or aminophylline with some sympathomimetics can produce excessive stimulation and effects such as nervousness, irritability, or insomnia. Seizures or cardiac arrhythmias are also possible. (Moderate) Concurrent administration of theophylline or aminophylline with sympathomimetics can produce excessive stimulation manifested by skeletal muscle activity, agitation, and hyperactivity.
Thiazide diuretics: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Thiazolidinediones: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking thiazolidinediones. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Thiothixene: (Moderate) The alpha-adrenergic effects of epinephrine can be blocked during concurrent administration of thiothixene. This blockade can cause an apparently paradoxical condition called epinephrine reversal, which can lead to severe hypotension, tachycardia, and, potentially, myocardial infarction. Patients taking thiothixene can have reduced pressor response to phenylephrine.
Thyroid hormones: (Moderate) Monitor hemodynamic parameters during concomitant sympathomimetic agent and thyroid hormone use; dosage adjustments may be necessary. Concomitant use may increase the effects of sympathomimetics or thyroid hormone.
Timolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Tipranavir: (Moderate) Monitor for dextromethorphan-related side effects, such as dizziness or drowsiness, if concomitant use of tipranavir is necessary. For patients receiving combination dextromethorphan; bupropion, do not exceed a maximum dose of 45 mg dextromethorphan; 105 mg bupropion once daily. Concomitant use may increase dextromethorphan exposure and side effects. Dextromethorphan is a CYP2D6 substrate and tipranavir is a strong CYP2D6 inhibitor. Concomitant use with another strong CYP2D6 inhibitor increased dextromethorphan overall exposure by 2.69-fold.
Tirzepatide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Tizanidine: (Minor) Tizanidine delays the time to attain peak concentrations of acetaminophen by about 16 minutes. The clinical significance of this interaction is unknown.
Tocilizumab: (Minor) Concomitant use of tocilizumab and dextromethorphan may lead to a decrease in the efficacy of dextromethorphan; clinical significance of this interaction is not known or established. Inhibition of IL-6 signaling by tocilizumab may restore CYP450 activities to higher levels leading to increased metabolism of drugs that are CYP450 substrates as compared to metabolism prior to treatment. This effect on CYP450 enzyme activity may persist for several weeks after stopping tocilizumab. A 5% decrease in dextromethorphan exposure and a 29% decrease in its metabolite, dextrorphan was noted 1 week after a single tocilizumab infusion. In vitro, tocilizumab has the potential to affect expression of multiple CYP enzymes, including CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4. Dextromethorphan is a CYP2D6 substrate.
Torsemide: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Trandolapril; Verapamil: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Tranylcypromine: (Contraindicated) Dextromethorphan products are contraindicated in patients taking a monoamine oxidase inhibitor (MAOI) or in patients who have taken an MAOI within the last 14 days, due to the risk of serious and possibly fatal drug interactions, including serotonin syndrome. A washout period of at least 14 days should elapse between the start of dextromethorphan after discontinuation of an MAOI. Patients should read nonprescription product labels carefully. Before initiating an MAOI after using other serotonergic agents, a sufficient amount of time must be allowed for clearance of the serotonergic agent and its active metabolites. (Contraindicated) In general, sympathomimetics should be avoided in patients receiving MAOIs due to an increased risk of hypertensive crisis. This applies to sympathomimetics including stimulants for ADHD, narcolepsy or weight loss, nasal, oral, and ophthalmic decongestants and cold products, and respiratory sympathomimetics (e.g., beta agonist drugs). Some local anesthetics also contain a sympathomimetic (e.g., epinephrine). In general, medicines containing sympathomimetic agents should not be used concurrently with MAOIs or within 14 days before or after their use.
Treprostinil: (Major) Avoid use of sympathomimetic agents with treprostinil. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including treprostinil. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications.
Triamcinolone: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Triamterene: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Triamterene; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Triazolam: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Tricyclic antidepressants: (Major) Tricyclic antidepressants (TCAs) may markedly enhance the pressor response to parenteral direct-acting sympathomimetic agents such as norepinephrine and, to a lesser extent, epinephrine and phenylephrine. TCAs inhibit norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, the patient might experience hypertension, headache, tremor, palpitations, chest pain, or irregular heartbeat. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with tricyclic antidepressants. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Umeclidinium; Vilanterol: (Moderate) Administer sympathomimetics with caution with beta-agonists such as vilanterol. The cardiovascular effects of beta-2 agonists may be potentiated by concomitant use. Monitor the patient for tremors, nervousness, increased heart rate, or other additive side effects.
Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Vardenafil: (Minor) The therapeutic effect of phenylephrine injection may be decreased in patients receiving phosphodiesterase inhibitors. A decreased pressor effect of phenylephrine might occur. Monitor for proper blood pressure when these drugs are used together.
Vasodilators: (Moderate) Use sympathomimetic agents with caution in patients receiving therapy for hypertension. Patients should be monitored to confirm that the desired antihypertensive effect is achieved. Sympathomimetics can increase blood pressure and heart rate, and antagonize the antihypertensive effects of vasodilators when administered concomitantly. Anginal pain may be induced when coronary insufficiency is present.
Vemurafenib: (Moderate) Concomitant use of vemurafenib and acetaminophen may result in altered concentrations of acetaminophen. Vemurafenib is an inhibitor of CYP1A2 and CYP2A6, and an inducer of CYP3A4. Acetaminophen is a substrate of CYP1A2, CYP2A6, and CYP3A4. Use caution and monitor patients for toxicity and efficacy. (Minor) Use of dextromethorphan with vemurafenib increases dextromethorphan exposure. Vemurafenib is a weak CYP2D6 inhibitor and dextromethorphan is a CYP2D6 substrate. Monitor for dextromethorphan-related side effects, such as drowsiness, nausea or vomiting, sweating, restlessness, or tremor. Coadministration of vemurafenib and dextromethorphan increased the AUC of dextromethorphan by 47% and the dextromethorphan Cmax by 36%.
Venlafaxine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with venlafaxine. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose increases. If serotonin syndrome occurs, serotonergic drugs should be discontinued and appropriate medical treatment should be initiated.
Verapamil: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Vilazodone: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with vilazodone. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Viloxazine: (Moderate) Monitor for an increase in dextromethorphan-related adverse effects if concomitant use of viloxazine is necessary. Concomitant use may increase dextromethorphan exposure; viloxazine is a weak CYP2D6 inhibitor and dextromethorphan is a CYP2D6 substrate.
Vortioxetine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with vortioxetine. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Warfarin: (Minor) Although acetaminophen is routinely considered safer than aspirin and agent of choice when a mild analgesic/antipyretic is necessary for a patient receiving therapy with warfarin, acetaminophen has also been shown to augment the hypoprothrombinemic response to warfarin. Concomitant acetaminophen ingestion may result in increases in the INR in a dose-related fashion. Clinical bleeding has been reported. Single doses or short (i.e., several days) courses of treatment with acetaminophen are probably safe in most patients taking warfarin. Clinicians should be alert for an increased INR if acetaminophen is administered in large daily doses for longer than 10 to 14 days.
Zavegepant: (Moderate) Administer intranasal decongestants at least 1 hour after zavegepant administration. Simultaneous coadministration may decrease zavegepant absorption which may reduce its efficacy.
Zidovudine, ZDV: (Minor) Both acetaminophen and zidovudine, ZDV undergo glucuronidation. Competition for the metabolic pathway is thought to have caused a case of acetaminophen-related hepatotoxicity. This interaction may be more clinically significant in patients with depleted glutathione stores, such as patients with acquired immunodeficiency syndrome, poor nutrition, or alcoholism.
Zolmitriptan: (Minor) Zolmitriptan can delay the Tmax of acetaminophen by one hour. A single 1 g dose of acetaminophen does not alter the pharmacokinetics of zolmitriptan and its active metabolite. The interaction between zolmitriptan and acetaminophen is not likely to be clinically significant.

How Supplied

Acetaminophen, Dextromethorphan Hydrobromide, Phenylephrine Hydrochloride/Acetaminophen, Dextromethorphan, Phenylephrine/Alka-Seltzer Plus Day Cold/Alka-Seltzer Plus Day Cold & Flu/Alka-Seltzer Plus Severe Sinus and Congestion and Cough/Alka-Seltzer Plus Severe Sinus Congestion and Cough/Day Time Multi-Symptom/DayTime/Mucinex Fast-Max Congestion & Headache/Mucinex Fast-Max Severe Cold & Sinus/Mucinex Sinus-Max/Vicks DayQuil Cold & Flu Oral Cap: 325-10-5mg
Acetaminophen, Dextromethorphan Hydrobromide, Phenylephrine Hydrochloride/Acetaminophen, Dextromethorphan, Phenylephrine/Alka-Seltzer Plus Severe Cold, Cough & Flu/Theraflu Severe Cold & Cough Daytime/Theraflu Severe Cold Daytime Oral Pwd F/Recon: 500-20-10mg, 650-20-10mg
Acetaminophen, Dextromethorphan Hydrobromide, Phenylephrine Hydrochloride/Acetaminophen, Dextromethorphan, Phenylephrine/Comtrex Cold and Cough/Mapap Multi-Symptom Cold/Sudafed PE Pressure + Pain + Cough/Theraflu ExpressMax Severe Cold & Cough/Theraflu Multi-Symptom Cold Daytime Warming/Tylenol Cold/Tylenol Cold Head Congestion Daytime/Tylenol Cold Multi-Symptom Daytime/Tylenol Cold Multi-Symptom Daytime Rapid Release/Vicks DayQuil Nature Fusion/Vicks Nature Fusion Cold & Flu Oral Tab: 325-10-5mg
BC Daytime Oral Pwd
Theraflu ExpressMax Severe Cold & Cough/Theraflu Severe Cold & Cough Daytime/Vicks DayQuil Cold & Flu Oral Sol: 15mL, 30mL, 325-10-5mg, 650-20-10mg

Maximum Dosage

NOTE: Do not exceed recommended dosage limits for the specific product prescribed; the following are general guidelines based on the combination products available:

Adults

Acetaminophen 3,900 mg/day PO; dextromethorphan 100 mg/day PO; phenylephrine 50 mg/day PO.

Geriatric

Acetaminophen 3,900 mg/day PO; dextromethorphan 100 mg/day PO; phenylephrine 50 mg/day PO.

Adolescents

Acetaminophen 3,900 mg/day PO; dextromethorphan 100 mg/day PO; phenylephrine 50 mg/day PO.

Children

12 years: Acetaminophen 3,900 mg/day PO; dextromethorphan 100 mg/day PO; phenylephrine 50 mg/day PO.
6 to 11 years: Acetaminophen 1,600 mg/day PO; dextromethorphan 50 mg/day PO; phenylephrine 25 mg/day PO.
Less than 6 years: Safety and efficacy have not been established.

Mechanism Of Action

This analgesic-antitussive-decongestant combination acts synergistically to provide temporary relief from common cold or flu symptoms such as mild pain, cough, nasal congestion, headache, sore throat, and fever.
Acetaminophen: Acetaminophen is thought to act primarily in the CNS and increase the pain threshold by inhibiting cyclooxygenase, a collection of enzymes involved in prostaglandin (PG) synthesis. Acetaminophen appears to be a potent inhibitor of both isoforms of cyclooxygenase, COX-1 and COX-2, within the CNS. Unlike nonsteroidal anti-inflammatory drugs, acetaminophen does not inhibit cyclooxygenase in peripheral tissues, which is the reason for its lack of peripheral anti-inflammatory effects. Acetaminophen may also inhibit the synthesis or actions of chemical mediators that sensitize the pain receptors to mechanical or chemical stimulation. The antipyretic activity of acetaminophen is exerted by blocking the effects of endogenous pyrogen on the hypothalamic heat-regulating center by inhibiting PG synthesis. Heat is dissipated by vasodilatation, increased peripheral blood flow, and sweating.
Dextromethorphan: Dextromethorphan is a non-competitive antagonist of N-methyl-D-aspartate (NMDA) receptors in the brain and spinal cord. It is the d-isomer of levorphanol but has none of the analgesic, respiratory depressive, or sedative effects associated with opiate agonists. Dextromethorphan has similar antitussive effects as codeine. Dextromethorphan acts on the cough center in the medulla to raise the threshold for coughing by decreasing the excitability of the cough center. Naloxone, an opiate-antagonist, does not block the antitussive effects of dextromethorphan.
Phenylephrine: Phenylephrine possesses both direct and indirect sympathomimetic effects, primarily as a postsynaptic alpha-adrenergic agonist, producing potent vasoconstriction. An indirect effect due to the release of norepinephrine plays a small role in the overall action of phenylephrine. Phenylephrine increases resistance and, to a lesser extent, decreases capacitance of blood vessels. Following oral administration, constriction of blood vessels leads to reduced blood flow to the nose, decreased amount of blood in the sinusoid vessels, and decreased mucosal edema, which relieves nasal congestion.

Pharmacokinetics

Acetaminophen; dextromethorphan; phenylephrine is administered orally.
Acetaminophen: The plasma half-life of acetaminophen in patients with normal hepatic function is 1.25—3 hours. Between 85—90% of the normal, therapeutic acetaminophen dose is metabolized in the liver via glucuronidation and sulfate conjugation. The remaining 10—15% undergoes oxidative metabolism via cytochrome P450 isoenzymes (CYP) 2E1 and 1A2, which produces the hepatotoxic metabolite, N-acetyl-p-benzoquinoneimine (NAPQI). The CYP3A4 isoenzyme appears to have a minor role in the metabolism of acetaminophen. Excess NAPQI may be formed when acetaminophen is given concomitantly with hepatic enzyme-inducing agents. Also, fasting shifts the metabolic pathway away from glucuronidation towards oxidation, which results in greater NAPQI amounts that need to be inactivated by conjugation with glutathione. The elimination half-life of acetaminophen is 2—4 hours in patients with normal liver function. After about 8 hours, only traces of the drug are detectable. Acetaminophen is renally excreted mainly as the glucuronide conjugate. 
Dextromethorphan: Dextromethorphan undergoes rapid and extensive hepatic metabolism to demethylated metabolites including the active metabolite, dextrorphan. Dextromethorphan is primarily metabolized by CYP2D6 isoenzymes. The rate of metabolism varies between individuals according to phenotype (extensive or poor metabolizers). The plasma half-life is normally about 11 hours, and antitussive activity can last for 5—6 hours. Excretion is primarily by renal elimination of metabolites; some drug is excreted unchanged. It is not known whether dextromethorphan or its active metabolite are removed by hemodialysis.
Phenylephrine: Phenylephrine is metabolized in the liver and intestine by monoamine oxidase. The metabolites and their route and rate of excretion have not been fully identified. The pharmacologic effect of phenylephrine is terminated at least in part by uptake of the drug into tissues.

Oral Route

Acetaminophen: Following oral administration, acetaminophen is rapidly and almost completely absorbed from the GI tract. Peak plasma concentrations are attained within 30—60 minutes, although serum concentrations and analgesia are not necessarily correlated. Approximately 25% of an acetaminophen dose is subject to first-pass metabolism by the liver. About 85% of a dose appears in the urine within 24 hours of oral administration.
Dextromethorphan: Dextromethorphan is rapidly absorbed from the GI tract, with antitussive activity appearing within 15—30 minutes. 
Phenylephrine: Phenylephrine is irregularly absorbed from and readily metabolized in the GI tract. The bioavailability of phenylephrine is about 38%. Following oral administration of phenylephrine as a single agent, nasal decongestion occurs within 15—20 minutes and persists for up to 4 hours.

Pregnancy And Lactation
Pregnancy

Acetaminophen; dextromethorphan; phenylephrine should only be used in pregnancy if the potential benefits are greater than the risks, and use should be limited to short-term, "as needed" administration under the supervision of a qualified health care professional. There are limited data on the safety of cough/cold medications during pregnancy. Non-pharmacologic methods (e.g., fluids and rest) are recommended to be tried first for symptomatic relief of colds during pregnancy. Acetaminophen is the drug of choice in pregnancy for limited durations of use to treat acute pain or fever. It is generally recommended to avoid systemic phenylephrine during pregnancy due to the potential vasoconstrictive effects. Do not administer phenylephrine during late pregnancy, labor, or obstetric delivery. When administered late in pregnancy, phenylephrine may cause fetal anoxia or bradycardia by increasing the contractility of the uterus and decreasing uterine blood flow. Phenylephrine does not appear to cause a decrease in placental perfusion sufficient to alter either the neonate Apgar scores or blood-gas status. Because dextromethorphan acts as a low affinity antagonist to the glutamate receptor subtype N-methyl-D-aspartate (NMDA) in the CNS, there has been some concern about its safe use during pregnancy. The majority of animal studies have not found teratogenic effects. Human surveillance data and retrospective studies have shown dextromethorphan to be relatively safe during the first trimester.