Tresiba

Browse PDR's full list of drug information

Tresiba

Classes

Concentrated Long-acting Human Insulins and Analogs
Long-acting Human Insulins and Analogs

Administration
Injectable Administration

Insulin degludec is administered by subcutaneous injection only. Do NOT administer intravenously, intramuscularly, or in an insulin infusion pump.
Visually inspect parenteral products for particulate matter and discoloration prior to administration whenever solution and container permit. Do not use injections that are unusually viscous, cloudy, discolored, or contain particulate matter. Insulin degludec is clear and colorless.
Patients using insulin vials should never share needles or syringes with another person.
 
Insulin Pens:
Insulin degludec is available in 2 concentrations as a prefilled pen: 100 units/mL and 200 units/mL. Ensure that the correct concentration is used. Inadvertent use of the 200 units/mL concentration could result in severe overdose and hypoglycemia.
Insulin pens should never be shared among patients. Even if the disposable needle is changed, sharing may result in transmission of hepatitis viruses, HIV, or other blood-borne pathogens. Do not share pens among multiple patients in an inpatient setting; use multidose vials instead.
Ensure that the patient knows how to use the type of pen needles being dispensed.
For standard pen needles with both an outer cover and an inner needle cover, remove both covers before use.
For the safety pen needle, remove only the outer cover; the fixed inner needle shield remains in place.
Insulin should never be withdrawn from an insulin pen cartridge.

Subcutaneous Administration

Administer once daily at any time of day for adults, and at the same time every day for pediatric patients.
For pediatric patients requiring less than 5 units/day, use the vial, not the pen.
Double-check the insulin concentration and dosage in the syringe or injection device prior to administration. If using a pen or other injector device, prime the device prior to each injection to ensure accurate dosing.
Missed doses:
For adult patients, administer the daily dose during waking hours upon discovering the missed dose. Ensure that at least 8 hours have elapsed between injections.
For pediatric patients, contact the healthcare provider for guidance and monitor blood glucose levels more frequently until the next scheduled dose.
 
Administration
Subcutaneous injections of insulin degludec are made into the anterior and lateral aspects of the thigh, the upper arms, or the abdomen.
Rotate injection sites within the same region with each injection to prevent lipodystrophy and localized cutaneous amyloidosis. Do not inject into areas of lipodystrophy or localized cutaneous amyloidosis. During changes to a patient's insulin regimen, increase the frequency of blood glucose monitoring.
 
Insulin Degludec Pen
Tresiba Flextouch Pen:
The needle should remain in the skin for at least 6 seconds after completing the injection to ensure complete delivery of the insulin dose (slowly count to 6).
U-100 pen dials doses in 1 unit increments and delivers a maximum dose of 80 units per injection.
U-200 pen dials doses in 2 unit increments and delivers a maximum dose of 160 units per injection.
Storage of opened pen: May refrigerate [2 to 8 degrees C (36 to 46 degrees F)] or store at room temperature below 30 degrees C (86 degrees F). Do not freeze. Protect from heat and light. Once in use, pens must be discarded after 56 days, even if they still contain insulin.
 
Insulin Degludec Vial
Do not dilute or mix insulin degludec with any other insulin or solution.
Storage of opened vials: Once opened, may refrigerate or store at room temperature below 30 degrees C (86 degrees F). Do not freeze. Protect from heat and light. Once opened, vials must be discarded after 56 days, even if they still contain insulin.[60172]

Adverse Reactions
Severe

insulin shock / Delayed / 0-1.0
bronchospasm / Rapid / Incidence not known
angioedema / Rapid / Incidence not known
anaphylactoid reactions / Rapid / Incidence not known

Moderate

peripheral edema / Delayed / 0.9-3.0
lipodystrophy / Delayed / 0.3-0.3
hypoglycemia / Early / 10.0
hyperinsulinemia / Early / Incidence not known
Somogyi effect / Delayed / Incidence not known
hypokalemia / Delayed / Incidence not known
cutaneous amyloidosis / Delayed / Incidence not known
hypotension / Rapid / Incidence not known
wheezing / Rapid / Incidence not known
antibody formation / Delayed / Incidence not known
hypertension / Early / Incidence not known

Mild

pharyngitis / Delayed / 12.9-23.9
infection / Delayed / 0-11.9
headache / Early / 8.8-11.8
diarrhea / Early / 5.1-6.3
sinusitis / Delayed / 5.1-5.1
injection site reaction / Rapid / 3.8-3.8
urticaria / Rapid / 0.9-0.9
weight gain / Delayed / Incidence not known
rash / Early / Incidence not known
insulin resistance / Delayed / Incidence not known

Common Brand Names

Tresiba

Dea Class

Rx

Description

Long-acting, insulin analog; given subcutaneously once daily
Used in adult and pediatric patients 1 year and older with type 1 or type 2 diabetes mellitus
Provides A1C control similar to other long-acting once-daily insulin analogs; severe, life threatening allergic reactions, including anaphylaxis, may occur

Dosage And Indications
For the treatment of type 1 diabetes mellitus. Subcutaneous dosage for insulin-naive patients Adults

33% to 50% of the total daily insulin dose subcutaneously once daily, initially. Adjust dose every 3 to 4 days based on metabolic needs, blood glucose, and glycemic control goal. Use short-acting, prandial insulin to satisfy the remainder of the daily insulin requirements. The typical total daily insulin dose is 0.4 to 1 unit/kg/day; 0.5 unit/kg/day is a typical starting total daily dose.

Children and Adolescents

33% to 50% of the total daily insulin dose subcutaneously once daily, initially. Adjust dose every 3 to 4 days based on metabolic needs, blood glucose, and glycemic control goal. Use short-acting, prandial insulin to satisfy the remainder of the daily insulin requirements. The typical total daily insulin dose is often less than 0.5 unit/kg/day during the partial remission phase, 0.7 to 1 unit/kg/day for prepubertal children outside the partial remission phase, and 1 to 2 units/kg/day during puberty.

Subcutaneous dosage for conversion from long- or intermediate-acting insulin Adults

100% of total daily long- or intermediate-acting insulin dose given as insulin degludec subcutaneously once daily, initially. Adjust dose every 3 to 4 days based on metabolic needs, blood glucose, and glycemic control goal as needed.

Children and Adolescents

80% of total daily long- or intermediate-acting insulin dose given as insulin degludec subcutaneously once daily, initially. Adjust dose every 3 to 4 days based on metabolic needs, blood glucose, and glycemic control goal as needed.

For the treatment of type 2 diabetes mellitus. Subcutaneous dosage for insulin-naive patients Adults

10 units subcutaneously once daily, or alternately, 0.1 to 0.2 units/kg/day subcutaneously once daily, initially. Increase dose by 2 units every 3 days to achieve target fasting plasma glucose without hypoglycemia; reduce dose by 10% to 20% if hypoglycemia of undetermined cause occurs.

Children and Adolescents

10 units subcutaneously once daily, or alternately, 0.25 to 0.5 units/kg/day subcutaneously once daily, initially, for children with ketosis/ketonuria/ketoacidosis. Increase dose every 2 to 3 days based on blood glucose; reduce dose by 10% to 30% every few days over 2 to 6 weeks to transition to metformin monotherapy once acidosis is resolved. If target HbA1c is not achieved within 4 months of metformin monotherapy, consider readding basal insulin; add prandial insulin if target HbA1c is not achieved on combination metformin and basal insulin (up to 1.5 units/kg).

Children and Adolescents who are overweight

10 units subcutaneously once daily, or alternately, 0.5 units/kg/day subcutaneously once daily, initially, in combination with metformin for children with HbA1c of 8.5% or more without ketosis/acidosis. Increase dose every 2 to 3 days based on blood glucose; reduce dose by 10% to 30% every few days over 2 to 6 weeks to transition to metformin monotherapy. If target HbA1c is not achieved within 4 months of metformin monotherapy, consider readding basal insulin; add prandial insulin if target HbA1c is not achieved on combination metformin and basal insulin (up to 1.5 units/kg).

Subcutaneous dosage for conversion from long- or intermediate-acting insulin Adults

100% of total daily long- or intermediate-acting insulin dose given as insulin degludec subcutaneously once daily, initially. Increase dose by 2 units every 3 days to achieve target fasting plasma glucose without hypoglycemia; reduce dose by 10% to 20% if hypoglycemia of undetermined cause occurs.

Children and Adolescents

80% of total daily long- or intermediate-acting insulin dose given as insulin degludec subcutaneously once daily, initially. Adjust dose every 3 to 4 days based on metabolic needs, blood glucose, and glycemic control goal as needed.

Dosing Considerations
Hepatic Impairment

Individualize insulin degludec dosage based on blood glucose and other clinical parameters. As with all insulin products, glucose monitoring should be intensified in patients with hepatic impairment.

Renal Impairment

Individualize insulin degludec dosage based on blood glucose and other clinical parameters. As with all insulin products, glucose monitoring should be intensified in patients with renal impairment.

Drug Interactions

Acebutolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Acetaminophen; Aspirin, ASA; Caffeine: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Acetaminophen; Aspirin: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Acetaminophen; Aspirin; Diphenhydramine: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Chlorpheniramine; Phenylephrine : (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Dextromethorphan; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Dichloralphenazone; Isometheptene: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Guaifenesin; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetaminophen; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acetazolamide: (Minor) Carbonic anhydrase inhibitors may alter blood sugar. Both hyperglycemia and hypoglycemia have been described in patients treated with acetazolamide. This should be taken into consideration in patients with impaired glucose tolerance or diabetes mellitus who are receiving antidiabetic agents. Monitor blood glucose and for changes in glycemic control and be alert for evidence of an interaction.
Acrivastine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Albuterol; Budesonide: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Alogliptin: (Moderate) A lower insulin dose may be required when used in combination with alogliptin to minimize the risk of hypoglycemia.
Alogliptin; Metformin: (Moderate) A lower insulin dose may be required when used in combination with alogliptin to minimize the risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Alogliptin; Pioglitazone: (Moderate) A lower insulin dose may be required when used in combination with alogliptin to minimize the risk of hypoglycemia. (Moderate) Monitor blood glucose and for signs and symptoms of heart failure during concomitant pioglitazone and insulin use. Reduce the insulin dose by 10% to 25% if hypoglycemia occurs; adjust the insulin dose further based on glycemic response. Consider discontinuation of pioglitazone if heart failure occurs and manage according to current standards. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia and fluid retention which may lead to or exacerbate heart failure.
Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Aminosalicylate sodium, Aminosalicylic acid: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Amlodipine; Benazepril: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Amlodipine; Olmesartan: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Amlodipine; Valsartan: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Amoxicillin; Clarithromycin; Omeprazole: (Moderate) The concomitant use of clarithromycin and insulin or other antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
Amphetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Amphetamine; Dextroamphetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Androgens: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
Angiotensin II receptor antagonists: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Angiotensin-converting enzyme inhibitors: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Aripiprazole: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Articaine; Epinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Asenapine: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Aspirin, ASA: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Aspirin, ASA; Butalbital; Caffeine: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Aspirin, ASA; Caffeine: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Aspirin, ASA; Caffeine; Orphenadrine: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Aspirin, ASA; Carisoprodol: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Aspirin, ASA; Carisoprodol; Codeine: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Aspirin, ASA; Citric Acid; Sodium Bicarbonate: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Aspirin, ASA; Dipyridamole: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Aspirin, ASA; Omeprazole: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Aspirin, ASA; Oxycodone: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Atazanavir: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
Atazanavir; Cobicistat: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
Atenolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Atenolol; Chlorthalidone: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
atypical antipsychotic: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Azelastine; Fluticasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Azilsartan: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Azilsartan; Chlorthalidone: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Beclomethasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Benazepril: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Benzphetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Beta-blockers: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Betamethasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Betaxolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Bexarotene: (Moderate) Systemic bexarotene may enhance the action of insulin, resulting in hypoglycemia. Patients should be closely monitored while receiving bexarotene capsules in combination with insulin therapy; monitor for hypoglycemia and need for diabetic therapy adjustments. Hypoglycemia has not been associated with bexarotene monotherapy.
Bismuth Subsalicylate: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Bisoprolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Bortezomib: (Moderate) During clinical trials of bortezomib, hypoglycemia and hyperglycemia were reported in diabetic patients receiving antidiabetic agents. Patients taking antidiabetic agents and receiving bortezomib treatment may require close monitoring of their blood glucose levels and dosage adjustment of their medication.
Brexpiprazole: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Brimonidine; Timolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Brompheniramine; Dextromethorphan; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Brompheniramine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Brompheniramine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Brompheniramine; Pseudoephedrine; Dextromethorphan: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Budesonide: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Budesonide; Formoterol: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Budesonide; Glycopyrrolate; Formoterol: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Bumetanide: (Minor) Monitor patients receiving insulin closely for worsening glycemic control when bumetanide, furosemide, and torsemide are instituted. Bumetanide, furosemide, and torsemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents.
Bupivacaine; Epinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Butalbital; Aspirin; Caffeine; Codeine: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Canagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Candesartan: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Captopril: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Captopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Carbonic anhydrase inhibitors: (Minor) Carbonic anhydrase inhibitors may alter blood sugar. Both hyperglycemia and hypoglycemia have been described in patients treated with acetazolamide. This should be taken into consideration in patients with impaired glucose tolerance or diabetes mellitus who are receiving antidiabetic agents. Monitor blood glucose and for changes in glycemic control and be alert for evidence of an interaction.
Cariprazine: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Carteolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Carvedilol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Cetirizine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Chloroquine: (Major) Careful monitoring of blood glucose is recommended when chloroquine and antidiabetic agents, including insulin, are coadministered. A decreased dose of the antidiabetic agent may be necessary as severe hypoglycemia has been reported in patients treated concomitantly with chloroquine and an antidiabetic agent.
Chlorothiazide: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Chlorpheniramine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Chlorpheniramine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Chlorpromazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Chlorthalidone: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Chlorthalidone; Clonidine: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. (Minor) Increased frequency of blood glucose monitoring may be required when clonidine is given with antidiabetic agents. Since clonidine inhibits the release of catecholamines, clonidine may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Clonidine does not appear to impair recovery from hypoglycemia, and has not been found to impair glucose tolerance in diabetic patients.
Choline Salicylate; Magnesium Salicylate: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Chromium: (Moderate) Chromium dietary supplements may lower blood glucose. As part of the glucose tolerance factor molecule, chromium appears to facilitate the binding of insulin to insulin receptors in tissues and to aid in glucose metabolism. Because blood glucose may be lowered by the use of chromium, patients who are on antidiabetic agents may need dose adjustments. Close monitoring of blood glucose is recommended.
Ciclesonide: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Cisapride: (Modera

te) Because cisapride can enhance gastric emptying in patients with diabetes, blood glucose can be affected, which, in turn, may affect the clinical response to insulin and other antidiabetic agents. Monitor blood sugar regularly. The dosing of antidiabetic agents may require adjustment in patients who receive cisapride concomitantly.
Clarithromycin: (Moderate) The concomitant use of clarithromycin and insulin or other antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
Clonidine: (Minor) Increased frequency of blood glucose monitoring may be required when clonidine is given with antidiabetic agents. Since clonidine inhibits the release of catecholamines, clonidine may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Clonidine does not appear to impair recovery from hypoglycemia, and has not been found to impair glucose tolerance in diabetic patients.
Clozapine: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Codeine; Guaifenesin; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Codeine; Phenylephrine; Promethazine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Codeine; Promethazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Colesevelam: (Moderate) In patients with type 2 diabetes mellitus receiving insulins, colesevelam increased serum triglyceride concentrations by 22% compared to placebo. Monitor patients for increase in triglyceride concentrations. Discontinue colesevelam if triglyceride concentrations are > 500 mg/dl or if hypertriglyceridemia-induced pancreatitis occurs.
Conjugated Estrogens: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Conjugated Estrogens; Bazedoxifene: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Conjugated Estrogens; Medroxyprogesterone: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Corticosteroids: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Cortisone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Cyclosporine: (Moderate) Cyclosporine may cause hyperglycemia. Patients should be monitored for worsening of glycemic control if therapy with cyclosporine is initiated in patients receiving insulin.
Danazol: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
Dapagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Dapagliflozin; Saxagliptin: (Moderate) A lower insulin dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with insulin, the incidence of hypoglycemia was increased compared to a placebo used in combination with insulin.
Darunavir: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
Darunavir; Cobicistat: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
Dasiglucagon: (Minor) Caution should be exercised when glucagon is used as a diagnostic aid for radiologic examination in patients taking insulin. Insulin reacts antagonistically towards glucagon. Monitor the patient receiving glucagon for a diagnostic procedure for the desired clinical effects. There is no concern when glucagon is used to treat severe hypoglycemia. If a patient receives glucagon due to severe hypoglycemia by a family member or caregiver, they should alert their health care provider so that insulin treatment may be adjusted, if needed.
Deflazacort: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Desloratadine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Desogestrel; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Dexamethasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Dexbrompheniramine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dexmethylphenidate: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dextroamphetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dextromethorphan; Diphenhydramine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Diazoxide: (Minor) Diazoxide, when administered intravenously or orally, produces a prompt dose-related increase in blood glucose level, due primarily to an inhibition of insulin release from the pancreas, and also to an extrapancreatic effect. The hyperglycemic effect begins within an hour and generally lasts no more than 8 hours in the presence of normal renal function. The hyperglycemic effect of diazoxide is expected to be antagonized by certain antidiabetic agents (e.g., insulin or a sulfonylurea). Blood glucose should be closely monitored.
Dienogest; Estradiol valerate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Diethylpropion: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Diethylstilbestrol, DES: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Diphenhydramine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Disopyramide: (Moderate) Monitor patients receiving disopyramide concomitantly with insulin for changes in glycemic control. Disopyramide may enhance the hypoglycemic effects of insulin.
Dobutamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dopamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dorzolamide; Timolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Doxapram: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Drospirenone: (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Drospirenone; Estetrol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Drospirenone; Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Drospirenone; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Drospirenone; Ethinyl Estradiol; Levomefolate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Dulaglutide: (Moderate) Monitor blood glucose during concomitant insulin degludec and dulaglutide use; consider decreasing the insulin degludec dose when starting dulaglutide. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Edetate Calcium Disodium, Calcium EDTA: (Minor) Use caution in administration of calcium EDTA to patients with diabetes mellitus who are receiving insulin therapy. Calcium EDTA chelates the zinc in selected exogenous insulins, thereby increasing the amount of insulin available to the body and decreasing the duration of the insulin dose. Alterations in blood glucose control may result. Diabetic patients receiving calcium EDTA may require adjustments in their insulin dosage.
Elagolix; Estradiol; Norethindrone acetate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Empagliflozin; Linagliptin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Empagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Enalapril, Enalaprilat: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Ephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Ephedrine; Guaifenesin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Epinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Eprosartan: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Ertugliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Esmolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Esterified Estrogens: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Esterified Estrogens; Methyltestosterone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Estradiol; Levonorgestrel: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Estradiol; Norethindrone: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Estradiol; Norgestimate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Estradiol; Progesterone: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Estramustine: (Minor) Estramustine is an estrogen-containing medication and may decrease glucose tolerance. Patients receiving antidiabetic agents should monitor their blood glucose levels frequently due to this potential pharmacodynamic interaction.
Estrogens: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Estropipate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Ethanol: (Major) Patients should be advised to avoid or limit alcohol ingestion when treated with insulin. Alcohol ingestion increases hypoglycemic risk. In some patients, hypoglycemia can be prolonged. Educate regarding the importance of glucose monitoring, as well as the signs, symptoms, and self-management of delayed hypoglycemia after drinking alcohol, especially when using insulin. Moderate alcohol intake does not have major detrimental effects on long-term blood glucose management in people with diabetes.
Ethinyl Estradiol; Norelgestromin: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Ethinyl Estradiol; Norethindrone Acetate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Ethinyl Estradiol; Norgestrel: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Ethotoin: (Minor) Ethotoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically. Monitor blood glucose for changes in glycemic control. Dosage adjustments may be necessary in some patients.
Ethynodiol Diacetate; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Etonogestrel: (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Etonogestrel; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Exenatide: (Moderate) Exenatide may be used with basal insulin such as insulin degludec. Specific dose recommendations are not available, however, a lower dose of the insulin may be required when initating exenatide. The dose of another basal insulin was decreased by 20% in patients with an A1C 8% or less to minimize the risk of hypoglycemia when initiating exenatide during clinical trials. Adequate blood glucose monitoring should be continued and followed.
Fenofibrate: (Moderate) Monitor blood glucose during concomitant fibric acid derivatives and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Fenofibric Acid: (Moderate) Monitor blood glucose during concomitant fibric acid derivatives and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Fexofenadine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Fibric acid derivatives: (Moderate) Monitor blood glucose during concomitant fibric acid derivatives and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Fludrocortisone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Flunisolide: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Fluoxetine: (Moderate) Monitor blood glucose during concomitant insulin and fluoxetine use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Fluphenazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Fluticasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Fluticasone; Salmeterol: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Fluticasone; Umeclidinium; Vilanterol: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Fluticasone; Vilanterol: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Formoterol; Mometasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Fosamprenavir: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
Fosinopril: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Fosphenytoin: (Minor) Fosphenytoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically. Monitor blood glucose for changes in glycemic control. Dosage adjustments may be necessary in some patients.
Furosemide: (Minor) Monitor patients receiving insulin closely for worsening glycemic control when bumetanide, furosemide, and torsemide are instituted. Bumetanide, furosemide, and torsemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents.
Gemfibrozil: (Moderate) Monitor blood glucose during concomitant fibric acid derivatives and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Glipizide; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Glucagon: (Minor) Caution should be exercised when glucagon is used as a diagnostic aid for radiologic examination in patients taking insulin. Insulin reacts antagonistically towards glucagon. Monitor the patient receiving glucagon for a diagnostic procedure for the desired clinical effects. There is no concern when glucagon is used to treat severe hypoglycemia. If a patient receives glucagon due to severe hypoglycemia by a family member or caregiver, they should alert their health care provider so that insulin treatment may be adjusted, if needed.
Glyburide; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Green Tea: (Moderate) Green tea catechins have been shown to decrease serum glucose con centrations. Patients with diabetes mellitus taking antidiabetic agents should be monitored closely for hypoglycemia if consuming green tea products.
Guaifenesin; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Guaifenesin; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Hydrochlorothiazide, HCTZ: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Hydrochlorothiazide, HCTZ; Methyldopa: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Hydrocodone; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Hydrocortisone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Hydroxychloroquine: (Moderate) Monitor blood glucose during concomitant insulin and hydroxychloroquine use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Ibuprofen; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Iloperidone: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Indapamide: (Moderate) A potential pharmacodynamic interaction exists between indapamide and antidiabetic agents, like insulins. Indapamide can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia.
Indinavir: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
Insulin Degludec; Liraglutide: (Moderate) Monitor blood glucose during concomitant insulin degludec and liraglutide use; consider decreasing the insulin degludec dose when starting liraglutide. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Insulin Glargine; Lixisenatide: (Moderate) The risk of hypoglycemia is increased when lixisenatide is used in combination with insulin degludec. Although specific dose recommendations are not available, a lower dose of the insulin degludec may be required to reduce the risk of hypoglycemia in this setting. Adequate blood glucose monitoring should be continued and followed.
Irbesartan: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Irbesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Isocarboxazid: (Moderate) Monitor blood glucose during concomitant insulin and monoamine oxidase inhibitor (MAOI) use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Isoproterenol: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Labetalol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Lansoprazole; Amoxicillin; Clarithromycin: (Moderate) The concomitant use of clarithromycin and insulin or other antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
Leuprolide; Norethindrone: (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Levobunolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Levonorgestrel: (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Levonorgestrel; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Levonorgestrel; Ethinyl Estradiol; Ferrous Bisglycinate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Levonorgestrel; Ethinyl Estradiol; Ferrous Fumarate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Levothyroxine: (Minor) Monitor patients receiving insulin closely for changes in diabetic control whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued. Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced.
Levothyroxine; Liothyronine (Porcine): (Minor) Monitor patients receiving insulin closely for changes in diabetic control whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued. Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced.
Levothyroxine; Liothyronine (Synthetic): (Minor) Monitor patients receiving insulin closely for changes in diabetic control whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued. Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced.
Lidocaine; Epinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Linagliptin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Linezolid: (Moderate) Hypoglycemia, including symptomatic episodes, has been noted in post-marketing reports with linezolid in patients with diabetes mellitus receiving therapy with antidiabetic agents, such as insulin and oral hypoglycemic agents. Diabetic patients should be monitored for potential hypoglycemic reactions while on linezolid. If hypoglycemia occurs, discontinue or decrease the dose of the antidiabetic agent or discontinue the linezolid therapy. Linezolid is a reversible, nonselective MAO inhibitor and other MAO inhibitors have been associated with hypoglycemic episodes in diabetic patients receiving insulin or oral hypoglycemic agents.
Liothyronine: (Minor) Monitor patients receiving insulin closely for changes in diabetic control whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued. Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced.
Liraglutide: (Moderate) Monitor blood glucose during concomitant insulin degludec and liraglutide use; consider decreasing the insulin degludec dose when starting liraglutide. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Lisdexamfetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Lisinopril: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Lisinopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Lithium: (Moderate) Monitor blood glucose during concomitant insulin and lithium use; an insulin dose adjustment may be necessary. Lithium may increase or decrease the blood glucose lowering effect of insulin.
Lixisenatide: (Moderate) The risk of hypoglycemia is increased when lixisenatide is used in combination with insulin degludec. Although specific dose recommendations are not available, a lower dose of the insulin degludec may be required to reduce the risk of hypoglycemia in this setting. Adequate blood glucose monitoring should be continued and followed.
Lopinavir; Ritonavir: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
Loratadine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Lorcaserin: (Moderate) In general, weight reduction may increase the risk of hypoglycemia in patients with type 2 diabetes mellitus treated with antidiabetic agents, such as insulin and/or insulin secretagogues (e.g., sulfonylureas). In clinical trials, lorcaserin use was associated with reports of hypoglycemia. Blood glucose monitoring is warranted in patients with type 2 diabetes prior to starting and during lorcaserin treatment. Dosage adjustments of anti-diabetic medications should be considered. If a patient develops hypoglycemia during treatment, adjust anti-diabetic drug regimen accordingly. Of note, lorcaserin has not been studied in combination with insulin.
Losartan: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Losartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Lumateperone: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Lurasidone: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Macimorelin: (Major) Avoid use of macimorelin in patients receiving exogenous insulin therapy. In addition, healthcare providers are advised to discontinue insulin therapy and observe a sufficient washout period before administering macimorelin. Use of exogenous insulin may impact the accuracy of the macimorelin growth hormone test by directly affecting pituitary growth hormone secretion and by transiently elevating growth hormone concentrations.
Mafenide: (Moderate) Monitor blood glucose during concomitant insulin and sulfonamide use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Magnesium Salicylate: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Medroxyprogesterone: (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Metformin: (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Metformin; Repaglinide: (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Metformin; Rosiglitazone: (Major) Use of insulins with rosiglitazone is not recommended by the manufacturer due to a potential increased risk for edema or heart failure. If heart failure develops in a patient receiving insulin and a thiazoladinedione, manage the patient according to standards of care, and discontinue or consider reducing the dose of the thiazoladinedione. Since the incidence of hypoglycemia may also be higher with combined therapy, patients should also be instructed to monitor blood glucose concentrations more frequently. In five 26-week trials involving patients with type 2 diabetes, rosiglitazone added to insulin therapy (n=867) was compared with insulin therapy alone (n=663). These trials included patients with chronic diabetes and a high prevalence of coexisting medical conditions, including peripheral neuropathy, retinopathy, ischemic heart disease, vascular disease, and congestive heart failure. In these clinical studies, an increased incidence of heart failure and other cardiovascular adverse events was seen in patients receiving combination rosiglitazone and insulin therapy compared to insulin monotherapy; the incidence of new onset or exacerbated heart failure was 0.9% in patients treated with insulin alone vs. 2% in patients treated with insulin plus rosiglitazone. Some of the patients who developed cardiac failure on combination therapy during the double blind part of the studies had no known prior evidence of congestive heart failure, or pre-existing cardiac condition. Additionally, the results of a meta-analysis that included the same 5 randomized, controlled trials mentioned previously indicate that the rate of myocardial ischemia may be increased in patients taking rosiglitazone in combination with insulin; the incidence of myocardia ischemia was 1.4% in patients receiving insulin monotherapy vs. 2.8% in patients receiving rosiglitazone and insulin combination therapy (OR 2.1 95% CI 0.9-5.1). The cardiovascular events were noted at doses of both 4 mg/day and 8 mg/day of rosiglitazone. In a sixth 26-week study, patients with baseline congestive heart failure were excluded; in this study, compared to insulin monotherapy (n=158), the addition of rosiglitazone to insulin therapy (n=161) did not increase the risk of congestive heart failure. One each of myocardial ischemia and sudden death were reported in patients taking combination therapy compared to zero patients taking insulin monotherapy. When rosiglitazone was added to insulin therapy, the incidence of hypoglycemia was higher with 8 mg/day of rosiglitazone (67%) compared to 4 mg/day (53%). (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Metformin; Saxagliptin: (Moderate) A lower insulin dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with insulin, the incidence of hypoglycemia was increased compared to a placebo used in combination with insulin. (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Metformin; Sitagliptin: (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Methamphetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Methazolamide: (Minor) Carbonic anhydrase inhibitors may alter blood sugar. Both hyperglycemia and hypoglycemia have been described in patients treated with acetazolamide. This should be taken into consideration in patients with impaired glucose tolerance or diabetes mellitus who are receiving antidiabetic agents. Monitor blood glucose and for changes in glycemic control and be alert for evidence of an interaction.
Methenamine; Sodium Salicylate: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Methohexital: (Minor) The risk of developing hypothermia is increased when methohexital is used with hypothermia-producing agents such as ethanol, insulins, phenothiazines, or other general anesthetics.
Methyclothiazide: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Methylphenidate: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Methylprednisolone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Methyltestosterone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
Metoclopramide: (Moderate) Increased GI motility by metoclopramide may increase delivery of food to the intestines and increase blood glucose. The dosing of insulin may require adjustment in patients who receive metoclopramide concomitantly.
Metolazone: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Metoprolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Metreleptin: (Moderate) Use caution when administering metreleptin to patients treated with concomitant insulins or insulin secretagogue therapy (i.e., sulfonylureas, nateglinide, repaglinide). In clinical evaluation of metreleptin, hypoglycemia occurred in 13% of patients with generalized lipodystrophy. Most reported cases occurred with concomitant insulin use, with or without oral antihyperglycemic agents. Closely monitor blood glucose in patients on concomitant insulin or insulin secretagogue therapy. Dosage adjustments to their antihyperglycemic medications may be necessary.
Metyrapone: (Moderate) In patients taking insulin or other antidiabetic agents, the signs and symptoms of acute metyrapone toxicity (e.g., symptoms of acute adrenal insufficiency) may be aggravated or modified.
Midodrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Moexipril: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Mometasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Monoamine oxidase inhibitors: (Moderate) Monitor blood glucose during concomitant insulin and monoamine oxidase inhibitor (MAOI) use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Nadolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Naproxen; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Nebivolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Nebivolol; Valsartan: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Nelfinavir: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
Niacin, Niacinamide: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when niacin, niacinamide is instituted or discontinued. Dosage adjustments may be necessary. Niacin interferes with glucose metabolism and can result in hyperglycemia. When used at daily doses of 750 to 2000 mg, niacin significantly lowers LDL cholesterol and triglycerides while increasing HDL cholesterol. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy.
Niacin; Simvastatin: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when niacin, niacinamide is instituted or discontinued. Dosage adjustments may be necessary. Niacin interferes with glucose metabolism and can result in hyperglycemia. When used at daily doses of 750 to 2000 mg, niacin significantly lowers LDL cholesterol and triglycerides while increasing HDL cholesterol. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy.
Nicotine: (Minor) Nicotine may increase plasma glucose. Monitor blood sugar for needed insulin dosage adjustments in insulin-dependent diabetic patients whenever a change in either nicotine intake or smoking status occurs. In addition, the use of inhaled insulin is not recommended in patients who smoke. Smoking tobacco can alter the effect of inhaled insulin in several ways. First, nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine levels) and may increase plasma glucose. Second, tobacco smoking is known to aggravate insulin resistance. Finally, compared with non-smokers, insulin exposure after inhalation may be greater in patients who smoke. If inhaled insulin is used in this population, patients should be instructed to monitor blood glucose concentrations closely. If a change in smoking status or nicotine intake occur, patients should continue to monitor their blood glucose concentrations closely and clinicians should adjust the dose of insulin when indicated.
Nirmatrelvir; Ritonavir: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
Norepinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Norethindrone Acetate; Ethinyl Estradiol; Ferrous fumarate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Norethindrone: (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Norethindrone; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Norethindrone; Ethinyl Estradiol; Ferrous fumarate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Norgestimate; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Norgestrel: (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Olanzapine: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Olanzapine; Fluoxetine: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant insulin and fluoxetine use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Olanzapine; Samidorphan: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Olmesartan: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Olmesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Olopatadine; Mometasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Orlistat: (Minor) Weight-loss may affect glycemic control in patients with diabetes mellitus. In many patients, glycemic control may improve. A reduction in dose of insulins or other medicines for diabetes may be required in some patients taking orlistat. Monitor blood glucose and glycemic control and adjust therapy as clinically indicated.
Oxandrolone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
Oxymetholone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
Paliperidone: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Pentamidine: (Moderate) Monitor patients receiving insulin closely for changes in glycemic control during the use of pentamidine; dosage adjustments of insulin may be necessary. Pentamidine can be harmful to pancreatic cells. This effect may lead to hypoglycemia acutely, followed hyperglycemia with prolonged pentamidine therapy.
Pentoxifylline: (Moderate) Monitor patients receiving pentoxifylline concomitantly with insulin for changes in glycemic control. Pentoxifylline may enhance the hypoglycemic action of insulin.
Perindopril:< /strong> (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Perindopril; Amlodipine: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Perphenazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Perphenazine; Amitriptyline: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Phendimetrazine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Phenelzine: (Moderate) Monitor blood glucose during concomitant insulin and monoamine oxidase inhibitor (MAOI) use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Phenothiazines: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Phentermine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Phentermine; Topiramate: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Phenytoin: (Minor) Phenytoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically. Monitor blood glucose for changes in glycemic control. Dosage adjustments may be necessary in some patients.
Pindolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Pioglitazone: (Moderate) Monitor blood glucose and for signs and symptoms of heart failure during concomitant pioglitazone and insulin use. Reduce the insulin dose by 10% to 25% if hypoglycemia occurs; adjust the insulin dose further based on glycemic response. Consider discontinuation of pioglitazone if heart failure occurs and manage according to current standards. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia and fluid retention which may lead to or exacerbate heart failure.
Pioglitazone; Glimepiride: (Moderate) Monitor blood glucose and for signs and symptoms of heart failure during concomitant pioglitazone and insulin use. Reduce the insulin dose by 10% to 25% if hypoglycemia occurs; adjust the insulin dose further based on glycemic response. Consider discontinuation of pioglitazone if heart failure occurs and manage according to current standards. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia and fluid retention which may lead to or exacerbate heart failure.
Pioglitazone; Metformin: (Moderate) Monitor blood glucose and for signs and symptoms of heart failure during concomitant pioglitazone and insulin use. Reduce the insulin dose by 10% to 25% if hypoglycemia occurs; adjust the insulin dose further based on glycemic response. Consider discontinuation of pioglitazone if heart failure occurs and manage according to current standards. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia and fluid retention which may lead to or exacerbate heart failure. (Moderate) Monitor blood glucose during concomitant metformin and insulin use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Pramlintide: (Major) Reduce mealtime insulin doses, including premixed insulins, by 50% when starting pramlintide to reduce the risk of hypoglycemia; further reductions in insulin dose are dependent on individual patient response. Monitor blood glucose frequently, including pre- and post-meals and at bedtime. Always administer pramlintide and insulin as separate injections; do not mix pramlintide with any insulin.
Prasterone, Dehydroepiandrosterone, DHEA (Dietary Supplements): (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
Prasterone, Dehydroepiandrosterone, DHEA (FDA-approved): (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
Prednisolone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Prednisone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Prilocaine; Epinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Prochlorperazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Progesterone: (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Progestins: (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Promethazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Promethazine; Dextromethorphan: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Promethazine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Propranolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Propranolol; Hydrochlorothiazide, HCTZ: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Protease inhibitors: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Pseudoephedrine; Triprolidine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Quetiapine: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Quinapril: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Quinapril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Quinolones: (Moderate) Monitor blood glucose during concomitant insulin and quinolone use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Racepinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Ramipril: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Relugolix; Estradiol; Norethindrone acetate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Risperidone: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Ritonavir: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
Rosiglitazone: (Major) Use of insulins with rosiglitazone is not recommended by the manufacturer due to a potential increased risk for edema or heart failure. If heart failure develops in a patient receiving insulin and a thiazoladinedione, manage the patient according to standards of care, and discontinue or consider reducing the dose of the thiazoladinedione. Since the incidence of hypoglycemia may also be higher with combined therapy, patients should also be instructed to monitor blood glucose concentrations more frequently. In five 26-week trials involving patients with type 2 diabetes, rosiglitazone added to insulin therapy (n=867) was compared with insulin therapy alone (n=663). These trials included patients with chronic diabetes and a high prevalence of coexisting medical conditions, including peripheral neuropathy, retinopathy, ischemic heart disease, vascular disease, and congestive heart failure. In these clinical studies, an increased incidence of heart failure and other cardiovascular adverse events was seen in patients receiving combination rosiglitazone and insulin therapy compared to insulin monotherapy; the incidence of new onset or exacerbated heart failure was 0.9% in patients treated with insulin alone vs. 2% in patients treated with insulin plus rosiglitazone. Some of the patients who developed cardiac failure on combination therapy during the double blind part of the studies had no known prior evidence of congestive heart failure, or pre-existing cardiac condition. Additionally, the results of a meta-analysis that included the same 5 randomized, controlled trials mentioned previously indicate that the rate of myocardial ischemia may be increased in patients taking rosiglitazone in combination with insulin; the incidence of myocardia ischemia was 1.4% in patients receiving insulin monotherapy vs. 2.8% in patients receiving rosiglitazone and insulin combination therapy (OR 2.1 95% CI 0.9-5.1). The cardiovascular events were noted at doses of both 4 mg/day and 8 mg/day of rosiglitazone. In a sixth 26-week study, patients with baseline congestive heart failure were excluded; in this study, compared to insulin monotherapy (n=158), the addition of rosiglitazone to insulin therapy (n=161) did not increase the risk of congestive heart failure. One each of myocardial ischemia and sudden death were reported in patients taking combination therapy compared to zero patients taking insulin monotherapy. When rosiglitazone was added to insulin therapy, the incidence of hypoglycemia was higher with 8 mg/day of rosiglitazone (67%) compared to 4 mg/day (53%).
Sacubitril; Valsartan: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Salicylates: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Salsalate: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Saquinavir: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
Saxagliptin: (Moderate) A lower insulin dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with insulin, the incidence of hypoglycemia was increased compared to a placebo used in combination with insulin.
Segesterone Acetate; Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Semaglutide: (Moderate) Monitor blood glucose during concomitant insulin degludec and semaglutide use; consider decreasing the insulin degludec dose when starting semaglutide. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Serdexmethylphenidate; Dexmethylphenidate: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Sodium Polystyrene Sulfonate: (Moderate) Sodium polystyrene sulfonate should be used cautiously with other agents that can induce hypokalemia such as loop diuretics, insulins, or intravenous sodium bicarbonate. Because of differences in onset of action, sodium polystyrene sulfonate is often used with these agents. With appropriate monitoring, hypokalemia can be avoided.
Sotalol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Spironolactone; Hydrochlorothiazide, HCTZ: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Sulfadiazine: (Moderate) Monitor blood glucose during concomitant insulin and sulfonamide use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Sulfamethoxazole; Trimethoprim, SMX-TMP, Cotrimoxazole: (Moderate) Monitor blood glucose during concomitant insulin and sulfonamide use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Sulfasalazine: (Moderate) Monitor blood glucose during concomitant insulin and sulfonamide use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Sulfonamides: (Moderate) Monitor blood glucose during concomitant insulin and sulfonamide use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Sympathomimetics: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Tacrolimus: (Moderate) Tacrolimus has been reported to cause hyperglycemia. Patients should be monitored for worsening of glycemic control if therapy with tacrolimus is initiated in patients receiving antidiabetic agents.
Tegaserod: (Moderate) Because tegaserod can enhance gastric emptying in patients with diabetes, blood glucose can be affected, which, in turn, may affect the clinical response to antidiabetic agents.
Telmisartan: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Telmisartan; Amlodipine: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Telmisartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Testosterone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
Thiazide diuretics: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Thioridazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Thyroid hormones: (Minor) Monitor patients receiving insulin closely for changes in diabetic control whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued. Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced.
Timolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Tipranavir: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control, specifically hyperglycemia, when anti-retroviral protease inhibitors are instituted. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Another possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
Tirzepatide: (Moderate) When tirzepatide is used with insulin, consider lowering the dose of the insulin to reduce the risk of hypoglycemia and monitor the blood glucose concentration more frequently. Patients receiving tirzepatide in combination with insulin may have an increased risk of hypoglycemia, including severe hypoglycemia.
Tobacco: (Major) Advise patients to avoid smoking tobacco while taking insulin. Tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments in antidiabetic agents may be needed.
Torsemide: (Minor) Monitor patients receiving insulin closely for worsening glycemic control when bumetanide, furosemide, and torsemide are instituted. Bumetanide, furosemide, and torsemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents.
Trandolapril: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Trandolapril; Verapamil: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin-converting enzyme (ACE) inhibitor use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Tranylcypromine: (Moderate) Monitor blood glucose during concomitant insulin and monoamine oxidase inhibitor (MAOI) use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Triamcinolone: (Moderate) Monitor blood glucose during concomitant corticosteroid and insulin use; an insulin dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Triamterene: (Minor) Triamterene can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. Patients receiving insulin should be closely monitored for signs indicating loss of diabetic control when therapy with triamterene is instituted. In addition, patients receiving insulin should be closely monitored for signs of hypoglycemia when therapy with any of these other agents is discontinued.
Triamterene; Hydrochlorothiazide, HCTZ: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. (Minor) Triamterene can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. Patients receiving insulin should be closely monitored for signs indicating loss of diabetic control when therapy with triamterene is instituted. In addition, patients receiving insulin should be closely monitored for signs of hypoglycemia when therapy with any of these other agents is discontinued.
Trifluoperazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Valsartan: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant insulin and angiotensin II receptor blocker use; an insulin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Vonoprazan; Amoxicillin; Clarithromycin: (Moderate) The concomitant use of clarithromycin and insulin or other antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
Ziprasidone: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.

How Supplied

Insulin Degludec/Tresiba Subcutaneous Inj Sol: 1mL, 100U, 200U

Maximum Dosage

Specific maximum dosage information is not available. Individualize dosage based on careful monitoring of blood glucose and other clinical parameters in all patient populations.

Mechanism Of Action

Endogenous insulin regulates carbohydrate, fat, and protein metabolism by several mechanisms; in general, insulin promotes the storage and inhibits the breakdown of glucose, fat, and amino acids. Insulin lowers glucose concentrations by facilitating the uptake of glucose in muscle and adipose tissue and by inhibiting hepatic glucose production (glycogenolysis and gluconeogenesis). Insulin also regulates fat metabolism by enhancing the storage of fat (lipogenesis) and inhibiting the mobilization of fat for energy in adipose tissues (lipolysis and free fatty acid oxidation). Finally, insulin is involved in the regulation of protein metabolism by increasing protein synthesis and inhibiting proteolysis in muscle tissue.
 
Diabetes mellitus type 1 is caused by insulin deficiency while diabetes mellitus type 2 is caused by a combination of insulin deficiency and resistance. Biosynthetic insulin is used as replacement therapy in patients with diabetes mellitus to temporarily restore their ability to use fats, carbohydrates, and proteins, and to convert glycogen to fat. Insulin administration also enables these patients to replete their liver glycogen stores.
 
Proper insulin therapy, when needed, has beneficial effects besides glycemic control in patients with diabetes mellitus (DM).
In the Diabetes Control and Complications Trial (DCCT) patients, 13 to 39 years of age with type 1 DM were studied. Those receiving 'intensive' therapy (3 or more injections per day or use of an insulin pump) had approximately a 60% reduction in the incidence of retinopathy, nephropathy, and neuropathy compared to 'conventional' (2 injections/day) dosing but had a greater risk of serious hypoglycemia.
In the United Kingdom prospective diabetes study (UKPDS) patients 48 to 60 years of age with type 2 DM were studied. Those receiving 'intensive therapy' with either sulfonylureas or insulin experienced an approximate 25% reduction in the incidence of microvascular complications when compared to 'conventional therapy.' The fasting blood glucose goal in the intensive therapy groups was less than 6 mmol/L (less than 109 mg/dL); in the conventional therapy group, the fasting blood glucose goal was the best achievable with diet alone; drug therapy was added if fasting blood glucose was more than 15 mmol/L (273 mg/dL) or the patient experienced symptoms of hyperglycemia. Similar to DCCT, patients in the intensive therapy group had a greater incidence of hypoglycemia.

Pharmacokinetics

Insulin degludec is administered subcutaneously. Insulin degludec is highly protein bound to albumin (greater than 99%), which along with formation of multi-hexamers resulting in a subcutaneous depot, delays absorption allowing for a prolonged duration of action. Endogenous insulin distributes widely throughout the body. A small portion is inactivated by peripheral tissues, but the majority is metabolized by the liver and kidneys. Insulin is filtered and reabsorbed by the kidneys. The half-life of insulin degludec at steady state is approximately 25 hours.
 
Affected cytochrome P450 (CYP450) isoenzymes and drug transporters: None

Subcutaneous Route

The median onset of appearance after a single dose of insulin degludec was around 1 hour. The maximum glucose lowering effect was observed at a median of 12 hours after a dose of 0.4 units/kg subcutaneously. The glucose lowering effect lasted at least 42 hours after 8 doses of 0.4 units/kg once daily. The total glucose lowering effect over 24 hours increased in proportion to the dose using a dose range of 0.4 to 0.8 units/kg. Total and maximum exposure at steady state were comparable for insulin degludec 100 units/mL and 200 units/mL.

Pregnancy And Lactation
Pregnancy

Available data the published literature and one unpublished triall with insulin degludec use during pregnancy have not identified a drug-associated risk of major birth defects, miscarriage, or other adverse maternal or fetal outcomes. In a randomized, parallel group, open label actively controlled clinical trial that included pregnant women with type 1 diabetes mellitus who were administered insulin degludec once daily and insulin aspart, beginning in gestational weeks 8 to 13 or prior to conception, no clear evidence of maternal or fetal risk associated with insulin degludec use was observed. There were no significant drug associated differences in pregnancy outcomes or the health the fetus and newborn between the 2 groups. In this study, the proportion of subjects with severe hypoglycemia and hypoglycemia was similar between the 2 treatment arms. In about 66% of infants, insulin degludec was detected in the infant cord blood at levels above the lower level of quantification of the assay. In these studies, insulin degludec caused pre- and post-implantation losses and visceral/skeletal abnormalities when given subcutaneously at up to 21 Units/kg/day in rats and 3.3 Units/kg/day in rabbits, resulting in 5 times (rat) and 10 times (rabbit) the human exposure (AUC) at a human subcutaneous dose of 0.75 Units/kg/day. Overall, the effects of insulin degludec were similar to those observed with human insulin, which were probably secondary to maternal hypoglycemia. In general, insulin requirements decline during the first trimester, increase during the second and third trimesters, and then decline significantly after delivery. Use caution when administering long-acting insulin products near term as insulin requirements may change rapidly and dietary carbohydrate intake may be unpredictable. Careful monitoring is required throughout pregnancy and during the perinatal period. In addition, during the perinatal period, careful monitoring of neonates born to mothers with diabetes is recommended. Optimizing glycemic control before conception and during pregnancy appears to improve fetal outcome; this should include the avoidance of episodes of hypoglycemia as the toxic effects of maternal hypoglycemia on the fetus have been well-documented. Most experts, including the American College of Obstetrics and Gynecologists (ACOG) and the American Diabetes Association (ADA), recommend human insulin as the therapy of choice to maintain blood glucose as close to normal as possible during pregnancy in patients with type 1 or 2 diabetes mellitus, and, if diet therapy alone is not successful, for those patients with gestational diabetes; insulin does not cross the placenta.