trihexyphenidyl
Classes
Anti-Parkinson Agents, Anticholinergic
Administration
NOTE: Once adequate control has been established with conventional drug forms, a delayed release form of trihexyphenidyl may be substituted for convenience. Because the delayed release is a high dosage form it should not be used for initial treatment.
Trihexyphenidyl is administered orally.
Administer after meals. If patient suffers from dry mouth, trihexyphenidyl may be administered before meals. Trihexyphenidyl may be administered with meals to minimize gastric irritation if gastric distress is a problem.
Extended-release tablets: Swallow trihexyphenidyl whole, do not break, chew, or crush.
Oral solution: Administer trihexyphenidyl using a calibrated measuring device.
Adverse Reactions
toxic megacolon / Delayed / Incidence not known
ileus / Delayed / Incidence not known
neuroleptic malignant syndrome / Delayed / Incidence not known
ocular hypertension / Delayed / Incidence not known
hallucinations / Early / 0-1.0
confusion / Early / 0-1.0
constipation / Delayed / 10.0
urinary retention / Early / 10.0
parotitis / Delayed / Incidence not known
heat intolerance / Early / Incidence not known
hyperthermia / Delayed / Incidence not known
anhidrosis / Delayed / Incidence not known
euphoria / Early / Incidence not known
psychosis / Early / Incidence not known
depression / Delayed / Incidence not known
delirium / Early / Incidence not known
memory impairment / Delayed / Incidence not known
blurred vision / Early / Incidence not known
sinus tachycardia / Rapid / Incidence not known
myasthenia / Delayed / Incidence not known
nausea / Early / 1.0-10.0
vomiting / Early / 1.0-10.0
insomnia / Early / 1.0-10.0
restlessness / Early / 1.0-10.0
agitation / Early / 0-1.0
paranoia / Early / 0-1.0
xerostomia / Early / 10.0
dizziness / Early / 10.0
anxiety / Delayed / 10.0
fever / Early / Incidence not known
rash / Early / Incidence not known
headache / Early / Incidence not known
paresthesias / Delayed / Incidence not known
drowsiness / Early / Incidence not known
mydriasis / Early / Incidence not known
asthenia / Delayed / Incidence not known
weakness / Early / Incidence not known
Common Brand Names
Artane
Dea Class
Rx
Description
An oral synthetic, tertiary antimuscarinic that penetrates the central nervous system (CNS)
Indicated as an adjunct in the treatment of all forms of parkinsonism (postencephalitic, arteriosclerotic, and idiopathic); often useful as adjuvant therapy with levodopa
Also helps control of extrapyramidal disorders due to CNS drugs (e.g., phenothiazines, thioxanthenes, and butyrophenones)
Dosage And Indications
1 mg PO once daily, initially. Increase the dose by 2 mg every 3 to 5 days as needed. Usual dose: 6 to 10 mg/day divided in 3 doses. Postencephalitic patients may require a total daily dose of 12 to 15 mg/day. Doses more than 10 mg/day may be divided in 4 doses.
1 mg PO once daily, initially. Increase the dose as needed if symptoms are not controlled in a few hours. Usual dose: 5 to 15 mg/day divided in 3 to 4 doses. Consider reducing the dose after symptoms have been controlled for several days. Instances have been reported in where symptoms have remained in remission for long periods after trihexyphenidyl therapy was discontinued.
Dosage not established. Trials of adequate quality are insufficient to be informative regarding efficacy and tolerability of trihexyphenidyl for this condition. In one small open-label study, 14 schizophrenic patients who exhibited nocturnal hypersalivation during clozapine treatment were treated with trihexyphenidyl 5—15 mg PO once daily at bedtime for 15 days. A reduction of 44% in nocturnal hypersalivation was observed. However, there were several study limitations and confounders including failure to blind or use placebo, variable size of effect, small sample size, lack of ADR reporting, subjective rating scale for symptom severity, response as it related to initial severity was not reported, and diagnosis was established by patient and physician observation. Further study on the risks and benefits of treatment are needed.
†Indicates off-label use
Dosing Considerations
Dosage may need modification depending on clinical response and degree of hepatic impairment, but no quantitative recommendations are available.
Renal ImpairmentDosage should be modified depending on clinical response and degree of renal impairment, but no quantitative recommendations are available.
Drug Interactions
Acetaminophen; Caffeine; Dihydrocodeine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Acetaminophen; Codeine: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Acetaminophen; Hydrocodone: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant hydrocodone and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Acetaminophen; Oxycodone: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Aclidinium: (Moderate) Although aclidinium is minimally absorbed into the systemic circulation after inhalation, there is the potential for aclidinium to have additive anticholinergic effects when administered with other anticholinergics or antimuscarinics. Per the manufacturer, avoid concomitant administration of aclidinium with other anticholinergic medications, when possible.
Aclidinium; Formoterol: (Moderate) Although aclidinium is minimally absorbed into the systemic circulation after inhalation, there is the potential for aclidinium to have additive anticholinergic effects when administered with other anticholinergics or antimuscarinics. Per the manufacturer, avoid concomitant administration of aclidinium with other anticholinergic medications, when possible.
Alfentanil: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when alfentanil is used concomitantly with an anticholinergic drug. The concomitant use of alfentanil and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Alosetron: (Major) Concomitant use of alosetron and anticholinergics, which can decrease GI motility, may seriously worsen constipation, leading to events such as GI obstuction, impaction, or paralytic ileus. Although specific recommendations are not available from the manufacturer, it would be prudent to avoid anticholinergics in patients taking alosetron.
Aluminum Hydroxide: (Moderate) Antacids may inhibit the oral absorption of anticholinergics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
Aluminum Hydroxide; Magnesium Carbonate: (Moderate) Antacids may inhibit the oral absorption of anticholinergics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
Aluminum Hydroxide; Magnesium Hydroxide: (Moderate) Antacids may inhibit the oral absorption of anticholinergics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
Aluminum Hydroxide; Magnesium Hydroxide; Simethicone: (Moderate) Antacids may inhibit the oral absorption of anticholinergics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
Aluminum Hydroxide; Magnesium Trisilicate: (Moderate) Antacids may inhibit the oral absorption of anticholinergics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
Amantadine: (Moderate) Amantadine may exhibit anticholinergic activity, as may trihexyphenidyl. These drugs are not commonly used together. Both trihexyphenidyl and amantadine have significant anticholinergic activity and the combination may increase the risk of anticholinergic-related side effects. Clinicians should note that such effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, neurologic function, and temperature regulation. Monitor for effects such as confusion, constipation, dizziness, difficulty with urination, dry mouth and eyes, and changes in vision.
Amoxapine: (Moderate) Depending on the specific agent, additive anticholinergic effects may be seen when amoxapine is used concomitantly with other anticholinergic agents. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive CNS effects are also possible when these drugs are combined with amoxapine.
Antacids: (Moderate) Antacids may inhibit the oral absorption of anticholinergics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
Anxiolytics; Sedatives; and Hypnotics: (Moderate) CNS depressants, such as anxiolytics, sedatives, and hypnotics, can increase the sedative effects of trihexyphenidyl.
Aspirin, ASA; Caffeine; Orphenadrine: (Moderate) Additive anticholinergic effects may be seen when orphenadrine is used concomitantly with other antimuscarinics.
Aspirin, ASA; Carisoprodol; Codeine: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Aspirin, ASA; Citric Acid; Sodium Bicarbonate: (Moderate) Antacids may inhibit the oral absorption of antimuscarinics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
Aspirin, ASA; Oxycodone: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Atropine; Difenoxin: (Moderate) Diphenoxylate is a synthetic opiate derivative that appears to exert its effect locally and centrally on the smooth mucle cells of the GI tract to inhibit GI motility and slow excess GI propulsion. The effects can be additive to antimuscarinic agents, such as trihexyphenidyl. In some cases, constipation might occur, and effects on the CNS or bladder function may also be additive.
Belladonna; Opium: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when opium is used concomitantly with an anticholinergic drug. The concomitant use of opium and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Benzhydrocodone; Acetaminophen: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when benzhydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of benzhydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Benzodiazepines: (Moderate) CNS depressants, such as anxiolytics, sedatives, and hypnotics, can increase the sedative effects of trihexyphenidyl.
Botulinum Toxins: (Moderate) The use of systemic antimuscarinic/anticholinergic agents following the administration of botulinum toxins may result in a potentiation of systemic anticholinergic effects (e.g., blurred vision, dry mouth, constipation, or urinary retention).
Buprenorphine: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant buprenorphine and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Buprenorphine; Naloxone: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant buprenorphine and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Bupropion: (Moderate) Additive anticholinergic effects may be seen when trihexyphenidyl is used concomitantly with bupropion. Additive drowsiness may occur. Clinicians should note that antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation.
Bupropion; Naltrexone: (Moderate) Additive anticholinergic effects may be seen when trihexyphenidyl is used concomitantly with bupropion. Additive drowsiness may occur. Clinicians should note that antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation.
Buspirone: (Moderate) CNS depressants, such as anxiolytics, sedatives, and hypnotics, can increase the sedative effects of trihexyphenidyl.
Butalbital; Acetaminophen; Caffeine; Codeine: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Butalbital; Aspirin; Caffeine; Codeine: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Butorphanol: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when butorphanol is used concomitantly with an anticholinergic drug. The concomitant use of butorphanol and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Calcium Carbonate: (Major) Avoid concomitant use of calcium carbonate and anticholinergics. Antacids may interfere with the absorption of anticholinergics.
Calcium Carbonate; Famotidine; Magnesium Hydroxide: (Major) Avoid concomitant use of calcium carbonate and anticholinergics. Antacids may interfere with the absorption of anticholinergics.
Calcium Carbonate; Magnesium Hydroxide: (Major) Avoid concomitant use of calcium carbonate and anticholinergics. Antacids may interfere with the absorption of anticholinergics.
Calcium Carbonate; Magnesium Hydroxide; Simethicone: (Major) Avoid concomitant use of calcium carbonate and anticholinergics. Antacids may interfere with the absorption of anticholinergics.
Calcium Carbonate; Simethicone: (Major) Avoid concomitant use of calcium carbonate and anticholinergics. Antacids may interfere with the absorption of anticholinergics.
Calcium; Vitamin D: (Major) Avoid concomitant use of calcium carbonate and anticholinergics. Antacids may interfere with the absorption of anticholinergics.
Carbidopa; Levodopa: (Minor) The doses of trihexyphenidyl and levodopa may need to be adjusted when the drugs are given simultaneously. Trihexyphenidyl can potentiate the dopaminergic effects of levodopa.
Carbidopa; Levodopa; Entacapone: (Minor) The doses of trihexyphenidyl and levodopa may need to be adjusted when the drugs are given simultaneously. Trihexyphenidyl can potentiate the dopaminergic effects of levodopa.
Celecoxib; Tramadol: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant tramadol and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Cetirizine: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant cetirizine and trihexyphenidyl use. Concomitant use may result in additive anticholinergic adverse effects.
Cetirizine; Pseudoephedrine: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant cetirizine and trihexyphenidyl use. Concomitant use may result in additive anticholinergic adverse effects.
Chlorpheniramine; Codeine: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Chlorpheniramine; Hydrocodone: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant hydrocodone and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Chlorpromazine: (Moderate) Additive anticholinergic effects may be seen when anticholinergics are used concomitantly with phenothiazines, including chlorpromazine. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other additive CNS effects may also occur.
Cholinergic agonists: (Major) The muscarinic actions of drugs known as parasympathomimetics, including both direct cholinergic receptor agonists and cholinesterase inhibitors, can antagonize the antimuscarinic actions of anticholinergic drugs, and vice versa.
Cisapride: (Moderate) The use of drugs that decrease GI motility, such as trihexyphenidyl, may pharmacodynamically oppose the effects of cisapride.
Clozapine: (Major) Avoid co-prescribing clozapine with other anticholinergic medicines that can cause gastrointestinal hypomotility, due to a potential to increase serious constipation, ileus, and other potentially serious bowel conditions that may result in hospitalization. Clozapine exhibits potent anticholinergic effects. Additive anticholinergic effects may be seen when clozapine is used concomitantly with anticholinergic agents. Adverse effects may be seen not only on GI smooth muscle, but also on bladder function, the CNS, the eye, and temperature regulation. Additive drowsiness may also occur, depending on the anticholinergic agent used.
Codeine: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Codeine; Guaifenesin: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Codeine; Guaifenesin; Pseudoephedrine: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Codeine; Phenylephrine; Promethazine: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant promethazine and trihexyphenidyl use. Concomitant use may result in additive anticholinergic adverse effects.
Codeine; Promethazine: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant promethazine and trihexyphenidyl use. Concomitant use may result in additive anticholinergic adverse effects.
Crofelemer: (Moderate) Pharmacodynamic interactions between crofelemer and antimuscarinics are theoretically possible. Crofelemer does not affect GI motility mechanisms, but does have antidiarrheal effects. Patients taking medications that decrease GI motility, such as antimuscarinics, may be at greater risk for serious complications from crofelemer, such as constipation with chronic use. Use caution and monitor GI symptoms during coadministration.
Cyclobenzaprine: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant cyclobenzaprine and trihexyphenidyl use. Concomitant use may result in additive anticholinergic adverse effects.
Dasiglucagon: (Major) The concomitant use of intravenous glucagon and anticholinergics increases the risk of gastrointestinal adverse reactions due to additive effects on inhibition of gastrointestinal motility. Concomitant use is not recommended.
Dextromethorphan; Bupropion: (Moderate) Additive anticholinergic effects may be seen when trihexyphenidyl is used concomitantly with bupropion. Additive drowsiness may occur. Clinicians should note that antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation.
Dextromethorphan; Quinidine: (Moderate) The anticholinergic effects of quinidine may be significant and may be enhanced when combined with antimuscarinics.
Digoxin: (Moderate) Anticholinergics, because of their ability to cause tachycardia, can antagonize the beneficial actions of digoxin in atrial fibrillation/flutter. Routine therapeutic monitoring should be continued when an antimuscarinic agent is prescribed with digoxin until the effects of combined use are known.
Diphenoxylate; Atropine: (Moderate) Diphenoxylate is a synthetic opiate derivative that appears to exert its effect locally and centrally on the smooth mucle cells of the GI tract to inhibit GI motility and slow excess GI propulsion. The effects can be additive to antimuscarinic agents, such as trihexyphenidyl. In some cases, constipation might occur, and effects on the CNS or bladder function may also be additive.
Disopyramide: (Moderate) In addition to its electrophysiologic effects, disopyramide exhibits clinically significant anticholinergic properties. These can be additive with other anticholinergics. Clinicians should be aware that urinary retention, particularly in males, and aggravation of glaucoma are realistic possibilities of using disopyramide with other anticholinergic agents.
Donepezil: (Moderate) The therapeutic benefits of donepezil, a cholinesterase inhibitor, may be diminished during chronic co-administration with antimuscarinics or medications with potent anticholinergic activity. When concurrent use is not avoidable, the patient should be monitored for cognitive decline and anticholinergic side effects. Clinicians should generally avoid multiple medications with anticholinergic activity in the patient with dementia. Some of the common selective antimuscarinic drugs for bladder problems, (such as oxybutynin, darifenacin, trospium, fesoterodine, tolerodine, or solifenacin), do not routinely cause problems with medications used for dementia, but may cause anticholinergic side effects in some patients. Atropine may be used to offset bradycardia in cholinesterase inhibitor overdose.
Donepezil; Memantine: (Moderate) The adverse effects of anticholinergics, such as dry mouth, urinary hesitancy or blurred vision may be enhanced with use of memantine; dosage adjustments of the anticholinergic drug may be required when memantine is coadministered. In addition, preliminary evidence indicates that chronic anticholinergic use in patients with Alzheimer's Disease may possibly have an adverse effect on cognitive function. Therefore, the effectiveness of drugs used in the treatment of Alzheimer's such as memantine, may be adversely affected by chronic antimuscarinic therapy. (Moderate) The therapeutic benefits of donepezil, a cholinesterase inhibitor, may be diminished during chronic co-administration with antimuscarinics or medications with potent anticholinergic activity. When concurrent use is not avoidable, the patient should be monitored for cognitive decline and anticholinergic side effects. Clinicians should generally avoid multiple medications with anticholinergic activity in the patient with dementia. Some of the common selective antimuscarinic drugs for bladder problems, (such as oxybutynin, darifenacin, trospium, fesoterodine, tolerodine, or solifenacin), do not routinely cause problems with medications used for dementia, but may cause anticholinergic side effects in some patients. Atropine may be used to offset bradycardia in cholinesterase inhibitor overdose.
Dronabinol: (Moderate) Use caution if coadministration of dronabinol with anticholinergics is necessary. Concurrent use of dronabinol, THC with anticholinergics may result in additive drowsiness, hypertension, tachycardia, and possibly cardiotoxicity.
Droperidol: (Moderate) CNS depressants, such as anxiolytics, sedatives, and hypnotics, can increase the sedative effects of trihexyphenidyl.
Eluxadoline: (Major) Avoid use of eluxadoline with medications that may cause constipation, such as anticholinergics. Discontinue use of eluxadoline in patients who develop severe constipation lasting more than 4 days.
Ethanol: (Major) Advise patients to avoid alcohol consumption while taking CNS depressants. Alcohol consumption may result in additive CNS depression. (Moderate) Alcohol can increase the sedative effects of trihexyphenidyl.
Fentanyl: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant fentanyl and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Fluphenazine: (Moderate) Additive anticholinergic effects may be seen when anticholinergics are used concomitantly with phenothiazines, including fluphenazine. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other additive CNS effects may also occur.
Fluticasone; Umeclidinium; Vilanterol: (Moderate) There is the potential for umeclidinium to have additive anticholinergic effects when administered with other anticholinergics or antimuscarinics. Per the manufaturer, avoid concomitant administration of umeclidinium with other anticholinergic medications when possible.
Galantamine: (Moderate) The therapeutic benefits of galantamine, a cholinesterase inhibitor, may be diminished during chronic co-administration with antimuscarinics or medications with potent anticholinergic activity. When concurrent use is not avoidable, the patient should be monitored for cognitive decline and anticholinergic side effects. Clinicians should generally avoid multiple medications with anticholinergic activity in the patient with dementia. Some of the common selective antimuscarinic drugs for bladder problems, (such as oxybutynin, darifenacin, trospium, fesoterodine, tolerodine, or solifenacin), do not routinely cause problems with medications used for dementia, but may cause anticholinergic side effects in some patients. Atropine may be used to offset bradycardia in cholinesterase inhibitor overdose.
Glucagon: (Major) The concomitant use of intravenous glucagon and anticholinergics increases the risk of gastrointestinal adverse reactions due to additive effects on inhibition of gastrointestinal motility. Concomitant use is not recommended.
Glycopyrronium: (Moderate) Although glycopyrronium is minimally absorbed into the systemic circulation after topical application, there is the potential for glycopyrronium to have additive anticholinergic effects when administered with other antimuscarinics. Per the manufaturer, avoid concomitant administration of glycopyrronium with other anticholinergic medications.
Guaifenesin; Hydrocodone: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant hydrocodone and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Haloperidol: (Moderate) The concurrent use of haloperidol with trihexyphenidyl is beneficial for many patients, as these anticholinergic agents treat drug-induced extrapyramidal symptoms. However, the anticholinergic effects of trihexyphenidyl may be additive to those of haloperidol, and may increase the incidence of dry mouth, constipation, or heat intolerance. Advise patients to promptly report gastrointestinal complaints, fever, or heat intolerance.
Homatropine; Hydrocodone: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant hydrocodone and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Hydrocodone: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant hydrocodone and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Hydrocodone; Ibuprofen: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant hydrocodone and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Hydrocodone; Pseudoephedrine: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant hydrocodone and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Hydromorphone: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydromorphone is used concomitantly with an anticholinergic drug. The concomitant use of hydromorphone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Ibritumomab Tiuxetan: (Moderate) Use anticholinergics, such as trihexyphenidyl, and concomitant solid oral dosage forms of potassium chloride with caution due to risk for gastrointestinal mucosal injury. Anticholinergics may decrease gastric motility and increase the transit time of solid oral dosage forms of potassium chloride leading to prolonged contact with the gastrointestinal mucosa.
Ibuprofen; Oxycodone: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Ipratropium: (Moderate) Although ipratropium is minimally absorbed into the systemic circulation after inhalation, there is the potential for additive anticholinergic effects when administered with other antimuscarinic or anticholinergic medications. Per the manufacturer, avoid coadministration.
Ipratropium; Albuterol: (Moderate) Although ipratropium is minimally absorbed into the systemic circulation after inhalation, there is the potential for additive anticholinergic effects when administered with other antimuscarinic or anticholinergic medications. Per the manufacturer, avoid coadministration.
Itraconazole: (Moderate) Antimuscarinics can raise intragastric pH. This effect may decrease the oral bioavailability of itraconazole; antimuscarinics should be used cautiously in patients receiving itraconazole.
Levocetirizine: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant cetirizine and trihexyphenidyl use. Concomitant use may result in additive anticholinergic adverse effects.
Levodopa: (Minor) The doses of trihexyphenidyl and levodopa may need to be adjusted when the drugs are given simultaneously. Trihexyphenidyl can potentiate the dopaminergic effects of levodopa.
Levorphanol: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when levorphanol is used concomitantly with an anticholinergic drug. The concomitant use of levorphanol and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Linaclotide: (Moderate) Anticholinergics can promote constipation and pharmacodynamically oppose the action of drugs used for the treatment of constipation or constipation-associated irritable bowel syndrome, such as linaclotide.
Loxapine: (Moderate) Loxapine has anticholinergic activity. The concomitant use of loxapine and other anticholinergic drugs can increase the risk of anticholinergic adverse reactions including exacerbation of glaucoma, constipation, and urinary retention. Depending on the agent used, additive drowsiness/dizziness may also occur.
Lubiprostone: (Moderate) Antimuscarinic drugs can promote constipation and pharmacodynamically oppose the action of drugs used for the treatment of constipation, such as lubiprostone. The clinical significance of these potential interactions is uncertain.
Lurasidone: (Moderate) Antipsychotic agents may disrupt core temperature regulation; therefore, caution is recommended during concurrent use of lurasidone and medications with anticholinergic activity such as antimuscarinics. Concurrent use of lurasidone and medications with anticholinergic activity may contribute to heat-related disorders. Monitor patients for heat intolerance, decreased sweating, or increased body temperature if lurasidone is used with antimuscarinics.
Macimorelin: (Major) Avoid use of macimorelin with drugs that may blunt the growth hormone response to macimorelin, such as antimuscarinic anticholinergic agents. Healthcare providers are advised to discontinue anticholinergics at least 1 week before administering macimorelin. Use of these medications together may impact the accuracy of the macimorelin growth hormone test.
Magnesium Hydroxide: (Moderate) Antacids may inhibit the oral absorption of anticholinergics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
Maprotiline: (Moderate) Anticholinergic effects may be seen when drugs with antimuscarinic properties like trihexyphenidyl are used concomitantly with other antimuscarinics.
Memantine: (Moderate) The adverse effects of anticholinergics, such as dry mouth, urinary hesitancy or blurred vision may be enhanced with use of memantine; dosage adjustments of the anticholinergic drug may be required when memantine is coadministered. In addition, preliminary evidence indicates that chronic anticholinergic use in patients with Alzheimer's Disease may possibly have an adverse effect on cognitive function. Therefore, the effectiveness of drugs used in the treatment of Alzheimer's such as memantine, may be adversely affected by chronic antimuscarinic therapy.
Meperidine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when meperidine is used concomitantly with an anticholinergic drug. The concomitant use of meperidine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Methadone: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when methadone is used concomitantly with an anticholinergic drug. The concomitant use of methadone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Metoclopramide: (Moderate) Drugs with significant antimuscarinic activity, such as anticholinergics and antimuscarinics, may slow GI motility and thus may reduce the prokinetic actions of metoclopramide. Monitor patients for an increase in gastrointestinal complaints, such as reflux or constipation. Additive drowsiness may occur as well. The clinical significance is uncertain.
Molindone: (Moderate) Antipsychotics are associated with anticholinergic effects; therefore, additive effects may be seen during concurrent use of molindone and other drugs having anticholinergic activity such as antimuscarinics. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other CNS effects may also occur.
Morphine: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant morphine and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Morphine; Naltrexone: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant morphine and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Nabilone: (Moderate) Concurrent use of nabilone with anticholinergics may result in pronounced tachycardia and drowsiness.
Nalbuphine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when nalbuphine is used concomitantly with an anticholinergic drug. The concomitant use of nalbuphine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Neostigmine: (Major) The muscarinic actions of neostigmine can antagonize the antimuscarinic actions of trihexyphenidyl.
Neostigmine; Glycopyrrolate: (Major) The muscarinic actions of neostigmine can antagonize the antimuscarinic actions of trihexyphenidyl.
Olanzapine: (Moderate) Additive anticholinergic effects may be seen when olanzapine and anticholinergics are used concomitantly; use with caution. Use of olanzapine and other drugs with anticholinergic activity can increase the risk for severe gastrointestinal adverse reactions related to hypomotility. Olanzapine exhibits anticholinergic activity. Adverse effects may be seen not only on GI smooth muscle, but also on bladder function, the CNS, the eye, and temperature regulation. Additive drowsiness may also occur, depending on the anticholinergic agent used.
Olanzapine; Fluoxetine: (Moderate) Additive anticholinergic effects may be seen when olanzapine and anticholinergics are used concomitantly; use with caution. Use of olanzapine and other drugs with anticholinergic activity can increase the risk for severe gastrointestinal adverse reactions related to hypomotility. Olanzapine exhibits anticholinergic activity. Adverse effects may be seen not only on GI smooth muscle, but also on bladder function, the CNS, the eye, and temperature regulation. Additive drowsiness may also occur, depending on the anticholinergic agent used.
Olanzapine; Samidorphan: (Moderate) Additive anticholinergic effects may be seen when olanzapine and anticholinergics are used concomitantly; use with caution. Use of olanzapine and other drugs with anticholinergic activity can increase the risk for severe gastrointestinal adverse reactions related to hypomotility. Olanzapine exhibits anticholinergic activity. Adverse effects may be seen not only on GI smooth muscle, but also on bladder function, the CNS, the eye, and temperature regulation. Additive drowsiness may also occur, depending on the anticholinergic agent used.
Oliceridine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when oliceridine is used with trihexyphenidyl. Use of anticholinergics may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Omeprazole; Sodium Bicarbonate: (Moderate) Antacids may inhibit the oral absorption of antimuscarinics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
Orphenadrine: (Moderate) Additive anticholinergic effects may be seen when orphenadrine is used concomitantly with other antimuscarinics.
Oxycodone: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Oxymorphone: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when oxymorphone is used concomitantly with an anticholinergic drug. The concomitant use of oxymorphone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Paroxetine: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant anticholinergic medication and paroxetine use. Concomitant use may result in additive anticholinergic adverse effects.
Pentazocine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when pentazocine is used concomitantly with an anticholinergic drug. The concomitant use of pentazocine and anticholinergic medications may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Pentazocine; Naloxone: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when pentazocine is used concomitantly with an anticholinergic drug. The concomitant use of pentazocine and anticholinergic medications may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Perphenazine: (Moderate) Additive anticholinergic effects may be seen when anticholinergics are used concomitantly with phenothiazines, including perphenazine. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other additive CNS effects may also occur.
Perphenazine; Amitriptyline: (Moderate) Additive anticholinergic effects may be seen when anticholinergics are used concomitantly with phenothiazines, including perphenazine. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other additive CNS effects may also occur.
Phentermine; Topiramate: (Moderate) Monitor for decreased sweating and increased body temperature, especially in hot weather, during concomitant use of topiramate and other drugs that predispose persons to heat-related disorders, such as anticholinergic medications. Concomitant use increases the risk for oligohidrosis and hyperthermia.
Physostigmine: (Major) The muscarinic actions of physostigmine can antagonize the antimuscarinic actions of trihexyphenidyl.
Potassium Bicarbonate: (Moderate) Use anticholinergics, such as trihexyphenidyl, and concomitant solid oral dosage forms of potassium chloride with caution due to risk for gastrointestinal mucosal injury. Anticholinergics may decrease gastric motility and increase the transit time of solid oral dosage forms of potassium chloride leading to prolonged contact with the gastrointestinal mucosa.
Potassium Chloride: (Moderate) Use anticholinergics, such as trihexyphenidyl, and concomitant solid oral dosage forms of potassium chloride with caution due to risk for gastrointestinal mucosal injury. Anticholinergics may decrease gastric motility and increase the transit time of solid oral dosage forms of potassium chloride leading to prolonged contact with the gastrointestinal mucosa.
Pramlintide: (Major) Pramlintide therapy should not be considered in patients taking medications that alter gastric motility, such as anticholinergics. Pramlintide slows gastric emptying and the rate of nutrient delivery to the small intestine. Medications that have depressive effects on GI could potentiate the actions of pramlintide.
Procainamide: (Moderate) The anticholinergic effects of procainamide may be significant and may be enhanced when combined with anticholinergics. Anticholinergic agents administered concurrently with procainamide may produce additive antivagal effects on AV nodal conduction, although this is not as well documented for procainamide as for quinidine.
Prochlorperazine: (Moderate) Additive anticholinergic effects may be seen when anticholinergics are used concomitantly with phenothiazines, including prochlorperazine. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other additive CNS effects may also occur.
Promethazine: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant promethazine and trihexyphenidyl use. Concomitant use may result in additive anticholinergic adverse effects.
Promethazine; Dextromethorphan: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant promethazine and trihexyphenidyl use. Concomitant use may result in additive anticholinergic adverse effects.
Promethazine; Phenylephrine: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant promethazine and trihexyphenidyl use. Concomitant use may result in additive anticholinergic adverse effects.
Pyridostigmine: (Major) The muscarinic actions of pyridostigmine can antagonize the antimuscarinic actions of trihexyphenidyl.
Quetiapine: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant quetiapine and trihexyphenidyl use. Concomitant use may result in additive anticholinergic adverse effects.
Quinidine: (Moderate) The anticholinergic effects of quinidine may be significant and may be enhanced when combined with antimuscarinics.
Rasagiline: (Moderate) MAOIs exhibit secondary anticholinergic actions. Additive anticholinergic effects may be seen when MAOIs are used concomitantly with antimuscarinics. Clinicians should note that antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive CNS effects are also possible when many of these drugs are combined with MAOIs.
Remifentanil: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when remifentanil is used concomitantly with an anticholinergic drug. The concomitant use of remifentanil and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Revefenacin: (Moderate) Although revefenacin is minimally absorbed into the systemic circulation after inhalation, there is the potential for additive anticholinergic effects when administered with other antimuscarinics. Avoid concomitant administration with other anticholinergic and antimucarinic medications.
Rivastigmine: (Moderate) The therapeutic benefits of rivastigmine, a cholinesterase inhibitor, may be diminished during chronic co-administration with antimuscarinics or medications with potent anticholinergic activity. When concurrent use is not avoidable, the patient should be monitored for cognitive decline and anticholinergic side effects. Clinicians should generally avoid multiple medications with anticholinergic activity in the patient with dementia. Some of the common selective antimuscarinic drugs for bladder problems, (such as oxybutynin, darifenacin, trospium, fesoterodine, tolerodine, or solifenacin), do not routinely cause problems with medications used for dementia, but may cause anticholinergic side effects in some patients. Atropine may be used to offset bradycardia in cholinesterase inhibitor overdose.
Secretin: (Major) Discontinue anticholinergic medications at least 5 half-lives before administering secretin. Patients who are receiving anticholinergics at the time of stimulation testing may be hyporesponsive to secretin stimulation and produce a false result. Consider additional testing and clinical assessments for aid in diagnosis.
Sedating H1-blockers: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant sedating H1-blocker and trihexyphenidyl use. Concomitant use may result in additive anticholinergic adverse effects.
Sincalide: (Moderate) Sincalide-induced gallbladder ejection fraction may be affected by anticholinergics. False study results are possible in patients with drug-induced hyper- or hypo-responsiveness; thorough patient history is important in the interpretation of procedure results.
Sodium Bicarbonate: (Moderate) Antacids may inhibit the oral absorption of antimuscarinics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
Sodium Sulfate; Magnesium Sulfate; Potassium Chloride: (Moderate) Use anticholinergics, such as trihexyphenidyl, and concomitant solid oral dosage forms of potassium chloride with caution due to risk for gastrointestinal mucosal injury. Anticholinergics may decrease gastric motility and increase the transit time of solid oral dosage forms of potassium chloride leading to prolonged contact with the gastrointestinal mucosa.
Solifenacin: (Moderate) Additive anticholinergic effects may be seen when drugs with antimuscarinic properties like solifenacin are used concomitantly with other antimuscarinics. Blurred vision and dry mouth would be common effects. Clinicians should note that additive antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the CNS, the eye, and temperature regulation. Additive drowsiness may also occur.
Sufentanil: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when sufentanil is used concomitantly with an anticholinergic drug. The concomitant use of sufentanil and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Tapentadol: (Moderate) Tapentadol should be used cautiously with anticholinergic medications since additive depressive effects on GI motility or bladder function may occur. Monitor patients for signs of urinary retention or reduced gastric motility. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. Opiate analgesics combined with antimuscarinics can cause severe constipation or paralytic ileus, especially with chronic use. Additive CNS effects like drowsiness or dizziness may also occur.
Tegaserod: (Major) Drugs that exert significant anticholinergic properties such as antimuscarinics may pharmacodynamically oppose the effects of prokinetic agents such as tegaserod. Avoid administering antimuscarinics along with tegaserod under most circumstances. Inhaled respiratory antimuscarinics, such as ipratropium, are unlikely to interact with tegaserod. Ophthalmic anticholinergics may interact if sufficient systemic absorption of the eye medication occurs.
Tenapanor: (Moderate) Anticholinergics can promote constipation and pharmacodynamically oppose the action of drugs used for the treatment of constipation or constipation-associated irritable bowel syndrome, such as tenapanor.
Thiazide diuretics: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Thioridazine: (Moderate) Additive anticholinergic effects may be seen when drugs with anticholinergic properties like thioridazine are used concomitantly with anticholinergic agents. Adverse effects may be seen not only on GI smooth muscle, but also on bladder function, the CNS, the eye, and temperature regulation. Additive drowsiness may also occur, depending on the interacting agent.
Thiothixene: (Moderate) Anticholinergics may have additive effects with thiothixene, an antipsychotic with the potential for anticholinergic activity. Monitor for anticholinergic-related adverse effects such as xerostomia, blurred vision, constipation, and urinary retention during concurrent use.
Tiotropium: (Major) Avoid concomitant use of anticholinergic medications and tiotropium due to increased risk for anticholinergic adverse effects.
Tiotropium; Olodaterol: (Major) Avoid concomitant use of anticholinergic medications and tiotropium due to increased risk for anticholinergic adverse effects.
Tolterodine: (Moderate) Additive anticholinergic effects may be seen when tolterodine is used concomitantly with other antimuscarinics. When possible, avoid concurrent use, especially in the elderly, who are more susceptible to the anticholinergic effects. Consider alternatives to these other medications, if available. Clinicians should note that antimuscarinic effects might be seen not only on bladder smooth muscle, but also on GI function, the eye, and temperature regulation. Blurred vision, constipation, and dry mouth may be more prominent additive effects. With many of the listed agents, additive drowsiness may also occur when combined.
Topiramate: (Moderate) Monitor for decreased sweating and increased body temperature, especially in hot weather, during concomitant use of topiramate and other drugs that predispose persons to heat-related disorders, such as anticholinergic medications. Concomitant use increases the risk for oligohidrosis and hyperthermia.
Tramadol: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant tramadol and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Tramadol; Acetaminophen: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant tramadol and trihexyphenidyl use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Tricyclic antidepressants: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant tricyclic antidepressant and trihexyphenidyl use. Concomitant use may result in additive anticholinergic adverse effects.
Trifluoperazine: (Moderate) Additive anticholinergic effects may be seen when anticholinergics are used concomitantly with phenothiazines, including trifluoperazine. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other additive CNS effects may also occur.
Trimethobenzamide: (Moderate) Trimethobenzamide has CNS depressant effects and may cause drowsiness. The concurrent use of trimethobenzamide with other medications that cause CNS depression, like the anticholinergics, may potentiate the effects of either trimethobenzamide or the anticholinergic.
Trospium: (Moderate) Additive anticholinergic effects may be seen when trospium is used concomitantly with other antimuscarinics. When possible, avoid concurrent use, especially in the elderly, who are more susceptible to the anticholinergic effects. Consider alternatives to these other medications, if available. Clinicians should note that antimuscarinic effects might be seen not only on bladder smooth muscle, but also on GI function, the eye, and temperature regulation. Blurred vision, constipation, and dry mouth may be more prominent additive effects. With many of the listed agents, additive drowsiness may also occur when combined with trospium.
Umeclidinium: (Moderate) There is the potential for umeclidinium to have additive anticholinergic effects when administered with other anticholinergics or antimuscarinics. Per the manufaturer, avoid concomitant administration of umeclidinium with other anticholinergic medications when possible.
Umeclidinium; Vilanterol: (Moderate) There is the potential for umeclidinium to have additive anticholinergic effects when administered with other anticholinergics or antimuscarinics. Per the manufaturer, avoid concomitant administration of umeclidinium with other anticholinergic medications when possible.
Vibegron: (Moderate) Vibegron should be administered with caution in patients taking anticholinergics because of potential for an increased risk of urinary retention. Monitor for symptoms of urinary difficulties or urinary retention. Patients may note constipation or dry mouth with use of these drugs together.
Zonisamide: (Moderate) Zonisamide use is associated with case reports of decreased sweating, hyperthermia, heat intolerance, or heat stroke and should be used with caution in combination with other drugs that may also predispose patients to heat-related disorders like anticholinergics.
How Supplied
Artane/Trihexyphenidyl/Trihexyphenidyl Hydrochloride Oral Sol: 2mg, 5mL
Artane/Trihexyphenidyl/Trihexyphenidyl Hydrochloride Oral Tab: 2mg, 5mg
Maximum Dosage
15 mg/day PO.
Elderly15 mg/day PO.
AdolescentsSafety and efficacy have not been established.
ChildrenSafety and efficacy have not been established.
Mechanism Of Action
Trihexyphenidyl is an antagonist of acetylcholine and other cholinergic stimuli at muscarinic receptors in the CNS and, to a lesser extent, in smooth muscle. It has a direct antispasmodic action on smooth muscle, and it has weak mydriatic, antisecretory, and positive chronotropic activities. In small doses, trihexyphenidyl has CNS-depressant effects, but, in larger doses, CNS-stimulatory effects similar to those seen with atropine toxicity can occur.
Trihexyphenidyl is used adjunctively to treat all types of parkinsonian syndromes including antipsychotic-induced extrapyramidal symptoms. This drug is frequently used in combination with other antiparkinsonian agents, and it is effective in 50% to 75% of patients. In general, anticholinergic agents can help control tremor but are less effective for treating bradykinesia or rigidity. Also, trihexyphenidyl can block dopamine reuptake, thus prolonging the effect of dopamine. Tolerance to the effects of trihexyphenidyl can occur with prolonged use.
Pharmacokinetics
Trihexyphenidyl is administered orally. The drug crosses the blood-brain barrier. The metabolic pathway is unknown, but unchanged drug is renally excreted.
Oral RouteTrihexyphenidyl is rapidly absorbed from the GI tract. Onset of action is 1 hour. Peak effects last 2—3 hours, and the duration of action is 6—12 hours.
Pregnancy And Lactation
Trihexyphenidyl should be used during pregnancy only if clearly necessary because the potential risks following in utero exposure in humans are unknown. There are no adequate or well controlled studies in human pregnancy, and animal studies have not been conducted to evaluate teratogenic or embryotoxic potential of the drug. It is not known if trihexyphenidyl can affect reproduction.
According to the manufacturer, trihexyphenidyl should be used during breast-feeding only if the expected benefit to the mother outweighs the potential risks to the breastfed infant. It is not known if trihexyphenidyl is present in human milk. Similar to other anticholinergic medications, trihexyphenidyl may suppress lactation.[30336] Benztropine is a commonly used alternative to trihexyphenidyl in the treatment of Parkinson's disease or extrapyramidal symptoms; however, there are no data available on its use during breast-feeding and similar risks which apply to other anticholinergic agents should be anticipated.[30312] Consider the benefits of breast-feeding, the risk of potential infant drug exposure, and the risk of an untreated or inadequately treated condition.